41
Design of DC-DC Converters Frank Xi [email protected] Monolithic Power Systems Inc. IEEE SSCS Dallas Chapter, October 2007

Design of DC-DC Converters · 2008. 6. 2. · Monolithic Power Systems Inc. IEEE SSCS Dallas Chapter, October 2007. 11/1/2007 IEEE SSCS - Oct. 2007 2 Design of DC-DC Converters

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

  • Design of DC-DC Converters

    Frank [email protected]

    Monolithic Power Systems Inc.

    IEEE SSCS Dallas Chapter, October 2007

  • 11/1/2007 IEEE SSCS - Oct. 2007 2

    Design of DC-DC Converters

    DC-DC Converter BasicsTopology and Operation of DCDC ConvertersControl Scheme for DCDC

    DC-DC Converter Design TechniquesSystem Level Modeling and DesignBuilding Block Design Considerations

  • 11/1/2007 IEEE SSCS - Oct. 2007 3

    DC-DC Converter Basics

    DC-DC Converter is a Voltage RegulatorUse Switches, Inductor and Capacitor for Power ConversionSwitched Mode Operation

    Why DC-DC Converters?High EfficiencyCan Step-Down, Step-up, or Both, or Invert Can Achieve Higher Output Power

  • 11/1/2007 IEEE SSCS - Oct. 2007 4

    DC-DC Converter Basics

    Why not DC-DC Converters?Complex Control LoopHigher Noise and Output RippleMore External Components

    Basic DC-DC Converter TopologiesMajority of DC-DC uses PWM Control Operated in CCM Mode

  • 11/1/2007 IEEE SSCS - Oct. 2007 5

    DC-DC Converter Basics

    Basic RelationshipsCCM Mode

    IL always supplies loadIC small, independent of load

    DCM Mode

    IN

    IN

    OON

    ONOUT V

    VTLIT

    TV⋅⋅

    += 22

    2

    OUTIN

    ININON

    OUT

    IDI

    VDVT

    TV

    ⋅=

    ⋅==

    Step-down (Buck)L

    C

    S

    D

    VSW VOUTVIN

    IL IC

    VSW

    IL

    IO

    IO

    VOUT

    IIN

    TON

    T

    Continuous Conduction Mode (CCM)

    ID

    IIN ID

    IL

    Discontinuous Conduction Mode (DCM)

    IO

  • 11/1/2007 IEEE SSCS - Oct. 2007 6

    DC-DC Converter Basics

    Step-up (Boost)Basic Relationships

    CCM ModeIL only supplies load during TOFF periodIC large and load dependent

    DCM Mode

    INON

    IN

    OON

    OUT VTV

    TLITV 2

    2 2 ⋅⋅+=

    OUTLIN

    ININOFF

    OUT

    ID

    II

    VD

    VT

    TV

    ⋅−

    ==

    ⋅−

    ==

    11

    11

    L

    CS

    DVSW VOUTVINIL IC

    VSW

    IL

    -IO

    IO

    VOUT

    TON

    T

    Continuous Conduction Mode (CCM)

    IC

    IL

    -IODiscontinuous Conduction Mode (DCM)

    IC

    TOFF

  • 11/1/2007 IEEE SSCS - Oct. 2007 7

    Common Control Architectures

    Modulation SchemePFM (Pulse-Frequency-Modulation)

    Pulse Skipping, Hysteretic, Constant-on etc. High Efficiency at Light LoadInherently Higher Output RippleUnmanaged Spectrum Noise

    PWM (Pulse-Width-Modulation)Fixed Frequency with Variable Duty CycleBetter Transient Response (except Hysteretic?)Most Widely Used

  • 11/1/2007 IEEE SSCS - Oct. 2007 8

    Common Control Architectures

    Control Method (for PWM)Voltage Mode

    Regulates Output Voltage by Adjusting Duty CycleConstant Ramp for Modulation, Better Noise ImmunityLC Filter Contributes to Complex Conjugate PolesLoop Has No Information on Inductor CurrentSlower Response to Input Voltage ChangeBandwidth Varies with Input VoltageCurrent Limit Done Separately

  • 11/1/2007 IEEE SSCS - Oct. 2007 9

    Common Control Architectures

    Current ModePCM (Peak-Current-Mode) Most Commonly Used Regulates Inductor Current to Satisfy Load Demand and Maintain Output Voltage Fast Current Loop makes Inductor to be a VCCS, eliminates Complex Conjugate PolesEasy Built-in Cycle-to-Cycle Current LimitNaturally Suitable for Multi-Phase OperationCurrent Sense Susceptible to NoiseNeed Slope Compensation for >50% Duty Cycle Operation

  • 11/1/2007 IEEE SSCS - Oct. 2007 10

    DC-DC Converter Design

    Examples of Common DC-DC ConvertersVoltage Mode Buck

    L

    C

    S1VSW

    RESR

    RLS2

    R1

    R2

    VREF

    VRAMP

    S

    R

    Q

    QB

    CLK

    VFBVEA

    VOUTVIN

    CLK

    VRAMP VEA

    VSWVOUT

    IL IOUTD

    D’

    EARST

  • 11/1/2007 IEEE SSCS - Oct. 2007 11

    Voltage Mode Buck

    Voltage Mode Buck Transfer Functions:

    amplifiererror the of functiontransfer the is where

    and

    )(

    )(1

    11,1

    1

    )1(

    1)(

    )1(

    0

    20

    2

    0

    2

    sa

    saVv

    d

    LCR

    CL

    R

    QLC

    sQ

    ssCRV

    CRRLsLCs

    sCRVdv

    RFB

    ESRL

    ESRIN

    ESRL

    ESRIN

    O

    =

    +==

    ++

    +=

    +++

    +≈

    ω

    ωω

  • 11/1/2007 IEEE SSCS - Oct. 2007 12

    Voltage Mode Buck

    Example: L=2.2uH, C=22uF, RESR=10m OhmVIN=5V, VOUT=3.3VRL=10 OhmFSW=1.5MHzVRAMP=100mV

    ω0 = 22.9kHzQ = ~15.8ωZ = 700kHz

    Control (Duty Cycle) to Output Transfer Function:

  • 11/1/2007 IEEE SSCS - Oct. 2007 13

    Voltage Mode Buck - Error Amp Ex. 1

    20

    2

    0

    1

    2

    1

    2

    1

    2

    1

    )1(

    )(

    ωωs

    QssCR

    VV

    RRLG

    vRRv

    VVRRVV

    ESR

    R

    IN

    FBEA

    FBREFREFEA

    ++

    +⋅−=

    −=

    −+=

    Use low DC gain to set the bandwidth so that the phase margin is acceptable:

    Bandwidth: ~400kHzPhase margin: ~35°Conditionally stable

    Example: R2=500k, R1=100k, VR=100mVClosed loop step response

    EAVREF

    VFBR1 R2

    VEA

  • 11/1/2007 IEEE SSCS - Oct. 2007 14

    Voltage Mode Buck - Error Amp Ex. 1

    Some Improvements Can Be Added:Make VRAMP proportional to VIN -> Constant BandwidthAdd Feed-forward Cap on Feedback Resistor String -> better phase margin

    Limitations of Low DC Gain:Loose Output RegulationNeed some ESR to Stabilize the LoopSmall Modulation Ramp Sensitive to NoiseDC Offset if Output Cap has large ESR

  • 11/1/2007 IEEE SSCS - Oct. 2007 15

    Voltage Mode Buck - Error Amp Ex. 2

    Use Type-III Compensation Network to Re-Shape Loop Frequency Response:

    LCVVCRUGBW

    sQ

    ssCR

    VV

    CsRCsRCAsRCsRRsCALG

    CCsRCsRCCAsRCRRsRsCA

    vv

    R

    IN

    ESR

    R

    IN

    FB

    EA

    1

    1

    )1()1)(1](1[

    )1)(1()||1)(1)]()(1(1[

    ])(1)[1(

    21

    20

    2

    0

    3122103

    23110

    131223103

    223110

    ⋅⋅≈

    ++

    +⋅

    +++++

    −≈

    ++++++++

    −≈

    ωω

    • High DC gain rolls off by dominant pole and, phase shift recovered by 1st zero before ω0

    • 2nd zero brings back phase shift above ω0• 2nd and 3rd pole attenuates high frequency noise

    Example Design Steps:1. Set R1C2=100uS for desired

    BW of ~300kHz 2. Set 1st zero to be 1/5 of ω0:

    R1=1Meg, C1=30pF, ωz1=5.3kHz

    3. Set 2nd zero to be 4x of ω0: C2=10pF, R3=200k, ωz2=79.5kHz

    4. mid-band DC gain of 5: R3=200k

    5. Set 2nd and 3rd pole to near switching frequency for high frequency noise attenuation: C3=0.2pF, ωp2=795kHz; R2=10k, ωp3=1.5MHz

    EAVREF

    VFB

    VEA

    R3

    R2

    R1

    C2

    C1

    C3

  • 11/1/2007 IEEE SSCS - Oct. 2007 16

    Voltage Mode Buck - Error Amp Ex. 2

    • Modulation ramp VRAMP increased to 500mV for better noise immunity

    • Blue: control to output transfer function• Green: Type-III compensation error

    Amp transfer function• Red: Complete loop transfer function

    bandwidth: ~340kHz, PM: ~65 degree

    Compare to Error Amp Ex. 1:• Step response has less overshoot

    due to better phase margin• Settling is much slower due to 1st

    zero at low frequency

  • 11/1/2007 IEEE SSCS - Oct. 2007 17

    DC-DC Converter Design

    Current Mode Buck (Peak Current Control)

    L

    C

    S1VSW

    RESR

    RLS2

    R1

    R2

    VREF

    VRAMPS

    R

    Q

    QB

    CLK

    VFBVEA

    VOUTVIN

    CLK

    VRAMPVEA

    VSWVOUT

    IL IOUTD

    D’

    EA

    Slope Comp

    RSEN

    RST

    RST

  • 11/1/2007 IEEE SSCS - Oct. 2007 18

    Current Mode Buck

    correction cycle 1 ,

    stable guaranteed ,2

    :ex

    1 that sochosen is

    )(][]1[

    2

    2

    1

    2

    1

    2

    mm

    mm

    mmmmm

    mmmmnini

    a

    a

    a

    aa

    a

    aee

    =

    =

    <+−

    +−

    −⋅=+

    Inductor Current Instability for Duty Cycle > 50%:

    Requires Slope Compensation:

    cyclesover grows :1

    cyclesover attenuates :1

    ]0[)(][]1[

    1

    2

    1

    2

    1

    2

    1

    2

    e

    e

    n

    eee

    imm

    imm

    mmi

    mmnini

    >

    <

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−⋅=−⋅=+

    m1 m2

    m1 m2

    ma

    ie[n]

    ie[n+1]

    ie[n]

    ie[n+1]

    ie[n+1]

    ie[n]

    1. D=1/3: m2/m1=1/2

    2. D=2/3: m2/m1=2

    3. D=2/3 with slope compensation

  • 11/1/2007 IEEE SSCS - Oct. 2007 19

    Current Mode Buck• Fast current loop regulates inductor peak current, can

    be modeled as a VCCS with output impedance Rx

    • Slower voltage loop provides reference for current loop

    )1(21

    12

    5.0)1)(1(

    12

    1

    1

    1

    11)(

    11

    1

    ]5.0)1)(1[(1

    11)(

    11

    1)(

    ]5.0)1)(1[(

    1

    11

    ]5.0)1)(1[(1

    11

    21

    2

    2

    1

    1

    2

    1

    1

    mmDD

    mmQ

    sQ

    sRRR

    sG

    sTe

    eDmm

    LTRR

    sG

    mmmm

    sTe

    esH

    DmmT

    LR

    RRRD

    mm

    LTRRv

    iG

    aa

    SSX

    LSENm

    S

    sT

    sTaSLSEN

    m

    a

    a

    S

    sT

    sTe

    aS

    X

    X

    LSENaSLSENEA

    om

    S

    S

    S

    S

    −−=

    −−+=

    +++≈

    −⋅++

    −−++=

    +−

    =−

    ⋅++

    =

    −−+=

    +=

    −−++==

    ππ

    ωω

    αα

    αα

    α

    :responsefrequency including ctancetranscondu VCCSComplete

    where

    :effect sampling anddelay in results Operation Switched

    where

    C

    RESR

    RL

    R1

    R2

    VREF

    VFBVEA

    VOUTVIN

    EA

    Gm IO

    RX

  • 11/1/2007 IEEE SSCS - Oct. 2007 20

    Current Mode Buck

    Example: L=2.2uH, VIN=5V, VOUT=3.3V, RL=10 OhmRSEN = 0.5 OhmFSW = 1.5MHz

    Blue: ma=0.5*m2RX=19.4 OhmGm=1.32 A/VQ=1.87

    Green: ma=m2RX=6.6 OhmGm=0.80 A/VQ=0.64

    Peak Current Mode Current Loop Transfer Function

  • 11/1/2007 IEEE SSCS - Oct. 2007 21

    Current Mode Buck

    Control to Output Transfer FunctionEquivalently Single-Pole System with Current Source Input

    )]||(1[1

    )(1

    1

    1

    12 XL

    ESR

    SSX

    LSEN

    LOm

    EA

    o

    RRsCsCR

    sQ

    sRRR

    RZGvv

    ++

    +++=⋅=

    ωω

    Example: C=22uF, RESR=10m OhmRSEN = 0.5 OhmFSW = 1.5MHzRX=19.4 Ohm

    RL=10k, 1k, 100, 10, 1 OhmRL=10k, 1k, 100, 10, 1 Ohm

  • 11/1/2007 IEEE SSCS - Oct. 2007 22

    Current Mode Buck – Error Amp

    Error Amplifier Example:

    impedanceoutput the is amperror the of ctancetranscondu the is :where

    o

    m

    C

    ZZomoC

    ZC

    FB

    EA

    rg

    CCRsCRrRgrsC

    RsCAvvsa

    )()1)]((1[

    1)(

    1

    110

    >>++++

    +−≈=

    EAVREF

    VFBR1

    RZ

    VEA

    CC

    C1

    ie

    • Bandwidth defined by R1 and C1• Much smaller CC, need large RZ• VFB more error during transientExample:

    gm=100uS, ro=10MOhm,R1=100kOhm, CC=25pF, RZ=1.5MOhm, C1=0.3pF

  • 11/1/2007 IEEE SSCS - Oct. 2007 23

    Current Mode Buck – Error Amp

    CRRRBW

    RR

    CsRsLG

    LGBW

    SEN

    Z

    Z

    BWSENBW

    121

    111|)(|

    :1|

    1

    1

    π=

    =⋅⋅≈

    =

    |settingby obtained

    Complete Loop Transfer Function of Current Mode Buck:

    )1)]((1[1

    )]||(1[1

    )(1

    1

    1

    111

    02 ZZomoC

    ZC

    XL

    ESR

    SSX

    LSEN

    L

    RsCRRrgrsCRsCA

    RRsCsCR

    sQ

    sRRR

    RLG++++

    +⋅

    ++

    ⋅+++

    −=

    ωω

    • 1st zero of error amp placed near output filter pole

    • ESR zero and 2nd pole of error amp are placed out of loop bandwidth

  • 11/1/2007 IEEE SSCS - Oct. 2007 24

    DC-DC Converter Design

    Voltage Mode Boost

    L

    C

    S2VSW

    RESR

    RL

    R1

    R2

    VREF

    VRAMP

    S

    R

    Q

    QB

    CLK

    VFBVEA

    VOUTVINCLK

    VRAMPVEA

    VSWVIN

    ILIOUTD

    D’

    EA

    S1D

    RST

  • 11/1/2007 IEEE SSCS - Oct. 2007 25

    Voltage Mode Boost

    Voltage Mode Boost Transfer Functions:

    amplifiererror the of functiontransfer the is where

    and

    )(

    )(1

    )1()1(

    11,)1(,)1(

    1

    )1)(1(

    )1(1))1(

    ()1(

    ))1(

    1)(1(

    )1(

    2

    0

    20

    2

    0

    2

    222

    2

    2

    sa

    saVv

    d

    LCRD

    CL

    RD

    QL

    DRLC

    D

    sQ

    s

    ss

    DV

    CRDR

    LsD

    LCs

    DRLssCR

    DV

    dv

    RFB

    ESRL

    LRHP

    RHPZIN

    ESRL

    LESR

    INO

    =

    −+−

    =−

    =−

    =

    ++

    −+

    −=

    ++−

    +−

    −−+

    −≈

    ωω

    ωω

    ωω

  • 11/1/2007 IEEE SSCS - Oct. 2007 26

    Perturbation from Output to Inductor Current:

    2)1( DsL

    ivZ

    o

    oO −

    ==

    )1()1(

    )1()1(

    DiiDII

    sLvDiVDV

    dtdiL

    LoLO

    oLOIN

    L

    −=⇒−=

    −=⇒−−=

    and

    Impedance looking into the Inductor from Output:

    Thus the Effective Inductance 2)1( DLLeff −

    =

    This makes the ω0 of the LC Filter to Move with D

    Voltage Mode Boost - Effective Inductance

  • 11/1/2007 IEEE SSCS - Oct. 2007 27

    Voltage Mode Boost - RHP Zero

    Perturbation from Duty Cycle to Output Current:

    sLVdiVVDDV

    dtdiL

    DIdDiIdDiiDII

    OLOININ

    L

    OLLLoLO

    ⋅≈⇒−−+=

    −⋅−−=⋅−−=⇒−=

    ))(1(

    1)1()1()1(

    Right-Half-Plan Zero forms at frequency where:

    LDR

    DIdD

    LjVd

    LRHP

    O

    RHP

    O

    2)1(

    |1

    ||)1(|

    −=

    −⋅=−

    ω

    ω

    Right-Half-Plan Zero exists for both Voltage Mode and Current Mode Boost

  • 11/1/2007 IEEE SSCS - Oct. 2007 28

    Voltage Mode Boost

    Example: L=2.2uH, C=10uF, RESR=10m Ohm, VIN=2.5V, VOUT=5V, 10V, 15V, IOUT=100mAFSW=1.5MHz

    ω0 and ωRHP moves lower with increased duty cycle

    Control (Duty Cycle) to Output Transfer Function:

  • 11/1/2007 IEEE SSCS - Oct. 2007 29

    Voltage Mode Boost – Type-III Error Amp

    Usually Type-III Compensation Network is Required:

    LCVVCR

    BWLCsV

    VCRBW

    sQ

    s

    ss

    DVV

    CsRCsRCAsRCsRRsCALG

    CCsRCsRCCAsRCRRsRsCA

    vv

    R

    IN

    BWR

    IN

    RHPZ

    RHPZ

    R

    IN

    FB

    EA

    ⋅⋅=⇒=⋅⋅

    ++

    −+

    −⋅

    +++++

    −≈

    ++++++++

    −≈

    21

    21

    20

    2

    0

    23122103

    23110

    131223103

    223110

    2111:

    1

    )1)(1(

    )1()1)(1](1[)1)(1(

    )||1)(1)]()(1(1[])(1)[1(

    π

    ωωωω

    ωω

    : and thanlower be to BWSet

    EAVREF

    VFB

    VEA

    R3

    R2

    R1

    C2

    C1

    C3 Example Design Steps:1. Estimate worst case

    ωRHP=300kHz 2. Set BW

  • 11/1/2007 IEEE SSCS - Oct. 2007 30

    Voltage Mode Boost – Type-III Error Amp

    • Phase shift exceeds 180° at ω0 -> conditionally stable

    • Move 1st zero lower to improve phase shift -> much larger C1

    • Adjust C1 to move 1st zero• Adjust R3 to move 2nd zero and

    mid-band gain• 2nd pole and 3rd poles suppress

    high frequency noise

  • 11/1/2007 IEEE SSCS - Oct. 2007 31

    DC-DC Converter Design

    Current Mode Boost

    C

    S2VSW

    RESR

    RLS1

    R1

    R2

    VREF

    VRAMPS

    R

    Q

    QB

    CLK

    VFBVEA

    VOUTVIN

    CLK

    VRAMPVEA

    VSWVIN

    IL

    IOUT

    D

    D

    EA

    Slope Comp

    RSEN

    RST

    L

    D’

    RST

  • 11/1/2007 IEEE SSCS - Oct. 2007 32

    Current Mode Boost

    )1(21

    12

    5.0)1)(1(

    12

    1

    1

    21

    11)(

    )2||]5.0)1)(1[(

    ()1(

    12

    1

    11

    21

    2

    2

    1

    2

    mmDD

    mmQ

    T

    sQ

    sRRR

    DsG

    DTL

    DmmT

    LD

    R

    RRR

    DviG

    aa

    SS

    SSX

    LSENm

    SaS

    X

    X

    LSENEA

    om

    −−=

    −−+=

    =

    +++

    −≈

    −−+−=

    +

    −==

    ππ

    πω

    ωω

    :system pole-2 a in resultseffect sampling andDelay Buck ModeCurrent Peak toSimilar

    where

    C

    RESR

    RL

    R1

    R2

    VREF

    VFBVEA

    VOUTVIN

    EA

    Gm IO

    RX

    Transfer Function of the Current Loop:

  • 11/1/2007 IEEE SSCS - Oct. 2007 33

    Current Mode Boost

    Control to Output Transfer Function:

    LDR

    RRsC

    ssCR

    sQ

    sRRR

    RDZsGvv

    LRHP

    XL

    ZRHPESR

    SSX

    LSEN

    LOm

    EA

    o

    2

    2

    )1(

    )]||2

    (1[

    )1)(1(

    )(1

    1

    21

    12

    )1()(

    −=

    +

    −+⋅

    +++

    −=⋅=

    ω

    ω

    ωω

    Example: VIN=2.5VVOUT= 5V, 10V, 15V, 20VL=2.2uH, C=10uF RESR=10m OhmIOUT = 100mARSEN = 0.5 OhmFSW = 1.5MHz

  • 11/1/2007 IEEE SSCS - Oct. 2007 34

    Current Mode Boost – Error Amp Ex.

    )1)]((1[1

    )]||2

    (1[

    )1)(1(

    )(1

    1

    21

    12

    )1()(11

    02 ZZomoC

    ZC

    XL

    ZRHPESR

    SSX

    LSEN

    L

    RsCRRrgrsCRsCA

    RRsC

    sssCR

    sQ

    sRRR

    RDsT++++

    +⋅

    +

    −+⋅

    +++

    −−= ω

    ωω

    Use the same error amp structure as on page 22:

    The Complete Loop Transfer Function:

    Generally Guideline:• To ensure loop stability, the unity-gain bandwidth is set to be

    3-5x lower than the worst case RHP zero• The ESR zero and 2nd pole of the amplifier is placed higher than

    the RHP zero• The current loop poles are usually much higher than RHP zero

    EAVREF

    VFBR1

    RZ

    VEA

    CC

    C1

  • 11/1/2007 IEEE SSCS - Oct. 2007 35

    Current Mode Boost – Error Amp Ex.

    Loop Bandwidth can be estimated as:

    )1()()1(

    3)1(

    21

    222

    1

    DBW,IV

    VVVRDR

    RR

    CRDBW

    OO

    IN

    O

    INLLRHP

    RHPZ

    SEN

    −∝⋅

    ==−∝

  • 11/1/2007 IEEE SSCS - Oct. 2007 36

    Current Mode Boost

    Error Amplifier Example:R1=250k, RZ=1MCC=25pF, C1=0.3pF

    Output Current:1mA, 10mA, 100mA, 500mA

    Loop BW: ~60kHz

    Complete Loop Transfer Function of Current Mode Boost Converter:

  • 11/1/2007 IEEE SSCS - Oct. 2007 37

    DC-DC Converter – Building Blocks

    PWM ComparatorMulti-Stage Gain -> Faster For Small Input SignalBut, High-Gain Stage Has Longer Recovery TimeSo, Usually Low-Gain Amp(s) Followed by High-Gain Comparator

  • 11/1/2007 IEEE SSCS - Oct. 2007 38

    Building Blocks – PWM Comparator

    OTA based comparator with pre-amps

    INP INN

    COMP OUT

  • 11/1/2007 IEEE SSCS - Oct. 2007 39

    Building Blocks – Error Amplifiers

    Good:• Input Common Mode Down

    to Ground• Smaller Input Offset than

    OTA

    But:• Difficult to get large Gm

    INP

    INNOUT

    BIAS

    Error AmplifiersFolded-Cascode Error Amplifier

  • 11/1/2007 IEEE SSCS - Oct. 2007 40

    Building Blocks – Error Amplifiers

    Good:• Constant Gm Defined by R• Scalable Gm by Current

    Mirrors

    But:• Higher Input Offset due to

    Even More Current Mirrors• Additional Gm Regulation

    Loop

    Constant Gm Error Amplifier

    INPINN

    I1 I1

    I2I2

    ROUT

  • 11/1/2007 IEEE SSCS - Oct. 2007 41

    DC-DC Converter Design

    Acknowledgement:Jian Zhou etc. for Review and Suggestions

    Thank You For Your Attendance