16
solar thermal power plants Water saving heat rejection for Jürgen Dersch, Christoph Richter Institut e of Technical Thermodynamics

Dersch Dry Cooling

Embed Size (px)

Citation preview

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 1/15

solar thermal power plants

Water saving heat rejection for

Jürgen Dersch, Christoph Richter

Institute of Technical Thermodynamics

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 2/15

Overview

Overview

Project goals

Simulation tool

First results

Outlook

Slide 2 > NREL Trough Meeting 2007 > Dersch

Heat rejection technologies

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 3/15

Slide 3 > NREL Trough Meeting 2007 > Dersch

Research Project „EFCOOL“

Research Project „EFCOOL“

  Title: “Water efficient cooling of solar thermal power plants”

  Solar Paces Task III Activity „Efficient Cooling Strategiesfor Solar Thermal Power Plants“

 Motivation: Solar thermal power plants with Rankine cyclesneed heat rejection for condensation of the turbine exhauststeam in order to reach low exhaust pressures and torecycle the working fluid

  Typically ambient temperatures are high and water is rareat sites showing attractive annual DNI values

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 4/15

EFCOOL TasksEFCOOL Tasks

  Investigation of different heat rejection technologies for

STPP

  Developing of a simulation tool for annual calculations atdifferent sites

  Identification of potential enhancements for existing coolingtechnologies

  Investigation of new operation strategies for STPP with

l

Slide 4 > NREL Trough Meeting 2007 > Dersch

respect to cooling (e.g. the usage of thermal storage to shiftthe cooling oad to night hours)

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 5/15

Cooling technologies

 

   (Heller System)

  Air cooled condenser (ACC)

  Hybrid cooling

temperatures.

Slide 5 > NREL Trough Meeting 2007 > Dersch

Cooling technologies

Once through cooling

Most efficient and cheapest technolgy but rarely applicable for STPP

Wet cooling tower

Efficient at moderate investment costs but high water consumption

Indirect dry cooling

Less efficient and more expensive than wet cooling but almost no water

consumption for cooling.

Less efficient and more expensive than wet cooling but almost no waterconsumption for cooling.

Combination of wet and dry cooling technologies.

Dry cooling with water usage during time periods with peak ambient

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 6/15

Wet Cooling Tower

  Ambient wet bulb temperature defines

the condenser pressure

temperature)

  Surface condenser (TTD~3K)

 Cooling water and boiler feed waterare separated

  Natural draft or cooling towers with

fans are possible

Source: SPX

Slide 6 > NREL Trough Meeting 2007 > Dersch

Wet Cooling Tower

(less fluctuations than dry bulb

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 7/15

Heller SystemHeller System

 

   j(TTD~0.5K)

 mixed

 

 

 

Source: EGI

Slide 7 > NREL Trough Meeting 2007 > Dersch

Dry bulb temperature defines thecondenser pressure

Direct contact et condenser

Cooling water and boiler feed water are

Large underground storage tanks areused to drain the system

Ratio cooling water flow / boiler feedwater appr. 50

Natural draft or cooling towers with fans

are possible

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 8/15

Air Cooled Condenser

 

 

 necessary

  l

 configurations

Slide 8 > NREL Trough Meeting 2007 > Dersch

Air Cooled Condenser

Dry bulb temperature controls thecondenser pressure

Steam is condensed without theusage of an intermediate medium

Large cooling surfaces are

The ACC should be ocated closeto the turbine

Typically forced draft A-frame

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 9/15

The Annual Simulation ToolThe Annual Simulation Tool

  Steady state models in MS Excel

  Based on empirical equations or performance mapsgenerated by other more sophisticated tools or delivered bysuppliers

  Part load characteristics are considered

 simplified IEA method

 

Slide 9 > NREL Trough Meeting 2007 > Dersch

Levelized electricity cost (LEC) calculation using the

Hour by hour calculation with meteo data for different sites

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 10/15

0.20

0.25

0.30

0.35

0.40

5 10 15 20 25 30 35 40 45

t dry bulb in °C

  g  r  o  s  s

  e   f   f   i  c   i  e  n  c  y

Wet Cooling 60% Load

Wet Cooling 100% Load

Heller Cooling 60% Load

Heller Cooling 100% Load rel. humidity: 40%

0.6

0.7

0.8

0.9

1.0

1.1

1.2

5 10 15 20 25 30 35 40 45

t dry bulb in °C

  r  e  a  v  e

  c  e  n  c  y

0.2

0.4

0.6

0.8

1.0

cooling load

Examples of the Performance Maps

   l    t   i   e

   f   f   i    i 

  y 

i

Turbine

Slide 10 > NREL Trough Meeting 2007 > Dersch

Examples of the Performance Maps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.20 0.40 0.60 0.80 1.00 1.20

load

  r  e   l  a   t   i  v  e   e   f   f   i  c   i  e  n  c

operat ng range

Heller Cooling SystemWhole Plant

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 11/15

Condenser Temperatures and Ambient Conditions

0

10

20

30

40

50

60

70

80

90

Wet cooling, phi 40%

Wet cooling, phi 100%

Wet cooling, phi 0%

Condenser Temperatures and Ambient Conditions

  c  o  n   d  e  n  s  e  r   t  e  m  p  e  r  a   t  u  r  e   i  n   °   C

Heller System

10 15 20 25 30 35 40 45 50

ambient dry bulb temperature in °C

Slide 11 > NREL Trough Meeting 2007 > Dersch

5

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 12/15

Slide 12 > NREL Trough Meeting 2007 > Dersch

Meteo Data of Different Sites (DNI > 250W/m²)Meteo Data of Different Sites (DNI > 250W/m²)

0

200

400

600

800

1000

-10 0 10 20 30 40 50

Temperature in °C

   D   N   I   i  n   W   /  m   2

0

0.2

0.4

0.6

0.8

1

-10 0 10 20 30 40 50

Temperature in °C

  r  e

   l .   H  u  m   i   d   i   t  y

0

200

400

600

800

1000

-10 0 10 20 30 40 50

Temperature in °C

   D   N   I   i  n   W

   /  m   2

0.00

0.20

0.40

0.60

0.80

1.00

-10 0 10 20 30 40 50

Temperature in °C

  r  e   l .   H  u  m   i   d   i   t  y

Spain

California

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 13/15

Results of Annual Calculation (Heller Systemcompared to Wet Cooling)

Slide 13 > NREL Trough Meeting 2007 > Dersch

Results of Annual Calculation (Heller Systemcompared to Wet Cooling)

   1 .   0

   5

   0 .   9

   5   0 .   9

   9   1 .   0

   4

   0 .   0

   4

   1 .   0

   6

   0 .   9

   5   1 .   0

   5

   0 .   9

   4   0 .   9

   9   1 .   0

   1

   0 .   0

   3

   1 .   0

   6

   0 .   9

   1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  s  o   l  a  r  f

   i  e   l  d 

  s   i  z  e 

  a  n  n  u

  a   l  n  e   t  e

  f  f   i  c   i  e

  n  c  y 

  a  n  n  u

  a   l  n  e   t  e

   l  e  c   t  r   i

  c  o  u   t  p

  u   t    L   E

  C 

  a  n  n  u

  a   l  w  a   t  e

  r  c  o  n

  s  u  m  p   t   i  o  n 

   t  o   t  a   l   i  n

  v  e  s   t  c

  o  s   t  s 

  a  n  n  u

  a   l  O  &   M

   c  o  s   t  s 

Spain California

Reference is the sameplant at the same sitewith wet cooling tower

Gross output 55 MW

Water costs 1.0 €/m3

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 14/15

of LEC on Water CostsSensitivitySensitivity of LEC on Water Costs

   L   E   C   i  n   €   /   k   W   h

0.24

0.22

0.20

0.18

0.16

0.14

0.12

wet cooling Spain

Heller cooling Spainwet cooling Cal.

Heller cooling Cal.

0 2 4 6 8 10 12 14 16

water costs in €/m³

Slide 14 > NREL Trough Meeting 2007 > Dersch

8/3/2019 Dersch Dry Cooling

http://slidepdf.com/reader/full/dersch-dry-cooling 15/15

Conclusions and Next Steps

  Change-over to dry cooling for STPP would reduce the water demand

significantly (>95% reduction)  The electricity generation costs will increase by up to 5% (depending on

water cost) compared to evaporative cooling

  Hybrid cooling technologies to enhance the cooling at high dry bulbtemperatures

  Usage of storage technologies to shift the cooling loads partly to times with

lower ambient temperatures

Slide 15 > NREL Trough Meeting 2007 > Dersch

Conclusions and Next Steps

Financing of the EFCOOL project by the German Federal Ministry for the Environment, NatureConservation and Nuclear Safety is gratefully acknowledged