Coal Blending With Fly Ash-An Approach

Embed Size (px)

Citation preview

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    1/28

    Coal blending with Fly ash an

    approach

    Pradip chanda, AGM (CP)

    Navinkishore, Manager (CP)

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    2/28

    Import coal blending is inevitable for Indian

    power sector

    0.66

    0.42

    0.57

    1.24

    3.14

    4.53

    6.56

    6

    8.71

    9.87

    9.44

    10.31

    8.69

    11.56

    21.7

    25.2

    27.76

    37.92

    44.28

    0.36 0.220.28

    0.59 1.371.85

    2.61 2.37

    3.273.54

    3.21 3.37

    2.66

    3.33

    5.78

    6.32 6.57

    8.28

    9.08

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    8.00

    9.00

    10.00

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    FY-92

    FY-93

    FY-94

    FY-95

    FY-96

    FY-97

    FY-98

    FY-99

    FY-00

    FY-01

    FY-02

    FY-03

    FY-04

    FY-05

    FY-06

    FY-07

    FY-08

    FY-09

    FY-10

    a

    CoalImport(milliontons)

    Rising Coal Imports-Non Coking Coal

    Imports Imported coal as %age of domestic coal

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    3/28

    Blending for Indian power boiler -issues

    In general high heat value coals are procured through

    import.

    Blending proportion adopted by experience.

    Releases of heat in the furnace zone and slagformation, restricts the percentage of imported coal

    use in the blend.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    4/28

    Blending for Indian power boiler -issues

    Less availability of domestic coal further restricts

    usage of imported coal.

    With mismatch in demand and availability of domestic

    coal Indian power sector require higher percentage of

    usage of imported coal in the blend

    Higher proportion of import is possible through gas

    recirculation in the boiler. But few boiler have the

    provision.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    5/28

    Increasing import proportion by blending it

    with fly ash an approach

    This paper has come out with a concept to substitute

    the role of GR fan by fly ash injection for flame

    temperature control .

    Blending fly ash with high CV Imported coal is

    expected to

    Increase thermal loading around the flame and therebywill reduce the furnace zone temperature

    Enable enhancement of proportion mix of imported

    coal to a great extent

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    6/28

    Outline of the study

    Earlier practices if any

    Flame temperature modeling

    Furnace temperature modeling

    Ash slagging possibility

    Proposed blending technique

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    7/28

    Riley Stoker Corporation

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    8/28

    WE Energies developed coal ash beneficiation processes

    for carbon and ammonia removal.

    The processes take advantage of utilizing residual

    energy in high carbon fly ash and bottom ash

    New ash beneficiation processes are designed as stand

    alone systems or potential additions to existing powerplants.

    Existing practices

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    9/28

    Flame temperature model

    The flame temperature is modelled from mixedadiabatic temperature of the constituent burning

    gases.

    using the equation become

    , T= (Tadb-Tref) --------------- (1)

    Xri =Reactant , Ypj= Product, Cp= Sp. Heat.

    Tadb/Tref=Adiabatic flame temperature/ ref. temp

    Pjj

    PjRii

    Ri hYhX TChavgp

    ,

    i j

    T

    T

    PPipPj

    T

    T

    RRipRi

    ad

    ref

    R

    ref

    dTcYdTcX,,

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    10/28

    Furnace temperature model

    The furnace zone flue gas temperature is modelled

    as.

    = Mass flow rate, H/h= Enthalpy/ change in enthalpy

    = Stiffen Boltzman const. = Flame emissivity

    Aww = Water wall area. Tfl = Flue gas temp.

    flfl

    wwadwwashashairairfuelfuelfuelfuel

    refflCM

    TTAhMhMHMhMTT

    )()()(

    44

    M

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    11/28

    Simulating the model for a 200 MW boiler

    Two coal sample data (one of domestic coal and one

    from imported coal) from NTPC Korba used for flame

    temperature model simulation.

    Numbers ofblended scenario created with ash

    blending.

    Mass fraction of fuel component determined separately

    for each blend type and used as input to the model.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    12/28

    Simulating the model for a 200 MW boiler

    Model is simulated on excel spread sheet**.

    Result shows that with blending of fly ash the flame

    temperature gets slightly reduce.

    **The componentII (combustion) spread sheet of Engineeringsoftware (www.engineering-4e.com ) used for determining

    the enthalpy of individual reactants and products.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    13/28

    Mass fraction(mass/mass)

    BlendCase-ID/I/A90/10/0

    BlendCase-IID/I/A85/10/05

    BlendCase-IIID/I/A75/15/10

    BlendCase-IVD/I/A65/20/15

    BlendCase-VD/I/A55/25/20

    Flame tempKEA-20%

    -0.99%2398.011 2397.547 2392.348 2386.933 2381.295

    2380

    2382

    23842386

    2388

    2390

    2392

    2394

    2396

    2398

    2400

    0

    10

    2030

    40

    50

    60

    70

    80

    90

    100

    0 5 10 15 20 25

    Flametem(

    degK)

    Im

    p&Domb

    lending%

    Ash blending %

    Adiabatic Flame Temperature trend on blending

    Import

    Domestic

    Flm Temp

    Fig-I

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    14/28

    Simulating the Furnace temperature

    The model is further simulated in Excel spreadsheet.

    (Emissivity of the flame calculated from mean beam lengthand furnace geometry. The value obtained is 0.67. The fly ash

    specific heat capacity is assumed as 0.227 Kcal/deg K.)

    This time the imported coal percentage kept fixed at

    40 % varying domestic and ash percentage.

    Result shows that with blending of fly ash a major

    portion of heat is absorbed by the ash resulting in

    reduction of furnace zone temperature.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    15/28

    Cases BlendCase-ID/I/A60/40/0

    BlendCase-IID/I/A55/40/05

    BlendCase-IIID/I/A50/40/10

    BlendCase-IVD/I/A45/40/15

    BlendCase-VD/I/A40/40/20

    Mass of flue

    per Kg fuel

    (EA- 20 %) 8.15 7.85 7.71 7.57 7.43T (Fur Zone)

    K 1447.30 1434.52 1420.84 1406.15 1390.34

    Furnace Zone Flue gas temperature

    The trend follows a 2nd order relation. Temp = -0.020x2 - 2.442x + 1447 where x= % blending

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    16/28

    Furnace Slagging possibility

    The ash fusion temperature (AFT) of blends increased

    with increasing amounts of Al2O3, CaO, K2O, Na2O and

    TiO2.

    as per Carpenter (1995) the base to acid ratio iscommonly used to predict the slagging propensity of a

    coal. It is defined as:

    A value of the base to acid ratio between 0.4 and 0.7

    indicates a high slagging propensity. Values outside

    this range indicate a lesser likelihood to slag.

    The blended coal acid to base ratio is tabled in next

    slide.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    17/28

    Ash quality in blended coal

    Oxide(%)

    SiO2

    TiO2

    Al2O3

    CaO

    MgO

    Fe2O3

    MnO K2O&Na2

    0Ratio(A)Fe:Ca

    Ratio (B)Basic:

    Acidic

    (1) (2) (3) (4) (5) (6) (7) (8)(6)/ (4) [(4)+(5)+

    (6)+(8)]/[(1)+(2)+

    (3)]Coal-I 54.80 1.88 24.50 3.57 1.87 9.08 0.10 1.50 2.54 0.19Coal-II

    52.00

    0.00

    31.80

    2.70

    4.70

    4.90

    0.00

    2.70 1.81 0.18

    Blend

    (90/10/0) 54.73 1.84 24.69 3.54 1.94 8.98 0.10 1.53 2.53 0.20Blend(85/10/0

    5) 54.73 1.84 24.68 3.55 1.93 8.98 0.10 1.53 2.53 0.20Blend(75/15/1

    0) 54.70 1.82 24.76 3.54 1.97 8.93 0.10 1.54 2.53 0.20Blend(65/20/15

    ) 54.67 1.80 24.84 3.53 2.00 8.89 0.10 1.56 2.52 0.20Blend(55/25/2

    0) 54.64 1.77 24.92 3.52 2.03 8.84 0.09 1.57 2.51 0.20Ratio (A) range of slagging is from 0.3 to 3.0 with maximum slagging possibility near 1.0Ratio (B) range of slagging is from 0.4 to 0.7

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    18/28

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    0 5 10 15 20 25 30

    basic:Acidicindex

    Ash blending %

    Ash slagging study

    Iron:Calcium

    base to acid

    Fig 3

    Iron: Calcium ratio beyond the range from 0.3 to 1.0 indicate lesser likely hood of

    slagging

    Acid to base ratio beyond 0.4 to 0.7 indicated lesser likely hood of slagging.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    19/28

    BLENDING TECHNIQUE

    1. Stock pile lending

    2. Inline Blending

    3. Blending in side

    the furnace

    Feeding at mill outlet

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    20/28

    Conclusion

    A study conducted on fly ash blending with a blend of Indian

    and imported coal.

    Additional Fly ash loading reduces the flame as well as

    furnace zone temperature and carries away heat in the

    convective portion of the furnace.

    This will enable a higher blending ratio for imported coal and

    will address the issue of less domestic coal availability.

    The blend apparently will not adversely effect the slagging of

    the ash.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    21/28

    Reference:[1].Reburning of coal ash Bruce W. Ramme, Wisconsin Electric Power Company, US

    patent No. 5,992,336, Nov. 30,1999.[2] Ash Fuel Reburn and benefication at We Energies, A report- Bryna Goeckner, Bruce

    Ramme[3] Characteristics of Coal Ash Emissivity in high temperature atmosphere- Shimogori,

    Yoshizako, Mark Richardson, ISME International Journal, series B, Vol 4.9, No. 2, 2006[4] Ash emissivity characterization & prediction Christopher J, Zygarlicke, Donald P.

    McCollor, Charlone R. Crocker, Final report, U.S. department of Energy, 1999[5] A study on Coal properties and combustion characteristics of blended coals in

    Northwestern China- Chanan Wang, Yinhe Liv, Xiaoming Zhang, Defuche Energy &

    Fuels, American Chemical Socity publication, 2011[6] Effects of coal ash on combustion system, Anne M. Carpenter et.al, Coal on line,

    IEA Clean Coal Centre, 2005[7] Su S, Combustion behaviour and ash deposition of blended coals, PhD Thesis, The University of

    Queensland, Brisbane, 1999[8] A new Distinguish Method of Blending of Coals slagging characteristics- Yonghua Li,

    Energy & Power Engineering, 2011

    [9] Boilers and Brners, Prabir Basu, Cen Kefa, Louis Jeslin, Springler, 1999[10] A review of the state of the art in Coal blending for power generation Prof Terry Wall,

    Liza Elliot, Dick Sanders, Ashley Conroy, University of Newcastel, Australia, 2011[11] A cause- Effect analysis of Furnace heat transfer Lecture presentation by Dr. P.M.V.

    Subbarao, IIT, Delhi[12] Energy Conversion with plot 1.1 Engineering software Demo version,

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    22/28

    THANK YOU

    A pilot study with Imported coal and ash will be able to analyzethe pros and cons of the approach.

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    23/28

    Ultimate analysis

    Domestic

    Coal

    Imported

    CoalCarbon 40.02 61.00

    Hydrogen 2.37 4.00

    Oxygen 2.27 6.50

    Sulphur 0.19 1.60Nitrogen 1.65 1.40

    Moisture 4.40 14.00

    Ash 49.10 11.50

    Total 100.00 100.00

    CV 3200.00 5650.00

    BACK

    Ul i l i f Bl d d C l BACK

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    24/28

    Ultimate

    Analysis(%)

    Coal-I Coal-II BlendCase-ID/I/A90/10/0

    BlendCase-IID/I/A85/10/05

    BlendCase-IIID/I/A75/15/10

    BlendCase-IVD/I/A65/20/15

    BlendCase-VD/I/A55/25/20

    Carbon 40.02 61.00 42.118 40.117 39.165 38.213 37.261Hydrogen 2.37 4.00 2.533 2.4145 2.3775 2.3405 2.3035Oxygen 2.27 6.50 2.693 2.5795 2.6775 2.7755 2.8735Sulphur 0.19 1.60 0.331 0.3215 0.3825 0.4435 0.5045Nitrogen 1.65 1.40 1.625 1.5425 1.4475 1.3525 1.2575Moisture

    4.40 14.005.36

    5.14

    5.4

    5.66

    5.92

    Ash 49.10 11.50 45.34 47.885 48.55 49.215 49.88CV 3200.00 5650.00 3445 3285 3247 3210 3172

    Ultimate analysis of Blended Coal

    Mass fraction(mass/mass)

    BlendCase-ID/I/A90/10/0

    BlendCase-IID/I/A85/10/05

    BlendCase-IIID/I/A75/15/10

    BlendCase-IVD/I/A65/20/15

    BlendCase-VD/I/A55/25/20

    Carbon 0.7705 0.7698 0.7612 0.7524 0.7434Hydrogen 0.0463 0.0463 0.0462 0.0461 0.0460Oxygen 0.0493 0.0495 0.0520 0.0547 0.0573Sulphur 0.0061 0.0062 0.0074 0.0087 0.0101Nitrogen 0.0297 0.0296 0.0281 0.0266 0.0251

    Mass fraction (Kg/Kg) ash free basis

    BACK

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    25/28

    Input Values:Fuel Composition

    MW Mass Basis MW[kg/kmol] [kg/kg] [kg/kmol]

    12 Carbon 0.780 44 Carbon Dioxide2 Hydrogen 0.050 18 Water Vapor32 Sulfur 0.030 64 Sulfur Dioxide28 Nitrogen 0.040 28 Nitrogen32 Oxygen 0.080 32 Oxygen18 Water 0.020

    Fuel Total 1.000Fuel HHV [Kcal/Kg] 7,789.51

    Combustion Efficiency [/] 1.000Oxidant Composition MW Gas

    MW Mole Basis [kg/kmol][kg/kmol] [kmol/kmol] 44 Carbon Dioxide

    32 Oxygen 0.21 18 Water Vapor28 Nitrogen 0.79 64 Sulfur Dioxide

    28 Nitrogen

    Oxidant Total 1.00 32 OxygenMW Mass Basis

    [kg/kmol] [kg/kg]32 Oxygen 0.23

    28 Nitrogen 0.77

    Oxidant Total 1.00Stoichiometry [/] 1.00

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    26/28

    Output Values: Combustion Products CompositionMass Basis Mass Basis Mole Basis Mole Basis

    [kg] [kg/kg] [kmol] [kmol/kmol]Carbon Dioxide 2.860 0.249 0.065 0.170

    Water Vapor 0.470 0.041 0.026 0.068Sulfur Dioxide 0.060 0.005 0.001 0.002Nitrogen 8.097 0.705 0.289 0.759Oxygen 0.000 0.000 0.000 0.000

    Total 11.487 1.000 0.381 1.000Stoichiometric Oxidant to Fuel Ratio [/] 10.487

    Oxidant to Fuel Ratio [/] 10.487

    Gas Gas Kappa Gas Constant Specific Heat[/] [J/kg*K] [J/kg*K]

    Carbon Dioxide CO2 1.30 188.90 845.00Water Vapor H2O 1.33 188.50 1,690.00Sulfur Dioxide SO2 1.26 130.00 622.00Nitrogen N2 1.40 296.90 1,038.00Oxygen O2 1.40 259.80 916.00

    Combustion Products 1.37 264.70 1,014.45

    Fuel Temperature [K] 298 OxidantTemperature [K] 298

    Fuel Enthalpy [kJ/kg] -317.5Oxidant Enthalpy [kJ/kg] -0.2

    Flame Temperature [K] 2,484 BACK

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    27/28

    Flue gas production per Kg of coal (mass)

    Flame Temperature

    Mda 5.4328256 2398.011253 2397.54718 2392.348 2386.933 2381.295

    Sp.coal 0.725689405 0.76103501 0.769941 0.778816 0.788146

    Tda 6.08476467 Tfl 1390.562006Mwa 6.08476467

    Mflue 7.9066378 Furnace zone temperature

    Fur zone 1447.30 1434.52 1420.84 1406.15 1390.34

    Wc (gas prod)

    1.7266136

    Blend

    import 40 40 40 40 40

    Blend ash 0 5 10 15 20

    O2 (Th) 1.2898936 1.2548136Blen Dom 60 55 50 45 40

    Mflue 8.15 7.85 7.71 7.57 7.43

    Air(Th) 5.97530286

    N2 4.72048926 0.94409785

    Excs air 1.19506057

    Exce O2 0.25096272Flue gas 7.64216343

    F+Ash 7.99608343

    Tot O2 1.54085632

    Tot N2 5.66458711

    Ratio O2 0.21384615

    Ratio N2 0.78615385

  • 7/31/2019 Coal Blending With Fly Ash-An Approach

    28/28

    Combustion -- Coal

    Input Values: Output Values:

    Fuel Composition

    Combustion

    Products

    Composition

    MW Mass Basis MW Mass Basis Mass Basis Mole Basis Mole Basis

    [kg/kmol] [kg/kg] [kg/kmol] [kg] [kg/kg] [kmol] [kmol/kmol]

    12 Carbon 0.780 44 Carbon Dioxide 2.860 0.210 0.065 0.143

    2 Hydrogen 0.050 18 Water Vapor 0.470 0.035 0.026 0.058

    32 Sulfur 0.030 64 Sulfur Dioxide 0.060 0.004 0.001 0.002

    28 Nitrogen 0.040 28 Nitrogen 9.709 0.714 0.347 0.764

    32 Oxygen 0.080 32 Oxygen 0.490 0.036 0.015 0.034

    18 Water 0.020

    Total 13.588 1.000 0.454 1.000

    Fuel Total 1.000

    Stoichiometric

    Oxidant to Fuel

    Ratio [/] 10.487

    Fuel HHV [Btu/lbm] 14,162.76

    Oxidant to Fuel

    Ratio [/] 12.588

    Combustion Efficiency [/] 1.000

    Oxidant Composition MW Gas Gas Kappa Gas Constant Specific Heat

    MW Mole Basis [kg/kmol] [/] [J/kg*K] [J/kg*K]

    [kg/kmol] [kmol/kmol] 44 Carbon Dioxide CO2 1.30 188.90 845.00

    32 Oxygen 0.21 18 Water Vapor H2O 1.33 188.50 1,690.00

    28 Nitrogen 0.79 64 Sulfur Dioxide SO2 1.26 130.00 622.00

    28 Nitrogen N2 1.40 296.90 1,038.00

    Oxidant Total 1.00 32 Oxygen O2 1.40 259.80 916.00

    MW Mass Basis

    Combustion

    Products 1.38 268.35 1,013.70

    [kg/kmol] [kg/kg]

    32 Oxygen 0.23 Maximum 1,000 Maximum 5,000

    28 Nitrogen 0.77 Fuel Temperature [K] 323

    Oxidant

    Temperature [K] 573

    Minimum 273 Minimum 273

    Oxidant Total 1.00 Fuel Enthalpy [kJ/kg] -279.3

    Oxidant Enthalpy

    [kJ/kg] 282.4

    Stoichiometry [/] 1.20

    Flame Temperature

    [K] 2,383

    ( )