11
Characterization 2005-05-02 August Yurgens 1 1 • Film thickness • Surface morphology • Film composition • Film properties Characterization methods are very diverse • Size of equipment. Compare desktop interferometer with 2 m accelerator of RBS • Cost. $10 1 – $10 6 • Environment. Ambient – 10 -10 Torr • Complexity. Scotch tape – SEM, TEM etc. Characterization of Thin Characterization of Thin Films Films 2 Composition (1 Composition (1 m m depth depth) ) Crystal Crystal structure structure Surface composition Surface composition Composition of irradiated area Composition of irradiated area Trace element analysis Trace element analysis X-ray fluorescence ray fluorescence X-ray diffraction ray diffraction X-ray photoelectron ray photoelectron spectroscopy spectroscopy Laser Laser microprobe microprobe Laser Laser emission emission microprobe microprobe XRF XRF XRD XRD ESCA, XPS ESCA, XPS - LEM LEM X-ray ray X-ray ray Electron Electron Ion Ion Light Light >1 >1 keV keV >1 >1 keV keV >1 >1 keV keV Laser Laser Laser Laser Photon Photon Surface composition Surface composition Trace composition vs Trace composition vs depth depth Trace composition vs Trace composition vs depth depth Trace composition Trace composition Surface characterization Surface characterization Composition Composition vs vs depth depth Ion Ion-scattering spectroscopy scattering spectroscopy Secondary ion mass Secondary ion mass spectroscopy spectroscopy Secondary neutral mass Secondary neutral mass spectrometry spectrometry Particle Particle-induced X induced X-ray ray emission emission Scanning ion microscopy Scanning ion microscopy Rutherford backscattering Rutherford backscattering ISS ISS SIMS SIMS SNMS SNMS PIXE PIXE SIM SIM RBS RBS Ion Ion Ion Ion Atom Atom X-ray ray Electron Electron Ion Ion 0.5 0.5 -2.0 2.0 keV keV 1 1 - 15 15 keV keV 1-15 15 eV eV 1 1 keV keV and up and up 5-20 20 keV keV >1 MeV >1 MeV Ion Ion Surface structure Surface structure Surface Surface morphology morphology Surface Surface region region composition composition Surface layer composition Surface layer composition High High-resolution structure resolution structure Imaging, X Imaging, X-ray analysis ray analysis Local small Local small-area composition area composition Low Low-energy electron diffraction energy electron diffraction Scanning electron Scanning electron microscopy microscopy Electron microprobe Electron microprobe Auger electron Auger electron spectroscopy spectroscopy Transmission electron Transmission electron microscopy microscopy Scanning TEM Scanning TEM Electron energy loss Electron energy loss spectroscopy spectroscopy LEED LEED SEM SEM EMP EMP (EDX) AES (EDX) AES TEM TEM STEM STEM EELS EELS Electron Electron Electron Electron X-ray ray Electron Electron Electron Electron Electron, X Electron, X- ray ray Electron Electron 20 20 - 200 eV 200 eV 0.3 0.3 - 30 30 keV keV l l - 30keV 30keV 500eV 500eV-10keV 10keV 100 100 -400 400 keV keV 100 100 -400 400 keV keV 100 100 -400 400 keV keV Electron Electron Application Application Technique Technique Acronym Acronym Secondary Secondary signal signal Energy range Energy range Primary Primary beam beam J.B. Bindel, in VLSI Technol, McGraw-Hill, NY88 3 LEED SEM EMP(EDX AES TEM STEM EELS ISS SIMS SNMS PIXE SIM 1 10 100 1000 10000 100000 1000000 electrons ions Energy (eV) 4 FILM THICKNESS Optical methods Mechanical methods Profilometry Quartz crystal microbalace Ultrasound Interferometry reflection spectral Ellipsometry reflection spectral • elegant • non-destructive • high-resolution • fast • easy to implement 5 FILM THICKNESS Optical methods Transparent films and multilayers, uses polarized Transparent films and multilayers, uses polarized light (M light (M , fixed , fixed ) (multiple (multiple-angle ellipsometry is angle ellipsometry is also performed at l also performed at l ) <0.1 <0.1- Spectroscopic Spectroscopic ellipsometry ellipsometry Transparent films and multilayers, fast, measures Transparent films and multilayers, fast, measures d, n, d, n, and and k ( k ( = = ~ 200 ~ 200-1000 nm, 1000 nm, = = 90 90°) ) (polarized reflectometry is also performed at l (polarized reflectometry is also performed at l , , M M ) ~ 30 ~ 30 - 2000 2000± 1 1 nm nm Spectral Spectral reflectometry reflectometry (unpolarized unpolarized) Transparent films and multilayers, uses polarized Transparent films and multilayers, uses polarized light, measures light, measures d, d, n, and n, and k k (1 (1 , fixed , fixed ) <0.1 <0.1- Ellipsometry Ellipsometry Transparent films on reflective substrate (M Transparent films on reflective substrate (M , , = = 90 90°) 40 40 - 2000 2000 ± l l nm nm CARIS CARIS (constant constant-angle angle reflection reflection interference interference spectroscopy spectroscopy) Transparent films on reflective substrate (1 Transparent films on reflective substrate (1 , M , M ) 80 80 - 1000 1000 ± 0.02 0.02- 0.05% 0.05% VAMFO VAMFO (variable variable-angle angle monochromatic monochromatic fringe fringe observation) observation) A step, reflective coating, and spectrometer A step, reflective coating, and spectrometer required; time consuming required; time consuming (M (M ) 1 1 - 2000 2000 ± 0.5 0.5 Multiple Multiple beam beam interferometry interferometry (FECO FECO) A step and reflective coating required (1 A step and reflective coating required (1, , = = 90 90°) 3 3 - 2000 2000 ± 1-3 3 Multiple Multiple beam beam interferometry interferometry (FET FET) Characteristics Characteristics (M = multiple) (M = multiple) Range Range (nm) (nm) Method Method 6 FILM THICKNESS Multiple-beam reflection Fringes of equal thickness Fringes of equal inclination

Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 1

11

• Film thickness• Surface morphology• Film composition• Film properties

Characterization methods are very diverse

• Size of equipment. Compare desktop interferometer with 2 m accelerator of RBS• Cost. $101 – $106

• Environment. Ambient – 10-10 Torr• Complexity. Scotch tape – SEM, TEM etc.

Characterization of Thin Characterization of Thin FilmsFilms

22

Composition (1 Composition (1 ��m m depthdepth) ) CrystalCrystal structure structure Surface compositionSurface compositionComposition of irradiated areaComposition of irradiated areaTrace element analysisTrace element analysis

XX--ray fluorescence ray fluorescence XX--ray diffraction ray diffraction XX--ray photoelectronray photoelectron spectroscopyspectroscopyLaser Laser microprobemicroprobeLaser Laser emissionemission microprobemicroprobe

XRF XRF XRD XRD ESCA, XPSESCA, XPS--LEMLEM

XX--rayrayXX--rayrayElectronElectronIonIonLightLight

>1 >1 keVkeV>1 >1 keVkeV>1 >1 keVkeVLaserLaserLaserLaser

PhotonPhoton

Surface composition Surface composition Trace composition vs Trace composition vs depthdepthTrace composition vs Trace composition vs depthdepthTrace compositionTrace compositionSurface characterizationSurface characterizationComposition Composition vsvs depth depth

IonIon--scattering spectroscopyscattering spectroscopySecondary ion massSecondary ion mass spectroscopyspectroscopySecondary neutral massSecondary neutral mass spectrometry spectrometry ParticleParticle--induced Xinduced X--rayray emissionemissionScanning ion microscopy Scanning ion microscopy Rutherford backscattering Rutherford backscattering

ISSISSSIMSSIMSSNMSSNMSPIXEPIXESIM SIM RBS RBS

IonIonIonIonAtomAtomXX--rayrayElectronElectronIon Ion

0.5 0.5 --2.0 2.0 keVkeV1 1 -- 15 15 keVkeV11--15 15 eVeV1 1 keVkeV and upand up55--20 20 keVkeV>1 MeV >1 MeV

IonIon

Surface structureSurface structureSurface Surface morphologymorphologySurface Surface regionregion compositioncompositionSurface layer compositionSurface layer compositionHighHigh--resolution structureresolution structureImaging, XImaging, X--ray analysis ray analysis Local smallLocal small--area compositionarea composition

LowLow--energy electron diffractionenergy electron diffractionScanning electronScanning electron microscopy microscopy Electron microprobe Electron microprobe Auger electronAuger electron spectroscopy spectroscopy Transmission electronTransmission electron microscopy microscopy Scanning TEM Scanning TEM Electron energy lossElectron energy loss spectroscopyspectroscopy

LEEDLEEDSEMSEMEMPEMP(EDX) AES(EDX) AESTEMTEMSTEMSTEMEELSEELS

ElectronElectronElectronElectronXX--rayrayElectronElectronElectronElectronElectron, XElectron, X--

rayrayElectronElectron

20 20 -- 200 eV200 eV0.3 0.3 -- 30 30 keVkeVl l -- 30keV30keV500eV500eV--10keV10keV100 100 --400 400 keVkeV100 100 --400 400 keVkeV100 100 --400 400 keVkeV

ElectronElectron

ApplicationApplicationTechniqueTechniqueAcronymAcronymSecondary Secondary signalsignalEnergy rangeEnergy rangePrimary Primary

beambeam

J.B. Bindel, in VLSI Technol, McGraw-Hill, NY88

33

LEE

DS

EM

EM

P(E

DX

)A

ES

TE

MS

TE

ME

ELS

ISS

SIM

SS

NM

SP

IXE S

IM

1

10

100

1000

10000

100000

1000000

electrons ions

En

erg

y (e

V)

44

FILM THICKNESS

Optical methods Mechanical methods

• Profilometry

• Quartz crystal microbalace

• Ultrasound

Interferometry

• reflection

• spectral

Ellipsometry

• reflection

• spectral

• elegant• non-destructive• high-resolution• fast• easy to implement

55

FILM THICKNESSOptical methods

Transparent films and multilayers, uses polarized Transparent films and multilayers, uses polarized light (M light (M ��, fixed , fixed ��)) (multiple(multiple--angle ellipsometry is angle ellipsometry is also performed at l also performed at l ��))

<0.1<0.1--SpectroscopicSpectroscopicellipsometryellipsometry

Transparent films and multilayers, fast, measures Transparent films and multilayers, fast, measures d, n, d, n, and and k (k (�� = = ~ 200~ 200--1000 nm, 1000 nm, �� = = 9090°°) ) (polarized reflectometry is also performed at l (polarized reflectometry is also performed at l ��, , M M ��))

~ 30 ~ 30 -- 20002000±± 1 1 nmnm

SpectralSpectral reflectometryreflectometry((unpolarizedunpolarized))

Transparent films and multilayers, uses polarized Transparent films and multilayers, uses polarized light, measures light, measures d, d, n, and n, and k k (1(1 ��, fixed , fixed �� ))

<0.1<0.1--EllipsometryEllipsometry

Transparent films on reflective substrate (M Transparent films on reflective substrate (M ��, , �� = = 9090°°))

40 40 -- 2000 2000 ±± l l nmnmCARISCARIS ((constantconstant--angleanglereflectionreflection interference interference spectroscopyspectroscopy))

Transparent films on reflective substrate (1 Transparent films on reflective substrate (1 ��, M, M ��))80 80 -- 1000 1000 ±± 0.020.02--0.05%0.05%

VAMFOVAMFO ((variablevariable--angleanglemonochromaticmonochromatic fringe fringe observation)observation)

A step, reflective coating, and spectrometer A step, reflective coating, and spectrometer required; time consuming required; time consuming (M (M ��))

1 1 -- 2000 2000 ±± 0.50.5Multiple Multiple beambeaminterferometryinterferometry ((FECOFECO))

A step and reflective coating required (1A step and reflective coating required (1��, , �� = = 9090°°))3 3 -- 2000 2000 ±± 11--3 3 Multiple Multiple beambeaminterferometryinterferometry ((FETFET))

CharacteristicsCharacteristics (M = multiple)(M = multiple)RangeRange (nm)(nm)MethodMethod

66

FILM THICKNESSMultiple-beam reflection

Fringes of equal thicknessFringes of equal inclination

Page 2: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 2

77

Interferometry: fringes basics

Fringes of equal inclination

E. Hecht, Optics (Addison-Wesley, 98)

tftt

f

tti

tft

f

dnd

n�

�d

nd

n�d

nn�

θθθ

θθ

θθ

cos2)sin1(cos

2

tan2AC ;sinnn

ACAD ;sinACAD

ADcos

2 cos/BCAB

AD)BCAB( differencepath optical

2

1

f

1

1

=−=

===

−=→==

−+=

πθλπ

πθλπ

πδ

±−=

=±=±Λ=

if

tf

nnd

nk

222

0

00

sin4

cos4

shift phase relative

(minima) 4

)2(cos

(maxima) 4

)12(cos

2

0

0

ft

ft

nmd

nmd

m

λθ

λθ

πδ

=

+=

→=

due to reflections

88

Fringes of equal thickness(Fizeau fringes)

E. Hecht, Optics (Addison-Wesley, 98)

spacing fringe2

2)2/1(

or 2)2/1(

: smallfor and ,

01

0

0

i

==−

=+

=+=

+f

mm

fm

mf

nxx

nxm

dnm

xd

αλ

αλλ

θα

Fizeau, Armand (1819-1896)

X

d

Interferometry: fringes basics

(minima) 4

)2(cos

(maxima) 4

)12(cos

2

0

0

ft

ft

nmd

nmd

m

λθ

λθ

πδ

=

+=

→=

FETnf � 1 for air

(speed of light)

99

Multiple-beam reflectometry:non-transparent films

2spacings Fringeλ∆=d

For highly reflective surfaces, the fringe width is ~1/40 of �, and ~1/5 of that can bedetected � the resolution is about 1/400 of �, i.e. ~15 Å

FILM THICKNESS- Optics

1010

Multiple-beam reflectometry:non-transparent films

FILM THICKNESS- Optics

1111

Transparent films

FILM THICKNESS- Optics

1212

Multiple-beam reflectometry...with a scanner

fringes

glass diskin the scanner

fringes

FILM THICKNESS- Optics

Page 3: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 3

1313

Spectral Reflectometry

http://www.filmetrics.com/pdf/TMO.pdf

Transparent films and multilayers, fast, measures d, n, and k (� = ~ 200-1000 nm, � = 90°)

FILM THICKNESS- Optics

1414

Spectral Reflectometry

http://www.filmetrics.com/

Patterned-Wafer Thickness and Defect MapperThe STMapper uses a new scanning technique to acquire millions of spectral reflectance data points on a 200mm wafer in less than five seconds. An entire cassette of wafers can be mapped in less than five minutes. It can be used to monitor multiple process parameters on patterned wafers, such as ILD thickness, metal residual, and scratches and defects. Available in integrated or stand-alone configurations.

FILM THICKNESS- Optics

1515

Ellipsometry:• reflection ellipsometry• multiple angle of incidence• spectroscopic ellipsometry

Light source

Polar

izer

Qua

rter w

ave

plate

Analyzer

Detector

NULL

A typical experimental setup in ellipsometry

)exp(tan coeff. reflectioncomplex

∆= iψρ

in situ measurements

FILM THICKNESS- Optics

1616

Light source

Polar

izer

Qua

rter w

ave

plate

Analyzer

Detector

NULL

A typical experimental setup in ellipsometry

)exp(tan coeff. reflectioncomplex

∆= iψρ

in situ measurements

Ellipsometer - Rudolph AutoEL-II

Ellipsometer - Sagax Iscoscope #105

#104

1717

FILM THICKNESS Spectroscopic ellipsometry

in situ measurements during thin film growth

)exp(tan coeff. reflectioncomplex

∆= iψρ

1818

FILM THICKNESS- Mechanics Profilometry(one-shot AFM)

thin film

substrate

spring

deflection measurements(interferometry, capacitance, etc...)resolution: ~1Å

0.1-50 mg

defle

ctio

n (Å

)

lateral distance (�m) • tip angle 45 or 60°• tip radii 0.2-25 �m

• scratching of thin film• substrate roughness• vibrations

Page 4: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 4

1919

FILM THICKNESS- MechanicsQuartz Crystal Microbalances

SiO2

Ametist 13.9 x 10.6 x 8.3 cm3, ~1 kg

Rock crystal

clock crystals

M

K�=�K/M

Cdf

ACmf

f2

f

2

−=−=ρδδ

C=1656 kHz mm (AT cut)

2020

FILM THICKNESS- MechanicsQuartz Crystal Microbalances

• f = 6 MHz typical (AT cut, thickn. shear)• temperature sensitive (-)

AT

2121

FILM THICKNESS- Acoustics Ultrasonic methods

interface

local heating � local sudden expansion �acoustic wave pulse �change of reflection at the surface

second pulseprobes the change

in surface reflection

first pulseexcites (heats)the surface

time delay

ultrasound reflected from the interface 2222

FILM THICKNESS- Acoustics Ultrasonic methods

2323

STRUCTURAL CHARACTERIZATION SEM

2424

STRUCTURAL CHARACTERIZATION

SEMMC2’s SEM

JEOL JSM-6301F SEM Installed: 1994Funded by: WallenbergMax sample size: 100 mmresolution 1.2 nm specifiedAcc. voltages 0.5kV - 30kVSource: Cold Field Emission

Page 5: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 5

2525

STRUCTURAL CHARACTERIZATION Large SEM

2626

STRUCTURAL CHARACTERIZATION Jeol SEM

http://www.jeol.com/sem/gallery

2727

STRUCTURAL CHARACTERIZATION

TEM

TEM modes: • Bright-field imaging• Dark-field imaging• Lattice imaging• Diffraction• X-ray spectroscopy• Electron energy loss spectroscopy• Lorentz microscopy 2828

STRUCTURAL CHARACTERIZATION

TEM125 – 300 keV (up to 1 MeV) � short wavelength100 keV � 0.035 Å

TEM modes: • Bright-field imaging• Dark-field imaging• Lattice imaging• Diffraction• X-ray spectroscopy• Electron energy loss spectroscopy• Lorentz microscopy

TEM cross sections

HRTEM: of coherent twin in molybdenumMicroscope: JEOL 4000EX (CEA/DRFMC Grenoble)http://www.fzu.cz/~vystav/TEMpage.html

http://www.fzu.cz/~vystav/TEMpage.html

magnetic domains in Co

2929

STRUCTURAL CHARACTERIZATION FIBmicroscopy

• Voltage contrast: insulators look dark while conductors are bright• Materials contrast: differences in yield of secondary particles • Crystallographic orientation contrast (channeling contrast)

A grain-size distribution can be deduced ! 3030

STRUCTURAL CHARACTERIZATION

X-raydiffraction

Monitoring of interdiffusion in thin films Epitaxial thin films

Page 6: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 6

3131

STRUCTURAL CHARACTERIZATION

http://www.fysik.dtu.dk/stm/instrument.htm

Fe on Cu

Crommie, Lutz & Eigler in http://www.almaden.ibm.com/

STM allows manipulation of individual atoms

STM

3232

CHEMICAL CHARACTERIZATION

• SEM/EDX (energy dispersive X-ray• AES (Auger electron spectroscopy)• XPS (X-ray photoelectron spectroscopy)• RBS (Rutherford backscattering)• SIMS (Secondary-ion mass spectroscopy)

capable of detecting almost allelements of the periodic table

3333

CHEMICAL CHARACTERIZATION

these can be collected and analyzed(XPS or AES)

3434

CHEMICAL CHARACTERIZATION AES energies

3535

CHEMICAL CHARACTERIZATION AES

3636

CHEMICAL CHARACTERIZATION

these can be collected and analyzed

Page 7: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 7

3737

CHEMICAL CHARACTERIZATION

Auger Electron Spectroscopy (AES) • The sample is irradiated with a high energy primary electron beam (2 - 10 keV).

• Backscattered, secondary, and Auger electrons can be detected and analyzed. These can also be used for imaging purposes similar to that in SEM.

• The Auger electrons are emitted at discrete energies, that are characteristic of the elements present on the sample surface (the peak positions are used to identify the elements and their chemical states) All elements in the periodic table, except hydrogen and helium, can be detected, and

• The depth of analysis is 3 - 5 nm

• In the scanning mode, the secondary electrons yield information on the surface topography. Excellent spatial resolution (0.5 �m).

• Top layers can be spattered with ions and depth profiles can be measured.

3838

FilmsFilmsCHEMICAL CHARACTERIZATION

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)also Electron Spectroscopy for Chemical Analysis (ESCA)• The sample is irradiated with soft X-rays photons (1-2 keV) which induces direct

emission of photoelectrons. • The energy of photoelectrons is characteristic of the material.• Depth 2-20 atomic layers. • Peak position and area are used to study the composition. The peak shape give

information about the chemical bonds of the elements.

Modes of Operation1. Energy spectrum. Survey spectra (0-1000 eV) - to estimate the composition,

while high-resolution spectra (10-20 eV) - information about the chemical bonds.2. Mapping. Choosing a single peak and scanning the focal point across the

sample gives information on the lateral distribution of species on the surface. 3. Imaging with high spatial resolution (<10-15 �m) and high sensitivity.

3939

CHEMICAL CHARACTERIZATION

XPS vs AES (are complimentary to each othe)• Give similar information.

• The Auger spot size is smaller than the XPS.

• The XPS spectra are well-documented -> study of surface chemical bonding through the use of tabulated chemical shifts. The Auger chemical shifts are weaker.

• X-rays produce less damage to the surface compared to the primary electrons of AES.

4040

CHEMICAL CHARACTERIZATION

Secondary Ion Mass SpectroscopyDescription (SIMS)The most sensitive method for detection of elements. • masses up to 104 mass units can be detected; • separation of isotopes can be made;• chemical information can be obtained by identifying sputtered ions; • detection limits of 1 ppm of a monolayer; • surface sensitivity < 1nm; depth resolution < 1nm; lateral resolution 100 nm.

Modes of operation:1. Surface analysis – (Static SIMS) - low primary ion densities to prevent

surface destruction2. Imaging. Focused ion beam scanning over the surface produces images of

the surface (recall FIB !)3. Depth profiling (Dynamic SIMS) - high primary ion dose densities to remove

the surface layer by layer. Spectra taken during the sputtering can give the thickness distribution of elements

4141

CHEMICAL CHARACTERIZATION

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/maspec.html

The mass spectrometer is an instrument which can measure the masses and relative concentrations of atoms and molecules.

It makes use of the magnetic force on a moving charged particle.

4242

CHEMICAL CHARACTERIZATION SIMS

Page 8: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 8

4343

CHEMICAL CHARACTERIZATION RBSEasiest to understand: two-body elastic scattering

Rutherford backscattering is an analytical technique in which a high energy beam ( 2 - 4 MeV ) of low mass ions (He ++ ) is directed at a surface. A detector collects particles which scatter from the sample at close to a 180 degree angle.

•The energy of scattered ions depend on their incident energy and on the mass of the sample atom which they hit. The energy of scattered ions therefore indicates the chemical composition of the sample.

•RBS can be used to perform a depth profile of the composition of a sample. This is especially useful in analysis of thin-film materials.

4444

CHEMICAL CHARACTERIZATION RBS

01

0

2

0

022

02

1

cossin

EKE

EMM

MMME

M=

��

��

++−

=θθ

4545

Mechanical PropertiesMechanical PropertiesProperties of Thin FilmsProperties of Thin Films

�������

4646

Deflection of microbeamsProperties of Thin FilmsProperties of Thin Films ������� ����������

��������������������������������������������������������

��� ������ �������� �� ����������������

4747

IndentationProperties of Thin FilmsProperties of Thin Films ������� ����������

������ � ��

Nano indentation test can be used in the analysis of organic and inorganic soft and hard coatings. Examples are thin and multilayer PVD, CVD, PECVD, photoresist, and many other types of films. Substrates can be hard or soft, including metals, semiconductors, glass, and organic materials.

4848

Bulge testingProperties of Thin FilmsProperties of Thin Films ������� ����������

thicknessand radius - ,height dome -

stress residual -

1324

0

2

2

02

dr

h

rhE

rdh

P

σν

σ ���

−+=

Page 9: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 9

4949

Measurements of Internal StressesProperties of Thin FilmsProperties of Thin Films ������� ����������

5050

Adhesion TestsAdhesion TestsProperties of Thin FilmsProperties of Thin Films ������� ����������

��������������������������� �������������!"!#����

5151

Improving ADHESION

Properties of Thin FilmsProperties of Thin Films ������� ����������

$ %�������� �������������$ &��'���������� ���������$ (���� � �� ��������$ &��'�� �������� ����������$ )������ ������������

5252

Electrical resistivityProperties of Thin FilmsProperties of Thin Films ��������� ����������

law) sOhm'(

mobility) - ( :current electrical

ρσµ

µµE

EEneJ

Ev

nevJ

===

== *�� �+�� ��� ����� �������� ���� '��+ �

$ ,�-� ������� ���� ����� �� ��� ������$ .�������� ������� ���'����� /0 ����� �� ��� �� ���������� � ��������0 ����$ 1��� �������� ����� ����������$ 2��� ���������������� �� ����� ���'��$ 2��� ������� ����� ��� ����0 ��������������������

5353

Electrical resistivity measurements

Properties of Thin FilmsProperties of Thin Films ��������� 3 ������ ����������

5454

Properties of Thin FilmsProperties of Thin Films ��������� ����������

������������������� ������������

/

(�(45#

�����

���� �������� � � ���������� �� '��������

��� '��+ ����� �6 7 8 ���

�������������

Page 10: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 10

5555

Properties of Thin FilmsProperties of Thin Films ��������� ����������

������������������� ������������

/

(�(45#

�����

� ���� / �������� ������'�� ��� �������� ��������

5656

Properties of Thin FilmsProperties of Thin Films ��������� ����������

������������������� ������������

*�� ��� ������� ��� '������ ����� �� ��� �������� ����+���0 ��� ���� '������� �+� � �� ��� �������� �� ��������� ,�-� �������

5757

Properties of Thin FilmsProperties of Thin Films ��������� ����������� ��-� ������

����������������

-

9

������� ����� �� �������� ����������� �� ��� �������� ��� � a quantum box

+-

+9

+�

1���� ������ ��� ���� �������� � #. :'�9��0 ;0 ('�

/�� �������� �� ��� ����������� �� ������� � ��������� ��� ��������� ���������� �� ��������

FF k/2πλ =�F = 5 Å for Cu, but�F = 400 Å for Bi (!)

5858

Properties of Thin FilmsProperties of Thin Films ��������� ����������� ��-� ������

εε

π

=

==

),(

...3,2,1 ,

|| z

z

p

nna

p

p

)12(2

22

2

22

1,

22

22

||

2||

+=∆

+=

+ nam

namm

p

znn

z

πε

πε

����-��� �� �������

����-��� �� �����

������ �� ����� �� <������ ����+���

5959

Properties of Thin FilmsProperties of Thin Films �������������� ����������� =�(

���������������������������

6060

Properties of Thin FilmsProperties of Thin Films ��������� ����������

/

(�(45#

�����������������

/�

.���� ���� � 8>88 '� �������� ?��� ������������ ��� �� 2�

Page 11: Characterization of Thin Films 2005 - Chalmersfy.chalmers.se/~yurgens/FKA196/lectures... · Characterization methods are very diverse • Size of equipment. Compare desktop interferometer

Characterization 2005-05-02

August Yurgens 11

6161

Properties of Thin FilmsProperties of Thin Films ��������� ����������

�����������������

<��+ � ��������������� ���������<������� �� ������������

������������� <� ��� ������� ������� � �������������@

6262

Properties of Thin FilmsProperties of Thin Films ��������� ����������

�����������������������������

������ '���� /�

6363

Properties of Thin FilmsProperties of Thin Films ��������� ����������

������������������������

�����������������������&,�)4!!#���+��&��8����,������������ �����

2����/� ����

A8! �B���C4 D 8!! �/�E2- <�������������F ;.�

6464

Properties of Thin FilmsProperties of Thin Films ��������� ����������

D 8!! �/�E2- <�������������F ;.�

�����-�G���������� �������4����4�������������

������������+�����G�� ����������=HG�����