57
Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant, A. A. Garren, R. Palmer, and E. Keil The FFAG2003 at KEK 7 – 11 July 2003 CONTENT: Few remarks on the non-scaling minimum emittance FFAG history. Checking the tools: SYNCH, COSY, MAD8, TEAPOT. Scaling or non scaling, FODO or minimum emittance FFAG? Latest developments: Basic lattice parameters. Closed orbit offsets. Tracking results Magnet design. Longitudinal simulation of the acceleration. Work to be done. 1

Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Embed Size (px)

Citation preview

Page 1: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Dejan Trbojevic Dejan Trbojevic

An Update on the FFAG Minimum Emittance Lattice with Distributed RF

D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant, A. A. Garren, R. Palmer, and E. Keil

The FFAG2003 at KEK 7 – 11 July 2003

CONTENT:

Few remarks on the non-scaling minimum emittance FFAG history.

Checking the tools: SYNCH, COSY, MAD8, TEAPOT.

Scaling or non scaling, FODO or minimum emittance FFAG?

Latest developments: Basic lattice parameters.

Closed orbit offsets.

Tracking results

Magnet design.

Longitudinal simulation of the acceleration.

Work to be done.

1

Page 2: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

When did we start?

2

The first publication was from the Montauk workshop on September 30, 1999: Trbojevic, D., Courant, E. D., and Garren, A., FFAG Lattice Without Opposite BendsFFAG Lattice Without Opposite Bends, Colliders and Collider Physics at the highest Energies, AIP CONFERENCE PROCEEDINGS, Volume 530, Montauk, New York 1999, pp. 333-338, American Institute of Physics, Melville, New York, 2000, Editor B.J. King.

Trbojevic, D., ““FFAG lattice without opposite bends”,FFAG lattice without opposite bends”, KEK Workshop on FFAG Synchrotrons, October 11, 2000.

Accelerator physics seminar talk at Brookhaven National Laboratory: Dejan Trbojevic, Accelerator physics seminar talk at Brookhaven National Laboratory: Dejan Trbojevic, December 14, 2000: : ”Fixed Field Alternating Gradient Lattice (FFAG) without ”Fixed Field Alternating Gradient Lattice (FFAG) without Opposite Bends”.Opposite Bends”.

Muon Collaboration Meeting at Berkeley, Muon Collaboration Meeting at Berkeley, February 2, 2001. Dejan Trbojevic: “Some . Dejan Trbojevic: “Some taught about recirculator”.taught about recirculator”.

Collaboration Meeting Neutrino Factory at Brookhaven National Laboratory.Collaboration Meeting Neutrino Factory at Brookhaven National Laboratory. Trbojevic, D., Courant, E., Garren, A. “Fixed field alternating gradient lattice design

without opposite bends”. Eighth European Particle Accelerator Conf. (EPAC’02), Paris, France, June 3-7, 2002, pgs. 1199-1202 (2002) BNL-69007.

PAC2003, Portland, Oregon, May 16, 2003, “FFAG LATTICE FOR MUON “FFAG LATTICE FOR MUON ACCELERATION WITH DISTRIBUTED RF”,ACCELERATION WITH DISTRIBUTED RF”, D. Trbojevic, J.S. Berg, M.Blaskiewicz, E.D. Courant, R. Palmer, BNL, Upton, New York, A.A. Garren, LBL, Berkeley, California, USA.

FFAG update at the KEK workshop July 8, 2003.

Page 3: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

• Required Range of Energies (or dp/p)Required Range of Energies (or dp/p)– the “central” energy or momentum pthe “central” energy or momentum poo is in two examples presented is in two examples presented

later set to 15 GEV. The muon acceleration would be possible from 10 later set to 15 GEV. The muon acceleration would be possible from 10 GeV up to 20 GeV.GeV up to 20 GeV.

– Aperture limitation is defined by the maximum value of the Aperture limitation is defined by the maximum value of the DISPERSION function: DISPERSION function:

o x < +/- 30 mmx < +/- 30 mm

o if the 0.5 < E/Eo < 1.5 then dp/p < +- 33.3%if the 0.5 < E/Eo < 1.5 then dp/p < +- 33.3%

o Dx < 90 mm

• Why is the minimum emittance lattice for the electronic storage rings relevant?– The normalized dispersion amplitude corresponds to the <H>The normalized dispersion amplitude corresponds to the <H>1/2 1/2 !!!!!!

3The basic idea has remained the same:

x = Dx p/p < 30 mm

Page 4: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

The minimum emittance The minimum emittance lattice:lattice:• The minimum emittance lattice requires reduction of the function H:The minimum emittance lattice requires reduction of the function H:

– The normalized dispersion amplitude corresponds to the <H>The normalized dispersion amplitude corresponds to the <H>1/2 1/2

– Conditions are for the minimum of the betatron function Conditions are for the minimum of the betatron function xx and dispersion and dispersion

function Dfunction Dxx to have small values at the middle of the dipole (combined to have small values at the middle of the dipole (combined

function dipole makes it even smaller).function dipole makes it even smaller).

4

minLd15

Dxmin=Ld/24

Page 5: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

5NSLS reduction of the emittance: 10 timesNSLS reduction of the emittance: 10 times

Page 6: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Normalized Dispersion PlotNormalized Dispersion Plotof the First Montauk 99 Designof the First Montauk 99 Design

6

Page 7: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

7

Page 8: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

8

Page 9: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

9

Page 10: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

TEST data by different tools: Cyclotron made of five combined function dipoles10

o=Co/2

B = 50 Tm

n= 0.5

Co = 100 meters

u = x/o

Page 11: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

TEST data for different tools: CyclotronTEST data for different tools: Cyclotron 11

mxu

andnforSolutionsr

Br

nBmCndipolesfunctioncombinedfiveofmade

nsynchrotrogfocuweakCyclotrontheofEXAMPLE

tiesChromaticin

DfunctionDispersion

nnfuncitonsbetatronnnTunes

areparametersSniderCouranttheforSolutions

nconditionawithyn

s

y

xn

s

x

aremotionofequationstransversetwoThe

B

p

B

rBrandG

B

rnwhere

dx

dB

Bn

nu

areequatonquadratictheofsolutuionstwotheandunun

thenr

xuIf

BnGwhere

p

dpiswhere

pxrxGB

ynBB

xGBxn

BB

B

B

s

y

B

sBBx

s

x

CourantErnestCoursePhysicsrAcceleratoinlecturefirstThemotionofEquation

C

dipoles

yyy

xxxx

yxyx

x

y

x

y

20318949065.0,24979959839.05.0:

:001.05.0.50

2

100

,5,0.50,100,5.0:

sin

,:,1

:

,,1

:,,1:

:

.109.1

1

:

.,

.

:,01

:.:

)9.1...(1

8.1

1

7.1

6.1)(

:)1982(

)01.0(02,1

00

00

0)(

0)(

22

2

22

2

0

0

0

0000

0

00

0

0

22,1

02

0

0

0

0

000

0

00

2

2

0

22

2

Page 12: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

TEST data for different tools: a simple cyclotronTEST data for different tools: a simple cyclotron12

Page 13: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

TEST data for different tools: a simple cyclotronTEST data for different tools: a simple cyclotron13

Page 14: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

TEST data for different tools: a simple cyclotronTEST data for different tools: a simple cyclotron 14

Page 15: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

15

Page 16: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

16Scaling or non- scaling FFAG, Minimum emittance lattice or FODO?

Scaling FFAG properties: Zero chromaticity. Orbits parallel for different energies. Large momentum acceptance. Relatively large circumference. Relatively large physical aperture. RF:large aperture-follows the energy. Tunes are fixed for all energies. Negative momentum compaction. Orbits of the high energy particles are

at high field, low energy particles at low field.

Minimum emittance FFAG properties: Chromaticity is changing. Orbits not parallel. Large momentum acceptance. Relatively small circumference. Relatively small physical aperture. RF:small aperture-at the crest. Tunes move 0.4->0.1 in basic cell. Momentum compaction changes. Orbits of the high energy particles

are at high field, low energy particles at low field.

FODO or minimum emittance lattice? For the same magnet properties larger circumference and larger Xco.

For the same dispersion [ x=Dxdp/p ] and the same magnet smaller field and

larger circumference. The FODO has larger available free space.

Page 17: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

17

Page 18: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

18

Page 19: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Maximum of Dispersion function in the FODO cell:

Dmax = [ L ( 1 + 0.5 sin(/2) ) ]/sin2(/2) …(1)

0.06 m = 2.707 (Ld+ 0.4 m) … (2) [ L = Ld + L1, = 2 / Nd ]

19

L

BF BD

Dmax = 0.06 m0.06 m = 2.707 ( Ld + 0.4 m) (By Ld / BRHO)

Ld(m)Ld(m) BByy(T)(T) BByy L Ldd/BRHO/BRHO NNdd=2=2//C =L NC =L Nd d (m)(m)

0.2450.245 77 0.03390.0339 ~183~183 118.0 118.00.2740.274 66 0.03290.0329 ~191~191 128.5 128.51.001.00 0.7930.793 0.01580.0158 396396 554.0 554.00.500.50 2.4642.464 0.02460.0246 255255 230.0 230.00.500.50 2.0952.095 0.02090.0209 300300 270.0 270.0

Ld = [-0.4 +-SQRT(0.42+4*0.158)]/2.0 if By=7 T

L1=0.4 m

LdBRHO= 50.03 Tm ( E15 GeV)

FIX the Dx

Page 20: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

21

Page 21: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

22

Page 22: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

23

Page 23: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

24

4.870.087

Page 24: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

25

Page 25: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Two CELLS:Two CELLS:

26

Page 26: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

27

Page 27: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Maximae of the betatron functions during accelerationMaximae of the betatron functions during acceleration28

Page 28: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

29

Page 29: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

30

Page 30: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

Progress in the Minimum Emittance FFAG lattice design:31

1999-2001 - Dynamical aperture was reduced due to sextupoles.

October 2002: the small opposite bend was introduced: This change allowed removal of the sextupoles. Very large dynamical aperture. The tunes are changing but between 0.4-0.1 in the basic cell.

January 2003: Additional defocusing quadrupoles are removed and a larger area for the cavity placement was provided. The lattice became extremely simple and easy to analyze. The analytical solutions showed problems with the available codes.

May 2003: Both magnets are complete combined function magnets.

The acceleration requires either additional harmonic or reduction of the path length difference.

The magnets required for this latest design are being investigated by the magnet division at Brookhaven Natioanl Laboratory. It looks like there are simple solutions.

Page 31: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

32

QDmin

QFmax

Page 32: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

33

Page 33: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

20

Page 34: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

34

Page 35: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

35+

- ~5

0 m

m

Page 36: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

36

Page 37: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

37

Page 38: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

38

Page 39: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

39

Page 40: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

40

Page 41: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

41

Page 42: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

42

Page 43: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

43Tracking results with COSY at the central momentum

3 cm

5 cm

Page 44: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

44

Page 45: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

45

Page 46: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

46

Page 47: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

47

Page 48: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

48

Page 49: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

49

Page 50: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

50

Page 51: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

51

~2.5 ns

200 MHz RF

cm = 0.166 ns10 cm = 0.3335 ns15 cm = 0.5003 ns20 cm = 0.667 ns30 cm = 1.00 ns

Page 52: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

52

Page 53: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

53

Page 54: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

54

Page 55: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

55

Page 56: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

56

Page 57: Dejan Trbojevic Dejan Trbojevic An Update on the FFAG Minimum Emittance Lattice with Distributed RF D. Trbojevic, J. S. Berg, M. Blaskiewicz, E. D. Courant,

57

Finalize the TOOLS vs. analytical prediction agreement. Few new tools are to be tested in details: Etienne Forest, Scott Berg,

PARMELA, ECOOL. Tracking with the real magnetic fields in the combined function magnets. Six dimensional tracking with the RF.

Reduce the path length difference: Applying partial sextupole strength. Reducing the closed orbit offsets.

Prepare, analyze and build the first non-scaling FFAG PPO: Check if the eRHIC electron acceleration makes sense? Check if the linac-to-AGS FFAG make sense? Check if there is a possibility of cooling the muons?

Check if there is any connection in reduction of the orbit offsets within the scaling FFAG by following the same minimum emittance lattice principle?

What we need to do next: