40
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic Physics Division NIST ICAP Summer School 2006 University of Innsbruck And many others, especially Eite Tiesinga, Carl Williams, Pascal Naidon (NIST), Thorsten Köhler (Oxford), Bo Gao (Toledo), Roman Ciurylo (Torun)

Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Embed Size (px)

Citation preview

Page 1: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Cold Atomic and Molecular Collisions1. Basics2. Feshbach resonances3. Photoassociation

Paul S. Julienne

Quantum Processes and Metrology GroupAtomic Physics Division

NIST

ICAP Summer School 2006University of Innsbruck

And many others, especiallyEite Tiesinga, Carl Williams, Pascal Naidon (NIST),

Thorsten Köhler (Oxford), Bo Gao (Toledo), Roman Ciurylo (Torun)

Page 2: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Some resources

Jones et al, Rev. Mod. Phys. 78, 483 (2006) van der Waals properties + PA review

Julienne and Mies, J. Opt. Soc. Am. B 6, 2257 (1989) WKB/quantum connections and threshold laws

Burnett et al, Nature 416, 225 (2002) “box”interpretation of A + simple review of cold collisions

Kohler, Goral, Julienne, cond-mat/0601429 (in press, Rev. Mod. Phys.)Production of cold molecules via magnetically tunable Feshbach resonances

In progress, Chin, Grimm, Tiesinga, Julienne, Rev. Mod. Phys.Feshbach resonances in ultracold gases(look at preprint server by end of 2006)

Page 3: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

“Size” of potential V(R)

Rvdw(a0) Evdw(mK) (MHz) 6Li 31 29 614 40K 65 1.0 21 85Rb 83 0.35 7.3 133Cs 101 0.13 2.7

Gribakin and Flambaum, Phys. Rev. A 48, 546 (1993)

Page 4: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Noninteracting atoms

Interacting atoms

Page 5: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Data: Bartenstein et al.,PRL 94, 103201 (2005)

834.1(1.5) G

Page 6: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic
Page 7: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Gao, Phys. Rev. A 62, 050702 (2000); Figure from E. Tiesinga

Bound states from van der Waals theory

Page 8: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Inelastic collisions

F=2, M=-2

F=3

-1012

For example:

(2,-2)+(2,-2) -->(2,-2)+(2,-1)-->(2,-2)+(2,0)-->(2,-1)+(2,-1)

Probability

because

For s-waves, let

Page 9: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Inelastic collisions

Scattering amplitudes T’ expressed in terms of the elements of the unitary S-matrix S’ = ’ - T’

Final channel:

Scattering channels

Initial channel:

Page 10: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

If only a single channel, S= e2i➞ e-2ika as k ➞ 0

If inelastic channels ’≠ exist, unitarity ensures

Thus,

Inelastic collisions continued

Complex scattering length a-ib

Page 11: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

How do we get the S-matrix, or bound states?

Coupled channels expansion:

Solve matrix Schrödinger equation

Extract S from solution at large R >> RvdW

Potential matrix V’(R)

conserved

Electronic (Born-Oppenheimer) V(R) does not change

Small spin-dependent potential changes

Page 12: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

s-wave Threshold Collisions Summary

Elastic collisions ➞ constant, K ➞ v = 4a2+b2)

Inelastic collisions ➞ 1/v, K ~ constant K = (4h/m)b

Cross section cm2

Rate coefficient K = < v> cm3/s

Complex scattering length a - ib

Page 13: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

How fast are (inelastic s-wave) cold collisions?

K =h

m4B = (8 ×10−11cm3 /s)

B(a0)

m(amu)

Typical strong event (B ~ x0): 10-10 cm3/s, MOT or BEC

dndt

= −2Kn2 = −1τn where

= 2Kn

In a MOT: ~ 0.1 to 1 sIn a BEC (use K/2): ~ 10 to 100 s

1

τ= 2Kn = n

h

m8B = n(1.6 ×10−10cm3 /s)

B(a0)

m(amu)

Page 14: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

How fast are inelastic cold collisions (Maxwell-Boltzmann)?

1

τ= 2Kn = 2 (nΛT

3 )kBT

hf

dndt

= −2Kn2 = −1τn where

= 2Kn

1

QT= ΛT

3 =h

2πμkBT

⎝ ⎜

⎠ ⎟

3

2

where

QT = translational partition function

T = thermal de Broglie wavelength

K =1QT

kBT

h(2l +1) | S(E) |2

l∑

l=0 only

Probability |S|2 < 1Dynamical factor

PhaseSpacedensity

Upperbound

Dynamics

Page 15: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

An Optical Lattice

Laser 1 Laser 2

Page 16: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

1 Atom per cell Control

2 Atoms per cell 2-body levels, dynamics

3 Atoms per cell 3-body levels, dynamics

Page 17: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Two atoms in a trap

3D spherically symmetric harmonic trap: ω=2ν

2- :body potential( )V r

Separate the center of mass and relative motion

⎡⎣⎢−

2

2(2m)∇R2 +

1

2(2m)ω 2R2 ⎤

⎦⎥Ψcm

(R ) = EcmΨcm(R )h

2⎡

Centerof mass

−2( )μ

∇r2 +

1

2μ( )ω 2r 2

⎣⎢⎤

⎦⎥Ψ(r) = EΨ(r )V(r)+Relative

Veff(r)

h

Scale size of trap:

d=ωh

V(r)Scale size of

x0

Page 18: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

0 v=0v=-1

12

v=-2

3

R6C6-

1

2 ω 2r 2

3

< 5 nm

De > 1012 Hz

Schematic(not to scale)

d

0 10000 20000

Ψ( )R

(Internuclear separation R a0)

1mSee below

( )a

Page 19: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

D. Blume and Chris H. Greene, Phys. Rev. A 65, 043613 (2002)E. L. Bolda, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 66, 013403 (2002)

Na F=1,M=+1 Energy levels in a

1 MHz harmonic trap(Bolda et al., 2002)

Points: numerical coupled channelsSolid Line: pseudopotential

E-dependent pseudopotential

a(En) from scattteringcalculation of (En)

Energy-dependentpseudopotential for trap level En:

Page 20: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

• What is a scattering resonance?

• Basic properties of threshold resonance scattering and bound

states

• Halo molecules

• Simple parameterization by 5 key parameters:

• abg (background scattering length), C6 (van der Waals coefficient), m

(mass)

• (width), (magnetic moment difference)

• Basic molecular physics of alkali atom resonances

• Illustration of typical resonances: 6Li, 85Rb, 87Rb, 40K, Cs

• Resonance dynamics—making and dissociating molecules

• Resonances in traps

Feshbach resonances and Feshbach molecules

Page 21: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Some examples of Feshbach resonances

E. Tiesinga et al., Phys. Rev. A 47, 4114 (1993)

Cesium theory

background

S. Inouye et al Nature 392, 141 (1998)

Sodium BEC

Magnetic field (Gauss)900 910

Page 22: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

An example for E➞ 0

Cornish, Claussen, Roberts, Cornell, Wieman, Phys. Rev. Lett. 85, 1795 (2000)

85Rb BEC (below 15 nK)

162.3 G

157.2 G

165.2 G

158.4 G

156.4 G

Page 23: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Greiner, M., C. A. Regal, and D. S. Jin, 2003, Nature (London) 426, 537.

Thermal (250 nK)

Making 40K2 molecules

BEC (79 nK)

Tunable scattering resonances used for

Herbig, J., T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nagerl, and R. Grimm, 2003, Science 301, 1510.

133Cs atom cloud

133Cs2 molecule cloud

Making 133Cs2 molecules

Page 24: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Long history of resonance scattering

O. K. Rice, J. Chem. Phys. 1, 375 (1933)

U. Fano, Nuovo Cimento 12, 154 (1935)

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (1952)

H. Feshbach, Ann. Phys. (NY) 5, 357 (1958); 19, 287 (1962)

U. Fano, Phys. Rev. 124, 1866 (1961)

Separation of system into:An (approximate) bound stateA scattering continuumwith some coupling between them

Page 25: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Resonant Scattering Picture(U. Fano, Phys. Rev. 124, 1866 (1961))

V

Bound state Continuum

Open channel(Background)

Closed channel(Resonance)

shift

width

Page 26: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Energy levels of the Na2 dimer just below the a+a threshold

a+a = 1,1 + 1,1

m=+2 l=0 states

Eaa

Page 27: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

A Na example

From Mies, Tiesinga, Julienne, Phys. Rev. A 61, 022721 (2000)

Near 900 G(3 B values)

Near 861 G

4sin2 (E)

(E) = bg(E) + res(E)

915G 920G 930G

Background bg(E)

Page 28: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Threshold Resonant Scattering

V

E=0

Shifted

As E ➞ 0

Page 29: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Basic resonance parameters

abg “background” scattering lengthB0 singularity in a(B) resonance widthmagnetic moment difference

For E --> 0 limit

For finite E and bound states

Effect of interatomic potentialespecially van der Waals -C6/R6

abg relative to

E relative to Evdw

Page 30: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Example 87Rb f=1, m=+1Durr, Voltz, Marte, Rempe, Phys. Rev. Lett. 92, 020406 (2004)

Atom cloudin trap

Atoms Molecules

Stern-Gerlach separation of

Page 31: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

From Durr, Voltz, Marte, Rempe, Phys. Rev. Lett. 92, 020406 (2004)

Schematic

Magnetic moment

Page 32: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

87Rb + 87Rb

30 THz

10 GHz

Page 33: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

87Rb Zeeman substructure

B/h = 1.4 MHz/G

Page 34: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

a+a

E(a+a)

87Rb + 87Rb

Bound stateswith m=2

Page 35: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 36: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

http://jilawww.colorado.edu/~jin/pictures.html

Cindy Regal, Marcus Greiner, Deborah JinNIST Boulder

Ultracold 40K atoms, F=9/2,M=-9/2 and F=9/2,M=-7/2

BEC of moleculesNature 426, 537 (2003)

“Fermionic condensate” of paired atomsPhys. Rev. Lett. 92, 040403 (2004)

Page 37: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

Bn

E/h (MHz)

QuickTime™ and aTIFF (LZW) decompressorare needed to see this picture.

1

0

sin2bg(E,B)

0

20

40

-20

-40160 200 240

B (Gauss)

40K a+b

E-1

Page 38: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

E/h (MHz)

QuickTime™ and aTIFF (LZW) decompressorare needed to see this picture.

1

0

sin2(E,B)

E-1(B)

0

20

40

-20

-40160 200 240

B (Gauss)

40K a+b

B0 BnE-1

Page 39: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic
Page 40: Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic