135
Clemson University TigerPrints All eses eses 8-2013 DESIGN OPTIMIZATION OF GEOMETRICAL PAMETERS AND MATERIAL PROPERTIES OF VIBTING BIMORPH CANTILEVER BEAMS WITH SOLID AND HONEYCOMB SUBSTTES FOR MAXIMUM ENERGY HARVESTED Jasmin Adeshara Clemson University, [email protected] Follow this and additional works at: hps://tigerprints.clemson.edu/all_theses Part of the Mechanical Engineering Commons is esis is brought to you for free and open access by the eses at TigerPrints. It has been accepted for inclusion in All eses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Recommended Citation Adeshara, Jasmin, "DESIGN OPTIMIZATION OF GEOMETRICAL PAMETERS AND MATERIAL PROPERTIES OF VIBTING BIMORPH CANTILEVER BEAMS WITH SOLID AND HONEYCOMB SUBSTTES FOR MAXIMUM ENERGY HARVESTED" (2013). All eses. 1717. hps://tigerprints.clemson.edu/all_theses/1717

DESIGN OPTIMIZATION OF GEOMETRICAL PARAMETERS AND …

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Clemson UniversityTigerPrints

All Theses Theses

8-2013

DESIGN OPTIMIZATION OFGEOMETRICAL PARAMETERS ANDMATERIAL PROPERTIES OF VIBRATINGBIMORPH CANTILEVER BEAMS WITHSOLID AND HONEYCOMB SUBSTRATESFOR MAXIMUM ENERGY HARVESTEDJasmin AdesharaClemson University, [email protected]

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorizedadministrator of TigerPrints. For more information, please contact [email protected].

Recommended CitationAdeshara, Jasmin, "DESIGN OPTIMIZATION OF GEOMETRICAL PARAMETERS AND MATERIAL PROPERTIES OFVIBRATING BIMORPH CANTILEVER BEAMS WITH SOLID AND HONEYCOMB SUBSTRATES FOR MAXIMUMENERGY HARVESTED" (2013). All Theses. 1717.https://tigerprints.clemson.edu/all_theses/1717

DESIGN OPTIMIZATION OF GEOMETRICAL PARAMETERS AND MATERIAL

PROPERTIES OF VIBRATING BIMORPH CANTILEVER BEAMS WITH SOLID

AND HONEYCOMB SUBSTRATES FOR MAXIMUM ENERGY HARVESTED

________________________________________________________________________

A Thesis

Presented to

the Graduate School of

Clemson University

________________________________________________________________________

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

________________________________________________________________________

by

Jasmin Adeshara

August 2013

________________________________________________________________________

Accepted by:

Dr. Lonny L. Thompson, Committee Chair

Dr. Georges M. Fadel

Dr. Huijuan Zhao

ii

ABSTRACT

The objective of this thesis is to maximize the energy harvested from a vibrating bimorph

cantilever beam by optimizing the geometrical parameters and the material properties of

the piezoelectric beam. A three-dimensional finite element (FEA) model is developed to

design a vibrating bimorph cantilever beam for energy harvesting. The reference

piezoelectric material used in the design is Lead Zirconate Titanate (PZT-5H) and the

substrate sandwiched between the two piezoelectric plates is brass. Three types of models

are analyzed and compared in this work by modifying the brass substrate geometry- a

solid homogenous substrate, a regular honeycomb substrate and an auxetic honeycomb

substrate. Complete transversely isotropic elastic and piezoelectric properties are

assigned to the bimorph layers. A time harmonic pressure load is applied to the top

surface of the beam that results in electrical-mechanical coupling by vibration. The

electric potential on the surfaces of the bimorph piezoelectric beam is used to compute

voltage generated.

Also in this thesis, an automated design workflow has been set-up to solve an

optimization problem by integrating ABAQUS 6.10, the commercial finite element

package with the commercial optimization software package VisualDOC 7.1. The

optimizer, Non-dominated Sorting Genetic Algorithm II (NSGAII), depends on the

number of population, iterations, probability of cross over and mutations.

iii

The first objective of this work is to compare the finite element analysis results of the

bimorph cantilever beams with these three substrates for similar loading and boundary

conditions. The thickness of the substrates and the material properties are maintained

equal for all three models. The second objective is to optimize the thicknesses of the PZT

plates ‘tp’ and the relative dielectric constant to maximize the power harvested (i.e.

voltage output) for a given loading condition and plate dimensions (length and width).

The constraint used for solving this non-linear multi-physics optimization problem is the

ultimate tensile stress for the piezoelectric plates. The optimized parameters obtained

from VisualDOC are verified using ABAQUS and the results are compared.

iv

DEDICATION

This work is dedicated to my parents for their unconditional love and support.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to sincerely thank my advisor Dr. Lonny Thompson

for his continuous support and guidance throughout my Master’s Degree program. His

inputs have been vital for my research and have been a great source of motivation for me.

I am also grateful to my advisory committee members Dr. Georges M. Fadel and Dr.

Huijuan Zhao for their inputs and support.

I would also like to thank Nataraj Chandrasekharan for his inputs and advice for my

research work. His research has proved to be a good source of information to me.

Finally, I would like to thank my friends for their continued support, guidance and

valuable inputs from time to time.

vi

TABLE OF CONTENTS

Page

TITLE PAGE………………………………………………………………………………i

ABSTRACT ....................................................................................................................ii

DEDICATION ............................................................................................................... iv

ACKNOWLEDGEMENTS ............................................................................................. v

LIST OF FIGURES ......................................................................................................... x

LIST OF TABLES .......................................................................................................xiii

CHAPTER 1: INTRODUCTION AND OVERVIEW .................................................... 1

1.1 Literature Review and Research Motivation ........................................................... 1

1.2 Thesis Objective .................................................................................................... 5

1.3 Thesis Overview .................................................................................................... 6

CHAPTER 2: FINITE ELEMENT MODEL.................................................................... 8

2.1 Design of the bimorph cantilever solid beam: ......................................................... 9

2.1.1 Brass substrate ................................................................................................. 9

2.1.2 Piezoelectric beam ......................................................................................... 10

2.1.3 Derivation of the Constitutive Equations for the Piezoelectric Model ............. 12

2.1.4 Procedure ...................................................................................................... 16

2.1.5 Load .............................................................................................................. 18

2.1.6 Boundary Conditions ..................................................................................... 19

2.2 Design of the bimorph cantilever honeycomb beam ............................................. 20

2.2.1 Effective Properties of the Honeycomb Substrate .......................................... 21

2.2.2 Material properties ......................................................................................... 26

vii

Table of contents (continued)

Page

2.2.3 Analysis Procedure ........................................................................................ 29

2.2.4 Mesh Convergence Study .............................................................................. 31

2.2.5 Loading and Boundary Conditions ................................................................. 33

2.3 Verification of Abaqus Model .............................................................................. 34

2.3.1 Static Validation ............................................................................................ 36

2.3.2 Dynamic Validation ....................................................................................... 37

CHAPTER 3: RESULTS OF THE FINITE ELEMENT MODEL .................................. 38

3.1 Basic electrical circuit connection of the bimorph cantilever beam ....................... 38

3.2 Results and discussion for the FEA Models .......................................................... 41

CHAPTER 4: ENGINEERING OPTIMIZATION PROBLEM...................................... 50

4.1 Optimization Problem .......................................................................................... 50

4.1.1 Objective Statement ....................................................................................... 50

4.1.2 Input Parameters ............................................................................................ 51

4.1.3 Output Parameters ......................................................................................... 51

4.1.4 Derived Variables .......................................................................................... 52

4.1.5 Constraints .................................................................................................... 52

4.2 Description of the Optimization Work-flow ......................................................... 53

4.2.1 Optimization Algorithm ................................................................................. 53

4.2.2 VisualDOC Worflow ..................................................................................... 54

4.2.3 Input Python Scripts ...................................................................................... 54

4.2.4 Output Python Scripts .................................................................................... 55

4.2.5 Challenges in integrating VisualDOC 7.1 and ABAQUS 6.10 ....................... 56

4.2.6 Executable parameters ................................................................................... 58

viii

Table of contents (continued)

Page

4.2.7 Report ........................................................................................................... 58

4.3 Optimization ........................................................................................................ 58

4.3.1 Non-Gradient Based Optimization ................................................................. 59

4.3.2 Non-dominated Sorting Genetic Algorithm II ................................................ 59

4.3.3 Starting and Stopping criteria......................................................................... 59

4.3.4 GA Parameter ................................................................................................ 60

4.4 Data Linker .......................................................................................................... 61

4.5 Simulation Monitors ............................................................................................ 62

CHAPTER 5: ANALYSIS OF THE OPTIMIZATION MODEL RESULTS ................. 63

5.1 Results of the Optimization model ....................................................................... 63

5.1.1 Optimization results: Solid substrate, Limits as given in table 4.1 .................. 64

5.1.2 Optimization results : Solid substrate, Limits as given in table 4.2 ................. 67

5.1.3 Optimization results: Regular honeycomb substrate ....................................... 70

5.4 Optimization results: Auxetic honeycomb substrate .......................................... 73

5.2 Verification of the optimization results & comparison of the ABAQUS models ... 76

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 86

REFERENCES.............................................................................................................. 89

APPENDICES .............................................................................................................. 93

A: solid_parallel_optim.py ......................................................................................... 94

B: runabaqus-solid-parallel.bat................................................................................. 111

C: abaqus-solid-parallel.py....................................................................................... 111

ix

Table of contents (continued)

Page

D: postprocessing-solid-parallel.bat ......................................................................... 113

E: solid16report.rpt .................................................................................................. 114

F: Optimization Results ........................................................................................... 116

x

LIST OF FIGURES

Figure ....................................................................................................................... Page

2.1: Finite element model of the bimorph cantilever beam ............................................... 8

2.2: Loading condition for the solid homogenous substrate beam model ........................ 18

2.3: Boundary conditions for the solid homogenous substrate beam model .................... 19

2.4: Finite element model of the regular honeycomb substrate model ............................ 20

2.5: Finite element model of the auxetic honeycomb substrate model ............................ 21

2.6: Unit cell representation of the regular and auxetic honeycombs [13] ....................... 22

2.7: Representation of reg and aux honeycombs along the length of the beam................ 22

2.8: Material properties of Brass substrate as entered in ABAQUS 6.10 ........................ 27

2.9 Material properties of Piezoelectric beam as entered in ABAQUS 6.10 ................... 28

2.10: FEA mesh of the regular honeycomb substrate model ........................................... 30

2.11: FEA mesh of the auxetic honeycomb substrate model........................................... 30

2.12: FEA set-up of the verification model .................................................................... 35

2.13: Transverse deflection of the normalized distance .................................................. 36

3.1: Basic circuit diagram of the bimorph cantilever beam ............................................. 40

3.2: Relation between electrical potential and frequency (Load=16Pa) .......................... 43

3.3: Relation between load voltage and frequency (Load=16Pa) .................................... 44

3.4: Relation between power and frequency (Load=16Pa) ............................................. 45

3.5: Relation between energy and frequency (Load=16Pa) ............................................ 45

3.6: Relation between stress and frequency (Load=16Pa) .............................................. 46

3.7: Contour plot of normal stress, S11 at natural frequency for Solid Substrate ............ 47

xi

List of Figures (Continued)

Figure ....................................................................................................................... Page

3.8: Contour plot of normal stress, S11 at natural frequency for Regular Honeycomb

Substrate ....................................................................................................................... 47

3.9: Contour plot of normal stress, S11 at natural frequency for Auxetic Honeycomb

Substrate ....................................................................................................................... 48

4.1: Optimization Algorithm .......................................................................................... 53

4.2: Optimization Workflow .......................................................................................... 54

4.3: Data linking in VisualDOC [37] ............................................................................. 62

5.1: Variable histogram for d31 (Solid substrate, parameter limits in table 4.1) .............. 65

5.2: Variable histogram for depth (Solid substrate, parameter limits in table 4.1) ........... 65

5.3: Variable histogram for E-pot (Solid substrate, parameter limits in table 4.1) ........... 66

5.4: Variable histogram for stress (Solid substrate, parameter limits in table 4.1) ........... 66

5.5: Variable histogram for d31 (Solid substrate parameter limits in table 4.2) .............. 68

5.6: Variable histogram for depth (Solid substrate, parameter limits in table 4.2) ........... 68

5.7: Variable histogram for E-pot (Solid substrate, parameter limits in table 4.2) ........... 69

5.8: Variable histogram for stress (Solid substrate, parameter limits in table 4.2) ........... 69

5.9: Variable histogram for d31 (Reg Honeycomb substrate) ......................................... 71

5.10: Variable histogram for depth (Reg Honeycomb substrate) .................................... 71

5.11: Variable histogram for electrical potential (Reg Honeycomb substrate) ................ 72

5.12: Variable histogram for stress (Reg Honeycomb substrate) .................................... 72

5.13: Variable histogram for d31 (Aux Honeycomb substrate) ....................................... 74

5.14: Variable histogram for depth (Aux Honeycomb substrate) .................................... 74

xii

List of Figures (Continued)

Figure ....................................................................................................................... Page

5.15: Variable histogram for electrical potential (Aux Honeycomb substrate) ................ 75

5.16: Variable histogram for stress (Aux Honeycomb substrate) .................................... 75

5.17: Relation between electrical potential & frequency (Before & after optimization).. 81

5.18: Relation between voltage and frequency (Before and after optimization) .............. 82

5.19: Relation between energy and frequency (Before and after optimization) ............... 83

5.20: Relation between power and frequency (Before and after optimization) ................ 84

5.21: Relation between stress and frequency (Before and after optimization) ................. 85

xiii

LIST OF TABLES

Table ........................................................................................................................ Page

2.1: Properties of the solid homogenous brass substrate ................................................... 9

2.2: Properties of the piezoelectric beam........................................................................ 11

2.3: Dielectric properties of the PZT beam .................................................................... 11

2.4: Elastic properties of the PZT beam ......................................................................... 11

2.5: Piezoelectric strain constant of the PZT beam ......................................................... 12

2.6: Mesh convergence study for bimorph cantilever beam with solid substrate ............. 32

2.7: Mesh convergence study for bimorph cantilever beam with honeycomb substrate .. 33 2.8: Material properties of verification model beams ..................................................... 35

2.9: Comparison of tip displacements ........................................................................... 36

2.10: Fundamental natural frequency comparison .......................................................... 37

3.1: Comparison of the finite element analysis results (Load=16Pa) .............................. 42

3.2: Summary of FEA models ....................................................................................... 48

4.1: Limits for the optimization input variables .............................................................. 51

4.2: Limits for the optimization input variables for convergence verification ................. 51

4.3: VisualDOC input file names ................................................................................... 57

5.1: Best solution set (Solid substrate, parameter limits in table 4.1) ............................. 64 5.2: Best solution set (Solid substrate, parameter limits in table 4.2 ) ............................. 67

5.3: Best solution set (Reg Honeycomb substrate) ......................................................... 70

5.4: Best solution set (Aux Honeycomb substrate) ......................................................... 73

5.5: Verification of the optimization results ................................................................... 77

xiv

List of Tables (Continued)

Table ........................................................................................................................ Page

5.6: Comparison of FEA results before and after optimization-I .................................... 78

5.7: Comparison of FEA results before and after optimization-II ................................... 80

5.8: Comparison of optimization results for Source Voltage .......................................... 81

5.9: Comparison of optimization results for Load Voltage ............................................. 82

5.10: Comparison of optimization results for Energy ..................................................... 83

5.11: Comparison of optimization results for Power ...................................................... 84

5.12: Comparison of optimization results for stress ........................................................ 85

1

CHAPTER 1: INTRODUCTION AND OVERVIEW

1.1 Literature Review and Research Motivation

Certain solid materials have the capability of accumulating electric charge when

subjected to mechanical pressure force. This property is called piezoelectric effect and

was discovered in 1800 by French physicists Jacques and Pierre Curie. Common

materials that possess this property are quartz, Rochelle salt, topaz and certain ceramics

such as Barium Titanate, Lead Zirconate and Lead Titanate. Piezoelectric effect is the

result of the electric dipole moments in solids which induces a negative charge on the

expanded side of the crystal and a positive charge on the compressed side. Once the

pressure is relieved an electrical current flows across the material. The piezoelectric

effect is a function of a critical temperature called the Curie temperature below which the

crystal structure of the atoms of the piezoelectric material lose their tetragonal structure

and a dipole moment is created [35]. Piezoelectric materials have their crystal structures

belonging to the Pervoskite family with the general formula ABO3 (for example Calcium

Titanate CaTiO3, Lead Zirconium Titanate (ZrxTi1-x)O3 ) [34].

Ceramic materials are commonly used in applications involving the use of piezoelectric

effect. A ceramic piezoelectric material consists of crystallite domains in which the polar

directions of the unit cells are aligned randomly which results in the net effective

polarization of the material to be zero. The application of sufficiently high electric field

causes the domains to align in the direction of the electric field resulting in polarization

2

of the material. This property is known as the inverse piezoelectric effect and was

theoretically derived in 1881 by Gabriel Lippmann and was experimentally verified by

the Curie brothers.

Piezoelectric materials find a wide range of applications in the micro-electro-mechanical

(MEMS) industry. The piezoelectric transducers are configured as actuators for

applications involving strain or stress generation using the principle of converse

piezoelectric effect and also as sensors when the desired output is electrical signal

generation using the principle of direct piezoelectric effect [35]. MEMS are essentially

miniaturized versions of regular actuators or sensors designed to utilize the piezoelectric

properties of the materials by maintaining the signal-to-noise ratio. An interesting

application of piezoelectric materials done by students from MIT is a project called

Crowd Farm. The project involved installation of piezoelectric flooring in crowded public

places like railway stations, malls, clubs etc. The project aimed at harvesting the power

from footsteps from these locations using the principle of piezoelectricity and using it a

power source, for example, generating electricity to power the bulbs in a mall. However,

the cost involved in such applications is considerable and it relatively impractical to build

such applications [37].

Energy harvesting based on vibrations is of significant interest in the recent years due to

the advancements in the field of low power consumption fields of electronics. Devices

such as MEMS, pacemakers, wireless sensors etc. have a potential to work on minimal

amount of power. This eliminates the use of low-life and environmentally hazardous

3

batteries. Ertuk and Inman have done considerable research on investigating the energy

harvesting of piezoelectric materials using vibrational motion. In their paper [2], they

have used the single mode frequency response to predict the coupled system dynamics of

the piezoelectric bimorph plated for a range of electrical loads. Another study [9]

discussed the energy storage characteristics of piezoelectric plate and the effects of

different parameters on the storage efficiency.

Most of the previous research involved use of accumulating the electrical potential

generated by the vibrating bimorph plates in devices such as capacitors [7]. This method

of energy storage was inefficient and inadequate to utilize the full potential of these

devices. Following these shortcomings, Sodano et al. [16] investigated the use of

recharging batteries to store the energy generated. Further in their paper, Sodano et al.

discuss the comparison of a capacitor and a rechargeable battery to store the power

generated and concluded that the batteries are more effective method of power storage.

Renno et al. [19] discuss the introduction of damping impacting the power optimality and

also the effects of addition of an inductor to the circuit. In [10], a comparison study of the

homogenous substrates for the bimorph cantilever beams is done. The substrates

compared were brass, steel and aluminum with solid homogenous cross section.

In this study, honeycomb core is used as a substitute for solid homogenous substrates and

the finite element results are compared. A lot of research has been done on several

geometries of honeycombs resulting from varying the cell angles (12-18). The types of

honeycombs discussed in this thesis are regular hexagonal honeycombs with a positive

4

cell angle of 30° and auxetic honeycombs with a negative cell angle of -30°. The

effective properties of these honeycomb substrates are studied for analyzing the bimorph

cantilever beams with honeycomb substrates. The effective properties of honeycombs

substrates are derived from Cellular Material Theory (CMT) and are used by many

researchers (13-15).

Research done in the field of energy harvesting has been limited to analytical and

experimental procedures using piezoelectric materials. This research was extended by

Chandrasekharan et al [12] and a finite element model of the bimorph cantilever beam

using solid homogenous brass as a substrate was analyzed. The finite element model

provided information about the energy harvested by subjecting the bimorph cantilever

beam to forced vibrations and also a parametric study of the geometrical and material

properties was conducted. The scope of the parametric study done by Chandrasekharan et

al [12] was limited to the pre-decided combinations of the input values given to the

dimensional and the material properties used for the finite element analysis. Based on

these input values, a design of experiment (DOE) [30] was set-up to study the sensitivity

of the input parameters on the energy harvested.

The research done by Chandrasekharan et al [12] and other researches is extended further

in this thesis by developing an optimization workflow for complete parameterization of

the input variables. The constraint limit is set on the elastic strength of the piezoelectric

beams and the energy harvested is maximized by optimizing the input variables. Further,

5

the solid homogenous brass substrate is substituted by regular and auxetic honeycomb

substrates and the finite element results with optimized input variables are compared.

1.2 Thesis Objective

As discussed above, the scope of this work covers two major objectives. The first

objective of this thesis is to compare the bimorph cantilever beam model developed by

Chandrasekharan et al [12] by substituting the solid homogenous substrate with regular

and auxetic honeycomb substrates. The pressure load given to the comparison models is

limited to 16Pa as a load higher than this value tends to increase the output stress on the

piezoelectric beams for honeycomb substrate models higher than its limiting stress.

Hence, a uniform loading condition is given across all the comparison models to maintain

consistency. A verification model is also generated to compare the finite element results

with Chandrasekharan’s thesis prior to analyzing the honeycomb substrate models.

The second objective of the thesis is to optimize the input variables for all types of

substrates analyzed and to compare these bimorph cantilever beam models. The

optimization workflow is used to maximize the power harvested (i.e. voltage output) for a

given loading condition and plate dimensions (length and width) by optimizing the

thicknesses of the two PZT plates ‘tp’ and the relative dielectric constant of the PZT

plates. The constraint is the ultimate tensile stress for the piezoelectric plates. The upper

and lower limits of these two input variables are set to define the design space for the

optimization problem. The output variable for the optimization problem is the voltage

generated (Epot) by the beam under the given loading conditions. This output variable

6

has been chosen to obtain a single representative value of the energy harvesting

performance of the sandwich plate for the chosen frequency range. The value obtained is

the maximum voltage generated at the resonance frequency. Other derived variables such

as resistance, power and energy are calculated from the output voltage generated.

1.3 Thesis Overview

Chapters 2 and 3 discuss the finite element analysis set up and procedure to solve the

bimorph cantilever beam with a solid homogenous substrate subjected to a load of 16Pa.

The FE model is built in ABAQUS/CAE 6.10. The bimorph cantilever beam is modeled

with a brass substrate sandwiched between two PZT-5H piezoelectric strips. Transversely

isotropic properties are assigned to the piezoelectric strips for elastic, dielectric and

piezoelectric properties. The surfaces of the piezoelectric strips are tied to the beam to

form the assembly. A constraint is used to ensure uniform potential on the surfaces of the

piezoelectric strips. The electric potential in ABAQUS is stored in the variable EPOT in

the field output. Mechanical boundary conditions are specified to ensure a clamped

condition while electrical constraints are specified to render the core inactive by

maintaining the piezoelectric surfaces bonded to the substrate material at zero electric

potential throughout the analysis. The solid homogenous brass substrate is substituted

with regular and auxetic honeycomb geometry and the finite element analysis is done by

subjecting the cantilever beams to a load of 16Pa and the results are compared.

7

Chapters 4 and 5 describe an automated design workflow to solve the optimization

problem by integrating ABAQUS 6.10, the commercial finite element package with the

commercial optimization software package VisualDOC 7.1. The optimizer, Non-

dominated Sorting Genetic Algorithm II (NSGAII), depends on the number of

population, iterations, probability of cross over and mutations. The results are compared

for the optimized input and output values for all the models are presented and compared.

The finite element analysis is repeated with the revised input values from the

optimization procedure and the results of the output variables are compared to the

optimized output variables.

Chapter 6 presents the conclusion and the future work that can be extended for this thesis

work. Finally, the appendix section is dedicated to a sample python script of the

verification bimorph cantilever beam model subjected to 16Pa load and the optimization

results for this model.

8

CHAPTER 2: FINITE ELEMENT MODEL

The Finite Element model of the bimorph cantilever beam is built using Abaqus 6.10.

The beam essentially consists of a brass substrate sandwiched between two piezoelectric

beams which act as electrodes of a ‘capacitor’ and the brass substrate as the dielectric

material. A direct steady state analysis is carried out and the electrical potential and the

normal stress are measured at different frequency intervals with the resonant frequency

being the frequency of interest. This chapter presents a detailed procedure of the steady

state analysis on three types of brass substrates – solid beam, conventional regular

honeycombs beam and auxetic honeycombs beam.

Figure 2.1: Finite element model of the bimorph cantilever beam

Piezoelectric

Material (PZT-5H) Brass Substrate

9

2.1 Design of the bimorph cantilever solid beam:

The following section explains the analysis procedure for the bimorph cantilever beam

using solid brass beam as a substrate sandwiched between two piezoelectric layers.

2.1.1 Brass substrate

The brass substrate is built using a 3D deformable solid extrusion element. It is meshed

using a 20 node quadratic brick, reduced integration element (C3D20R) with a seed size

of 0.0033 (default). Global material orientation is assigned to the beam. The dimensions

and material properties of the solid plate brass substrate are given below.

Property Value

Density(ρb) 8740 kg/m3

Young’s Modulus (E) 97GPa

Poisson’s ratio (υ) 0.34

Length (L) 66.62 mm

Width(b) 9.72 mm

Thickness (tb) 0.76 mm

Damping ratio (ξ) 0.019

Table 2.1: Properties of the solid homogenous brass substrate

10

The damping in the brass substrate is given by

1

2i i

i

(1-1)

Where ξi is the modal damping ratio and ‘α’ and ‘β’ are the proportional coefficients

given by 17.1 and 2.111e-5 respectively. The angular frequency, ω, corresponds to the

frequency at the ith vibration mode.

2.1.2 Piezoelectric beam

The two piezoelectric beams are made up of PZT-5H (Lead Zirconate Titanate) which

acts as the electrode for the brass substrate. The material properties and dimensions of the

PZT beams are given in the table 2.2 below. The piezoelectric beams are meshed using a

20 node quadratic hexagon piezoelectric, reduced integration element (C3D20RE) with a

seed size of 0.0033 (default). Global material orientation is assigned to the piezoelectric

beams. Transversely isotropic material properties are assigned to the piezoelectric beam

for elastic, dielectric and piezoelectric properties.

11

Property Value

Density(ρb) 7800 kg/m3

Length (L) 66.62 mm

Width(b) 9.72 mm

Thickness (tb) 0.26 mm

Table 2.2: Properties of the piezoelectric beam

Dielectric Property Value (F/m)

D11 3.89E-08

D22 3.36E-08

D33 3.36E-08

Table 2.3: Dielectric properties of the PZT beam

Elastic Property Value

Uniaxial modulus (c11) 62 GPa

Uniaxial modulus (c22) 62 GPa

Uniaxial modulus (c33) 49 GPa

Shear modulus (c12) 23.5 GPa

Shear modulus (c13) 23 GPa

Shear modulus (c23) 23 GPa

Table 2.4: Elastic properties of the PZT beam

12

Piezoelectric Strain Constants Value (m/V)

d31 -320E-12

d32 -320E-12

d33 -650E-12

Table 2.5: Piezoelectric strain constant of the PZT beam

The constitutive relations of the orthotropic piezoelectric material are explained below.

The relative dielectric constant K3T of PZT-5H is 3800 and the permittivity of free space

is 8.85e-12 F/m. This is used in calculating the dielectric properties in the matrix obtained

in the table 2.3. Table 2.5 shows the transverse isotropic properties of PZT-5H. C11, C22

and C33 are the elastic moduli in the x, y and z, directions.

2.1.3 Derivation of the Constitutive Equations for the Piezoelectric Model

The total charge Q for a continuum volume V with charge density q is defined as:

Q q dV (2-2)

The current density I is defined as the rate of change of total charge Q

I Q (0-3)

The electric field ' is related to the electric potential as

' (0-4)

The total charge accumulated on the boundary of a continuum when it is subjected to an

electric field with volume V is given by

13

dV

Q D n dA (0-5)

Where, D is the electric displacement vector and n is a unit vector normal to the

boundary of the continuum V (i.e. V)

The total electrical potential energy Ue is equal to the work needed to move a total charge

Q in the field and is given by

( )Ue Q (0-6)

Using Maxwell’s equation given by

q divD D (0-7)

And using equation

( ) ( ) ( )D D D (0-8)

Gives,

( )Ue divD dv (0-9)

[ ( ) ]V V

Ue div D dv D dv (0-10)

Applying divergence theorem on the first term of equation (0-10) gives,

[ ]V V

Ue D n dA D dv

(0-11)

14

Neglecting the 1st term (for higher frequency applications, the potential energy and the

electrical displacement decreases with distance), we get,

V

Ue D dv (0-12)

'V

Ue D dv (0-13)

'V

Ue D dv (0-14)

This is the equation for the electrical potential energy of the system.

The total potential energy is the sum of the strain energy and the electrical potential

energy, given by,

[( ) ( ' )]p p i i

V

U S D dv (0-15)

This equation is applicable of standard piezoelectric material in which magnetic effects

and thermal effects are neglected.

The total energy density (energy per unit volume) is given by,

'V p p iU S D (0-16)

'( ) ( )V VV p i

p i

U UU S D

S D

(0-17)

Where the subscripts ‘ε’ and ‘σ’ mean that those values are measured at constant

electrical field (ε=0) and stress (σ=0) respectively.

15

Similarly,

'( ) ( )p p

p q i

q i

S DS D

(0-18)

'

'' ( ) ( )

pii p j

p j

S DS D

(0-19)

Where i,j=1,2,3 and p,q=1,2,3,4,5,6

Also

'( ) ( ) ''

p p

p q i

q i

S SS

(0-20)

'( ) ( ) ''

i ii p j

p j

D DD

(0-20)

From equations (0-18) - (0-21) the linear constitutive equations can be reorganized in the

following form [12]

'D

p pq q pq iS S d (0-21)

' 'i ip p ij jD d (0-22)

Where, S= Mechanical strain, s=Compliance co-efficient matrix (1/spring constant),

d=Piezoelectric strain constant, ε’=Electric field, D=Electric displacement and

= Dielectric constant

In matrix form, these equations can be written as:

16

1 111 12 13 31

2 221 22 23 32

3 331 32 33 33

4 1244 24

44 155 13

11 126 23

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 2( ) 0 0 0

S s s s d

S s s s d

S s s s d

S s d

s dS

s sS

1

2

3

1

2

1 115 11

3

2 24 22 2

12

31 32 33 333 3

13

23

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

D d

D d

d d dD

Alternatively these matrices can also be written in terms of stress matrices

q pq p pq iK S e (0-23)

i ip p ij jD e S (0-24)

Where,

pqK =Stiffness, e=Piezoelectric stress constants

2.1.4 Procedure

The material properties defined above are assigned to the brass and piezoelectric

homogenous solid sections. The sections are then assigned to the individual beams. The

beams are assembled such that the brass substrate is sandwiched between the

piezoelectric beams using translation constraints. The idea is to generate equal potential

17

on the top surface of the top piezoelectric beam (pzt-tt) and the bottom surface of the

bottom piezoelectric beam (pzt-bb). The bottom surface of the top piezoelectric beam

(pzt-tb) and the top surface of the bottom piezoelectric beam (pzt-bt) are kept at a zero

potential. This is achieved by creating node sets for the piezoelectric beams. Two sets,

the master set and the slave set are created for the two ends of the piezoelectric beams

(pzt-tt and pzt-bb). The equation constraint tool is used to implement the constraint on the

electric potential degrees of freedom on these node sets to ensure uniform potential on

these two surfaces of the piezoelectric beams.

The analysis step used for this case is the direct steady state dynamic analysis. The

logarithmic scale is used in this dynamic step and 20 points are generated between the

lower and the upper frequencies. The dynamic step is preceded by a frequency step which

divides the Eigen-frequencies at each frequency range. A symmetric matrix storage

system is used and the Eigen-vectors are normalized by mass. The frequency step

employs a subspace Eigen solver with 18 vectors per iteration and 30 maximum iterations

with 10 Eigen values requested. Non-linear effects on the analysis due to large

deformations are not considered in this analysis.

Field outputs requested in the analysis are the stress and the electric potential. The stress

is calculated at the master node of the piezoelectric beams where the highest stress is

generated. Electric potential can be calculated on any node of the piezoelectric beam,

since it is constrained to be the same across the beam surface. However, for consistency,

18

the electric potential too is calculated at the master node. A tie constraint is used to tie the

brass surfaces to the piezoelectric surfaces (pzt-tb and pzt-bt).

2.1.5 Load

A uniform pressure load of 16Pa was applied along the z direction of the system on top of

the piezoelectric surface (pzt-tt). The load is applied in the dynamic step of the analysis.

The load is applied perpendicular to the piezoelectric beam. The load application is

shown in figure 2.2

Figure 2.2: Loading condition for the solid homogenous substrate beam model

19

2.1.6 Boundary Conditions

Two types of boundary conditions are used in this analysis – mechanical and electrical,

and they are applied at the initial step of the analysis. In the mechanical boundary

condition, the brass and the piezoelectric beams are clamped at one end restricting all the

degrees of freedom to zero. An electric boundary condition is enforced on the

piezoelectric surfaces (pzt-tb and pzt-bt) such that the electric potential is zero between

the surfaces that contact the piezoelectric and the brass beams. The boundary condition

application is shown in figure 2.3.

Figure 2.3: Boundary conditions for the solid homogenous substrate beam model

20

2.2 Design of the bimorph cantilever honeycomb beam

Similar to the solid plate sandwich structure described above, two more models are

created and analyzed in this thesis. The following section explains the analysis procedure

for the bimorph cantilever beam using two types of honeycomb brass beam as a substrate

sandwiched between two piezoelectric layers. The difference between these two models

and the one described above is that the solid brass substrate plate is replaced by a

honeycomb shell structure (regular and auxetic).

Figure 2.4: Finite element model of the regular honeycomb substrate model

21

Figure 2.5: Finite element model of the auxetic honeycomb substrate model

2.2.1 Effective Properties of the Honeycomb Substrate

The Finite Element model of the bimorph honeycomb substrate cantilever beam is built

using Abaqus 6.10. The unit cell representation of the regular and the auxetic honeycomb

is shown in figure 2.6. These unit cells are duplicated to form the brass substrate for the

analysis with 25 cells along the length of the substrate and 6 cells along its width.

22

Figure 2.6: Unit cell representation of the regular and auxetic honeycombs [13]

Figure 2.7: Representation of reg and aux honeycombs along the length of the beam

23

The two different kinds of honeycombs vary from one another in the cell angle and hence

the overall unit cell dimensions (i.e. the vertical height of the cell (h) and the inclined

length of the cell (l)) vary. The conventional regular honeycomb geometry has a cell

angle of θ = 30° and h=l. Auxetic honeycombs have negative cell angle (θ = -30°) and

hence the geometry relation changes to h=2*l. Usually the comparison is made between

the regular and the auxetic honeycombs because the effective cell size is same for both

(see figure 2.6) and also the in-plane Young’s moduli remains the same.

The honeycomb unit cell shown in figure 2.6 has been used previously by in many

researches [29]

The unit cell dimension Lx and Ly are given by,

2 cosxL l (0-25)

2( sin )yL h l (0-26)

The overall dimension L of the honeycomb substrate is the given by,

x hL L N (0-27)

y vH L N (0-28)

Where Nx and Ny are the number of unit cells in the x and the y direction. The number of

unit cells in the z direction is 1 in this thesis.

The effective elastic moduli of the honeycomb substrate is given by,

24

3

*

12

cos

sin sins

t

lE E

h

l

(0-29)

3

*

2 3

sin .

coss

h t

l lE E

(0-30)

*

3

2 .

2 sin coss

h t

l lE E

h

l

(0-31)

Where,

*

1E is the effective in-plane elastic moduli in the x direction,

*

2E is the effective in-plane elastic moduli in the y direction,

*

3E

is the effective out-of-plane elastic moduli in the z direction,

Similarly, the effective shear moduli of the honeycomb substrate is given by,

3

*

12 2

sin .

21 .cos

s

h t

l lG E

h h

l l

(0-32)

*

13

cos .

sins

t

lG G

h

l

(0-33)

25

*

23

sin .

21 .cos

s

h t

l lG G

h

l

(0-34)

Where,

*

12G is the effective in-plane shear moduli, *

13G and *

23G is the effective out-of-plane shear

moduli.

And the effective in-plane effective Poisson’s ratio ( *

12 and *

21 ) is given by,

2

*

12

cos

sin sinh

l

(0-35)

*

21 *

12

1

(0-36)

Note: For the regular honeycomb substrate (θ=30° and h=l) and the auxetic honeycomb

substrate (θ= -30° and h=2*l), the effective in-plane elastic moduli are the same in the x

and y direction are the same and also the effective out-of plane shear moduli are same.

The effective Poisson’s ratio is given by *

12 =1 for the regular honeycomb and *

12 = -1

for the auxetic honeycomb.

The effective density ρ* of the honeycomb core is given by,

*

2 .

2 sin coss

h t

l l

h

l

(0-37)

26

These effective properties are applicable only for the honeycomb substrate. To get the

overall property of the sandwich plate, the properties of the two piezoelectric plates have

to be taken into consideration as well. The mass of the core is given by,

*. . .coreM L H D (0-38)

Where, D is the depth of the core (D=0.76mm for this study).

2.2.2 Material properties

The material properties of the piezoelectric beams are the same as defined for the solid

cantilever beam analysis. The piezoelectric beam material is PZT-5H and is assigned

transverse isotropic properties by assigning local material properties. The constitutive

equations of the orthotropic piezoelectric material remain the same as explained in

equations (2-24) and (2-25) where all the variables have the same meaning. The

difference in the material properties arises for the brass substrate where the effective

material properties of the brass hexagonal honeycomb cores are calculated using the

Cellular Material Theory (CMT), to predict the linear elastic behavior of the honeycomb

structures. The material properties entered in ABAQUS 6.10 for brass and the

piezoelectric beams are shown in figure 2.8 and 2.9 below.

27

Figure 2.8: Material properties of Brass substrate as entered in ABAQUS 6.10

28

Figure 2.9 Material properties of Piezoelectric beam as entered in ABAQUS 6.10

29

2.2.3 Analysis Procedure

The finite element analysis for the piezoelectric honeycomb sandwich structure is similar

to the solid plate sandwich structure. The honeycomb brass substrate is made up of 3D

shell extrusion element. It is meshed using reduced integration 8 node doubly curved

thick shelled elements (S8R). The seed size used for meshing the substrate is 0.00036 and

0.00045, which is selected to give 4 and 6 elements across the height for regular and

auxetic honeycomb substrates respectively. The section assigned to the brass honeycomb

substrate is homogenous continuous shell section with a shell thickness of 0.15mm. The

brass substrate is assembled to sandwich between the two piezoelectric plates using edge-

to-edge constraints.

30

Figure 2.10: FEA mesh of the regular honeycomb substrate model

Figure 2.11: FEA mesh of the auxetic honeycomb substrate model

31

The analysis step used for this case is the direct steady state dynamic analysis. The

logarithmic scale is used in this dynamic step and 20 points are generated between the

lower and the upper frequencies. The dynamic step is preceded by a frequency step which

divides the Eigen-frequencies at each frequency range. A symmetric matrix storage

system is used and the Eigen-vectors are normalized by mass. The frequency step

employs a subspace Eigen solver with 18 vectors per iteration and 30 maximum

iterations. 10 Eigen values are requested. Non-linear effects on the analysis due to large

deformations are not considered in this analysis. Field outputs requested in the analysis

are the stress and the electric potential. The stress is calculated at the master node of the

piezoelectric beams where the highest stress is generated. Electric potential can be

calculated on any node of the piezoelectric beam, since it is constrained to be the same

across the beam surface. However, for consistency, the electric potential too is calculated

at the master node. A tie constraint is used to tie the brass surfaces which contact the

piezoelectric surfaces.

2.2.4 Mesh Convergence Study

A mesh convergence study is done for all three models to study the effect of increasing

the number of elements on the output voltage and stress. The seed sizes for the

homogenous solid substrate and the piezoelectric plate for the bimorph cantilever beam

with solid substrate are reduced to half its previous value. It is observed that reducing the

seed size does not have a significant impact on the output results in this case. Table 3.1

shows the ABAQUS analysis results using reduced seed size for the assembly. The

32

analysis is repeated for the regular honeycomb and auxetic honeycomb brass substrate

models and the same result is observed as shown in table 3.2. Hence, it can be justified

that for the loading and boundary conditions for the bimorph cantilever beams used in

this study, the effect of increasing the number of elements by refining the mesh does not

contribute to increase the output parameters. Refined mesh however increases the

computational time significantly.

Parameter

Solid Substrate

(seed size= 0.0033)

Solid Substrate

(seed size= 0.0015)

Natural Frequency (Hz) 139.98 139.73

Total number of elements 180 792

Peak Voltage (V) 3.134 3.137

Max. Normal Stress,S11(MPa) 7.76 8.19

Table 2.6: Mesh convergence study for bimorph cantilever beam with solid substrate

33

Parameter

Reg HC

Results

(seed size = A)

Reg HC

Results

(seed size = B)

Aux HC

Results

(seed size = C)

Aux HC

Results

(seed size =

D)

Natural

Frequency (Hz)

181.01 180.84 176.57 176.48

Total number

of elements

3776 8746 3788 9682

Peak Voltage

(V)

23.96 23.89 19.21 18.98

Max. Normal

Stress,S11(MPa)

69.15 72.41 55.67 57.74

Table 2.7: Mesh convergence study for bimorph cantilever beam with honeycomb substrate

Seed size A: Brass substrate seed size =0.00036, PZT plate seed size =0.0033

Seed size B: Brass substrate seed size = 0.00025, PZT plate seed size =0.0018

Seed size C: Brass substrate seed size = 0.00045, PZT plate seed size =0.0033

Seed size D: Brass substrate seed size = 0.0003, PZT plate seed size =0.0018

2.2.5 Loading and Boundary Conditions

A uniform pressure load of 16Pa was applied along the z direction of the system on top of

the piezoelectric surface (pzt-tt). The load is applied in the dynamic step of the analysis.

34

The load is applied perpendicular to the piezoelectric beam. Two types of boundary

conditions are used in this analysis – mechanical and electrical, and they are applied at

the initial step of the analysis. In the mechanical boundary condition, the brass and the

piezoelectric beams are clamped at one end restricting all the degrees of freedom to zero.

An electric boundary condition is enforced on the piezoelectric surfaces which are in

contact with the brass surfaces such that the electric potential is zero between the surfaces

that contact them.

2.3 Verification of Abaqus Model

This section provides a validation of the analysis procedure for the Abaqus model used in

this thesis. In this validation model, a cantilever beam consisting of an aluminum

substrate, adhesive layer and a piezoelectric layer (PZT-4) is used with the material

properties given in table 2.8. The procedure of construction of the Abaqus model is

similar to the model creation procedure explained in section 2.1.4. The only difference is

that instead of a mechanical load input given to harness the output voltage, in this case a

constant electrical potential of 12.5kV is applied on the upper surface of piezoelectric

layer, while grounding the lower surface of the piezoelectric layer. The deflection of the

beam due to application of the electrical voltage is calculated and compared to the results

obtained by Saravanos and Heyliger (1995) [40] and Robbins and Reddy (1991) [41].

35

Properties Aluminum Adhesive PZT-4

E11 (GPa) 68.9 6.9 83

E22 (GPa) 68.9 6.9 66

v12 0.25 0.4 0.31

G12 (GPa) 27.6 2.46 -1232

d31 (m/V) 0 0 -1.22E-10

d33 (m/V) 0 0 2.85E-10

ε33 (F/m) 0 0 1.15E-08

ρ (kg/m3) 2769 1662 7.60E+03

Length (m) 0.1524 0.1524 0.1524

Thickness (m) 0.01524 0.01524 0.01524

Width (m) 0.0254 0.0254 0.0254

Table 2.8: Material properties of verification model beams

Figure 2.12: FEA set-up of the verification model

36

2.3.1 Static Validation

The transverse deflection along the normalized length of the cantilever beam analyzed in

the verification model is compared to the results given by Elshafei and Alraiess (2013)

[42], Saravanos and Heyliger (1995) [40], Chee et al (1999) [37], Elshafei et al (2010)

[39], Beheshti-Aval et al (2011) [38]. The models presented in these papers are

approximate theoretical models based on composite beam theory. Table 2.10 shows the

comparison of the tip displacement of the 3D FEA model developed in ABAQUS 6.10

with these approximate models.

Figure 2.13: Transverse deflection of the normalized distance

Parameter Present

Model

Reference

paper

[37]

Reference

paper

[38]

Reference

paper

[39]

Reference

paper

[40]

Reference

paper

[42]

Tip

displacement

(mm)

0.42 0.4 0.38 0.36 0.35 0.38

Table 2.9: Comparison of tip displacements

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0 0.2 0.4 0.6 0.8 1 1.2

Tra

nsv

erse

Def

lect

ion

(mm

)

Normalised distance (X/L)

Verification Model

37

2.3.2 Dynamic Validation

Table 2.9 shows the fundamental natural frequencies for different number of elements

and is compared to the results given by Elshafei and Alraiess (2013) [42], Robbins and

Reddy (1991) [41] and Saravanos and Heyliger (1995) [40].

Mode No. of

elements

Present

Model

(Hz)

Reference

(a)-(Hz)

Reference

(b)-(Hz)

Reference

(c)-(Hz)

1

10 579.32 470.7 538.4 567.1

20 577.66 470 537.9 544.2

30 577.38 469.9 537.8 544.1

Table 2.10: Fundamental natural frequency comparison

a. Elshafei and Alraiess [42]

b. Robbins and Reddy [41]

c. Saravanos and Heyliger [40]

38

CHAPTER 3: RESULTS OF THE FINITE ELEMENT MODEL

As mentioned in section 2.1.5, the bimorph cantilever beam is given a uniform pressure

load of 16Pa on the top piezoelectric beam surface. This load is selected to compare the

results of the bimorph cantilever solid beam with the two bimorph cantilever honeycomb

beams discussed in the above chapter. In this chapter, the comparison of the results of the

solid beam with the honeycomb beams with a surface pressure of 16Pa is given and the

theory behind calculating these results is explained.

3.1 Basic electrical circuit connection of the bimorph cantilever beam

The analysis model for the bimorph cantilever beam with solid substrate subjected to a

load of 16Pa is divided into two steps, the frequency step and the steady state dynamic

step (henceforth, referred as the dynamic step). The peak value of the electrical potential

is found at the natural frequency at which the beam vibrates. This potential is same along

the surface of the piezoelectric beam due to the equation constraint applied on the master

and slave node sets as explained in the previous chapter. Also, since the two piezoelectric

plates are attached to the solid brass substrate with the contacting surface being at zero

potential, the top surface of the top piezoelectric beam (pzt-tt) – ϕtt and the bottom

surface of the bottom piezoelectric beam (pzt-bb) – ϕbb will be at the same potential. The

output variable given by ABAQUS is the electrical potential. This electrical potential

variable is a complex function and the magnitude of the electrical potential is used for

calculations. The voltages across the two piezoelectric plates is given by,

39

tt bb

tt bb

tt bb

V V V

V – 0 0

V

S

S

S

(3-1)

Where VS is the open source voltage obtained from Abaqus results [12].

As stated earlier, the bimorph cantilever beam essentially symbolizes a capacitor with

brass being the substrate material sandwiched between the two piezoelectric plates. The

capacitance for this is calculated using the following formula:

3 02 T

p

p

LC K b

t

(3-2)

By definition of the basic property of the piezoelectric material, when subjected to a

mechanical load, an electrical potential is generated in the piezoelectric beams due to the

voltage drop across the electrical load. The open source resistance (RS) is a function of

the frequency at different mode intervals (ωi) and the capacitance (Cp) and is calculated

by using the following formula,

1S

i p

RC

(3-3)

where i=1,2…,m

The power harvested and the work done (energy) is a function of the load voltage and

load resistance as seen from the figure 3.1.

40

Figure 3.1: Basic circuit diagram of the bimorph cantilever beam

The load resistance (RL) is given by,

1L

n p

RC

(3-4)

where, n is the natural frequency of the beam. The load voltage is given by,

S

S

V V LL

L

R

R R

(3-5)

Using these calculated parameters, the power and the work done (energy) can be

calculated by the following formula,

2

L

L

VP

R

(3-6)

41

21

2p LW C V (3-7)

3.2 Results and discussion for the FEA Models

The bimorph cantilever solid beam analyzed and discussed above is compared with two

other models (using conventional regular honeycomb and auxetic honeycomb as the

substrate). In this section the results of the comparison models are discussed. For this

comparison, all three models have the same depth for the brass substrates (0.76mm) and

the piezoelectric plates (0.26mm). The load is selected to be 16Pa, as any surface load

higher than this would increase the normal stress of the piezoelectric material beyond

76MPa when regular honeycomb is used a substrate, which in this case is considered as

the failure stress for the piezoelectric material. Hence for an effective comparison, the

limiting stress on the piezoelectric beams is assumed to be 70MPa. The key comparison

results are summarized in the table 3.2 below.

42

Parameter Solid Substrate

Regular HC

Substrate

Auxetic HC

Substrate

Natural Frequency (Hz) 139.974 181.011 176.576

Source Voltage VS (V) 3.13 23.96 19.21

Load Voltage VL (V) 2.21 16.94 13.58

Capacitance (nF) 167.52 22.91 22.91

Core Mass (g) 4.3 0.686 0.918

Total Mass (g) 6.93 4.34 4.59

Load Resistance (KΩ) 6.791 38.41 39.36

Peak Power (mW) 0.72 7.47 4.68

Energy(μJ) 0.409 3.288 2.112

Max. Normal Stress,

S11(MPa)

7.76 69.15 55.67

Table 3.1: Comparison of the finite element analysis results (Load=16Pa)

The peak modal frequency under the first modal vibration mode is found to be 139.974

Hz for the solid beam substrate (henceforth referred as SB). The peak value of the

electrical potential (i.e. the source voltage) found at this natural frequency is 3.13V and

the load voltage is 2.21V. This potential and hence the voltage is the same along the

surface of the piezoelectric beam due to the equation constraint applied on the master and

slave node sets as explained earlier. The peak modal frequency for the regular

43

honeycomb substrate (henceforth referred as RB) and the auxetic honeycomb substrate

(henceforth referred as AB) is found as 181.011Hz and 176.576Hz, respectively. The

electrical potential and hence the source voltage is found to be 23.96V and 19.21V for the

RB and AB, respectively. The load voltage is 16.94V and 13.58V for the RB and AB,

respectively and is compared in the figure 3.3 below.

Figure 3.2: Relation between electrical potential and frequency (Load=16Pa)

0

5

10

15

20

25

30

100 120 140 160 180 200

Ep

ot

(V)

Frequency (Hz)

Solid Substrate

Regular Honeycomb Substrate

Auxetic Honeycomb Substrate

44

Figure 3.3: Relation between load voltage and frequency (Load=16Pa)

The capacitance is calculated using equation (3-2) and is found to be 167.52nF for SB

model and 22.91nF for both RB and AB models. The load resistance which is a function

of the capacitance is calculated from equation (3-3) and is found to be 6.791KΩ,

38.41KΩ and 39.36KΩ for the SB, RB and AB models respectively. By calculating the

resistance and the capacitance, the power and energy can be calculated from equation (3-

6) and (3-7).respectively. The peak power for the SB, RB and AB models are found to be

0.72mW, 7.47mW and 4.68mW respectively. The peak energy generated is 0.41μJ,

3.29μJ and 2.11μJ for the SB, RB and AB models respectively. The peak power and peak

energy generated for the three models is compared in figure 3.9 and 3.10 below.

0

2

4

6

8

10

12

14

16

18

100 120 140 160 180 200

Lo

ad

Vo

ltag

e (V

)

Frequency (Hz)

Solid Substrate

Regular Honeycomb Substrate

Auxetic Honeycomb Substrate

45

Figure 3.4: Relation between power and frequency (Load=16Pa)

Figure 3.5: Relation between energy and frequency (Load=16Pa)

0

1

2

3

4

5

6

7

8

100 120 140 160 180 200

Po

wer

(m

W)

Frequency (Hz)

Solid Substrate

Regular Honeycomb Substrate

Auxetic Honeycomb Substrate

0

0.5

1

1.5

2

2.5

3

3.5

100 120 140 160 180 200

En

ergy (μ

J)

Frequency (Hz)

Solid Substrate

Regular Honeycomb Substrate

Auxetic Honeycomb Substrate

46

The normal stress components in the x direction, S11 are analyzed and found to be

7.76MPa, 69.15MPa and 55.67MPa at the peak frequency for the SB, RB and the AB

models, respectively. The peak stress is located at the center node of the fixed end of the

beam (Fig 3.7 to Fig 3.9). The contour plot of these stresses is shown in the figure below.

The stress is found to within the limits of the ultimate tensile strength of the piezoelectric

beam (PZT-5H) which is 76MPa [12].

Figure 3.6: Relation between stress and frequency (Load=16Pa)

0

10

20

30

40

50

60

70

80

100 120 140 160 180 200

Str

ess,

S11 (

MP

a)

Frequency (Hz)

Solid Substrate

Regular Honeycomb Substrate

Auxetic Honeycomb Substrate

47

Figure 3.7: Contour plot of normal stress, S11 at natural frequency for Solid Substrate

Figure 3.8: Contour plot of normal stress, S11 at natural frequency for Regular Honeycomb Substrate

48

Figure 3.9: Contour plot of normal stress, S11 at natural frequency for Auxetic Honeycomb Substrate

Parameter

Regular HC/Solid

Substrate

Auxetic HC/Solid

Substrate

Source Voltage VS (V) 7.5 6

Load Voltage VL (V) 7.5 6.5

Stress (MPa) 9 7

Power (μJ) 10.5 6.5

Energy (mW) 8 5

Table 3.2: Summary of FEA models

From the above graphs, it can be seen that using the honeycomb beam substrates result in

higher power generation as compared to the use of solid beam substrates (by a factor of

almost 10). Also the load voltage generated by the honeycomb substrate is nearly 7.5

times more as compared to the solid substrates. The reason for this substantial increase in

49

the voltage generation and thus the power generation is due to the low mass of the

honeycomb structures (as seen from table 3.2) which allows the beam to vibrate at a

higher frequency and amplitude which eventually results in more voltage generation for a

given load.

50

CHAPTER 4: ENGINEERING OPTIMIZATION PROBLEM

The dimensions and the material properties of the piezoelectric beams used in the finite

element models explained in the previous chapters are selected based on the

specifications given by the manufacturer. The objective of using the bimorph cantilever

beams is to maximize the output voltage for a given pressure load. The input parameters

are the dimensions and material properties for the beams and the constraint, in this case,

is the ultimate tensile strength of the piezoelectric beam. However, the efficiency of these

models can be increased by optimizing the input parameters for the same loading

conditions and constraints, to give better desired output which is the voltage generated. In

this chapter, the engineering optimization problem set-up details are explained.

4.1 Optimization Problem

4.1.1 Objective Statement

The objective of the optimization problem is to maximize the energy harvested (i.e.

voltage output) for the bimorph solid and honeycomb beam models. The multi-physics

problem selected is subjected to two input parameter limiting conditions – the depth of

the piezoelectric beam (depthpzt) and the piezoelectric strain constant in x direction (d31).

The constraint is the Ultimate Tensile strength of the piezoelectric beam. The

optimization tool used for this thesis is VisualDOC 7.1.

51

4.1.2 Input Parameters

The input parameters for the optimization problem are listed in table 4.1. In order to

define the design space of the problem, the upper and lower limits of each parameter is

listed. To verify that the convergence of the optimization model is not constrained due to

the parameter limits, the solid brass substrate model is optimized with a wider range limit

(table 4.2) on the parameters and the optimized output variables are calculated.

Variables Lower Limit Upper Limit

Depthpzt (mm) 0.13 0.39

d31 (m/V) -4.8E-10 -1.6E-10

Table 4.1: Limits for the optimization input variables

Variables Lower Limit Upper Limit

Depthpzt (mm) 0.065 0.459

d31 (m/V) -6E-10 -1E-10

Table 4.2: Limits for the optimization input variables for convergence verification

4.1.3 Output Parameters

The output variable for the optimization problem is the voltage generated by the beam

under the given loading conditions. This output variable has been chosen to obtain a

single representative value of the energy harvesting performance of the sandwich plate

for the chosen frequency range since the voltage varies according to the frequency, the

52

time and the position. The value obtained is the maximum voltage generated at the

resonant frequency.

4.1.4 Derived Variables

The primary output variable from the optimization process is the source voltage (Epot)

generated at the surface of the piezoelectric plates for given range of frequencies.

Other variables such as resistance, load voltage, power and energy are calculated as

explained in section 3.1.

4.1.5 Constraints

Any design must resist the dynamic load and be reliable. It is constrained such that the

maximum stress is less than ultimate tensile strength. So for these reasons we choose of

the ultimate tensile strength as an admissible stress as the problem has linear elastic

properties.

7 27.6 [ / ]a E N m

Mathematically, the objective statement can be written as,

Maximize: Source Voltage, Vs (tp, d31)

Subject to: 0.13 (mm) ≤ tp ≤ 0.39 (mm);

-4.8E-10 (m/V) ≤ d31 ≤ -1.6E-10 (m/V)

7 27.6 [ / ]a E N m

53

4.2 Description of the Optimization Work-flow

An automated design workflow has been set-up to solve the optimization problem by

integrating ABAQUS 6.10, the commercial finite element package, and VisualDOC 7.1,

the commercial optimization software package. Figure 4.1 shows a brief overview of the

workflow using the ABAQUS model and the actual workflow set-up in VisualDOC is

shown in figure 4.2.

4.2.1 Optimization Algorithm

Figure 4.1: Optimization Algorithm

54

4.2.2 VisualDOC Worflow

Figure 4.2: Optimization Workflow

4.2.3 Input Python Scripts

The VisualDOC workflow shown above is a controlled loop algorithm which starts with

the input Python language script, which is a file containing the different steps to generate

the 3D model for the bimorph piezoelectric beam model. The list of commands to write

the code is available in the “Scripting Reference Manual” of ABAQUS documentation

[36]. This script takes into account various input parameters like the dimensions of the

beams, material properties, the constraint equations, etc. and solves the model. A detailed

list of the files for all three models as well as the reference solid substrate model is given

in table 4.2 and a sample file is attached in the appendix section (A).

55

When a model is created in ABAQUS, it creates an input.jnl file that stores all the Python

commands in the running directory of ABAQUS [36]. The extension of the script is

changed to input.py to view the python script in Notepad++. It should be noted that the

input.py file should be complete, i.e., from the start of creation of the models till the job

is executed the file should not be interrupted because VisualDOC does not process such

files.

The input.py scripts generated from solving the ABAQUS models are uploaded in the

Input_Python parameter of VisualDOC where it is saved as a template. With this input

file, the input variables (the depth and the d31 of the PZT) are defined.

4.2.4 Output Python Scripts

Similar to the input python script, an output script is also needed to read the calculations

performed during the input stage of the ABAQUS model. When the ABAQUS model is

created and executed, it stores all the information in the input.odb file parallel to writing

the commands in the input python script (i.e., the input.py file explained above).

However, an additional output.py file is needed to read the results obtained from solving

the ABAQUS model. For creating this output.py file the following procedure is used.

Once the ABAQUS job ends, the ABAQUS GUI file is saved and closed. At this point

the input.jnl file created is renamed as input.py. Then a new ABAQUS GUI file is opened

and instead of creating a new model, the existing CAE database is opened and the file

type extension is selected to obd. This allows opening the input.odb file from the running

directory which has the solved ABAQUS model. After opening this file, the results are

56

viewed and stored in a report file (result.rpt) and the ABAQUS GUI is saved and closed.

The running directory at this stage creates a file called abaqus.rpy which is renamed to

output.py, which can again be edited in Notepad++.

Similar to the input scripts, the output python scripts generated from solving the

ABAQUS models are uploaded in the Output_Python parameter of VisualDOC where it

is saved as a template. This file, however, does not need any variables to be defined.

4.2.5 Challenges in integrating VisualDOC 7.1 and ABAQUS 6.10

The important points to note when integrating the two softwares are:

The scripts must generate the desired ABAQUS models, outputs and reports

without errors and interruptions.

The directory path of the outputs and reports should be removed from the output

scripts.

4.2.5.1 Location of the output files generated by ABAQUS

By default ABAQUS generates the output files i.e., the “.odb” and “.rpt” files in the

“C:\Temp” folder of the machine. However for VisualDOC 7.1 to read and process these

files they must be saved to its running directory which is different than “C:\Temp”.

Hence the python scripts have to be altered to accommodate these changes. Also, the

directory path of the outputs and reports should be removed from the output scripts.

57

4.2.5.2 Compatibility of the versions of the softwares

VisualDOC 7.1 is compatible with ABAQUS 6.10 and lower versions. In this thesis,

VisualDOC 7.1 is used with ABAQUS 6.10.

Note: The file names mentioned in section 4.1.3 and 4.1.4 are for explanation purposes

only. The detailed file names of the three bimorph piezoelectric models are given in table

4.2 below.

Parameter Solid Brass substrate model

Input_Python solid-parallel-16.py

Run_Abaqus_In run-solid16.bat

Output_Python abaqus-solid16.py

Run_Abaqus_Out pp-solid16.bat

`Parameter Reg HC Brass substrate model

Input_Python reghc-parallel-optimiz.py

Run_Abaqus_In runabaqus-reghc-parallel.bat

Output_Python abaqus-reghc-parallel.py

Run_Abaqus_Out postprocessing-reghc-parallel.bat

Parameter Aux HC Brass substrate model

Input_Python auxhc-parallel-optim.py

Run_Abaqus_In runabaqus-auxhc-parallel.bat

Output_Python abaqus-auxhc-parallel.py

Run_Abaqus_Out postprocessing-auxhc-parallel.bat

Table 4.3: VisualDOC input file names

58

4.2.6 Executable parameters

The Run_Abaqus_In and the Run_Abaqus_Out are executable components used to run

the analysis in the optimization model. The Run_Abaqus_In reads the input python script

from the Input_Python parameter does the computation and creates the results which are

stored in the Out_Python parameter. This is then used as input for another executable

parameter Run_Abaqus_Out to read and execute the output python script and store the

results in the Report parameter. Since the executable component is designed to run an

external analysis program, no data editor is provided for the executable component. The

executable files are capable of reading and computing the uploaded python scripts

provided the name of the interpreter is provided as the name of the analysis program and

the script file as an argument.

4.2.7 Report

The report file (report.rpt) contains the information of the analysis of the model.

VisualDOC saves the report as a template and the objectives, constraints or variables

needed are extracted. In this case the parameters extracted are the maximum stress and

maximum electrical potential obtained from the analysis.

4.3 Optimization

The optimization component supports two types of algorithms, the Gradient based

optimization and the Non-Gradient based optimization. For this thesis, the Non Gradient

optimization component is selected.

59

4.3.1 Non-Gradient Based Optimization

The non-gradient based optimization is used as the objective function is discontinuous

with respect to the input parameters. Such algorithms are primarily based on heuristic

search principles and are non-deterministic in nature.

4.3.2 Non-dominated Sorting Genetic Algorithm II

The NSGA-II algorithm is used to perform non-gradient based optimization. This

algorithm works for continuous, discrete, and integer variable problems. It performs

global optimization by enforcing the constraint limits and is usually very robust.

4.3.3 Starting and Stopping criteria

The starting criterion used is random which allows the user to create a random set of

initial points. The initial population size of 5 is used for this problem. The Stopping

Criteria is used to determine when to terminate the optimization process. For this problem

a maximum of 20 iterations is used. The population size and the number of iterations are

selected after running a few iterations (not covered in this thesis) with different

combinations of these values. It was found that these numbers are sufficient for

convergence and can be generalized for all the models included in the study. The

optimization will be forced to terminate if the maximum number of iterations is reached

and convergence is assumed if any of the specified convergence criteria are met.

For every loop of the algorithm, the input and output ABAQUS python scripts are

executed five times per iterations with a maximum number of twenty iterations. In other

60

words, a design of experiments with five designs of random combinations of the input

parameters from the given limit range is set up per iteration. At the end of each iteration,

the NSGA-II algorithm generates a best solution set which is the most significant set of

input and output parameters from the DOE set-up for a given iteration. The best solution

set generated at the last iteration is the optimum value as there in no further change in the

parameter when the iterations are increased.

4.3.4 GA Parameter

• Probability of Crossover

This sets the probability of performing crossover when generating a new offspring.

Typically this should be 1.0 or a value close to 1.0. In NSGA-II, the simulated binary

cross over is used to generate new offsprings. In this thesis the probability of crossover is

selected as 0.8.

• DisIndex for Crossover

Distribution index is a parameter that defines the shape of the probability distribution for

the crossover operator. For small values, points far away from the parents are likely to be

generated, whereas for large values, points closer to the parents are likely to be generated.

The distribution index for crossover selected in this thesis is 10 which is the default

value.

61

• Probability of Mutation

Mutation is used to introduce additional randomness into the design to avoid premature

convergence. The probability of mutation should be as typically in the range of 0.1 to 0.2.

In this thesis, the probability of mutation is 0.1, which is the default value in VisualDoc

7.1.

• DisIndex for Mutation

Distribution index is a parameter that defines the shape of the probability distribution for

mutation operator. For small values, points far away from the original point are likely to

be generated, whereas for large values, points closer to the original point are likely to be

generated. The distribution index for mutation selected in this thesis is 15 which is the

default value.

4.4 Data Linker

Data linking is essentially joining all the building blocks of the VisualDOC flowchart in

the workflow by linking the data and the parameters of different parameters together. The

links are the basic means of information transfer between the pair of components. The

data flow for the optimization component is shown in the figure below. By linking the

data in the data linker, an optimization link table is generated which allows to define the

problem domain. In the link table, the input, output and the constraints are set as required.

62

Figure 4.3: Data linking in VisualDOC [37]

4.5 Simulation Monitors

The simulation monitors are used to simulate the progress of the optimization in real

time. For this study, four simulation monitors are set-up: Depth and d31 vs the number of

iterations as the monitors for the input variables and E-pot and Stress vs the number of

iterations as the monitors for the output variables. The x-axis is defined as the number of

iterations which gives the best solution set for every population iterated. This is done to

avoid the accumulation of data points generated from all the populations iterated and

gives only the ‘best’ results for every population.

63

CHAPTER 5: ANALYSIS OF THE OPTIMIZATION MODEL

RESULTS

5.1 Results of the Optimization model

The NSGA-II algorithm in the optimization model generates a set of best solution set at

every iteration. For initial iterations, the algorithm executes the ABAQUS model for the

given population size and generates random values for the input parameters within the

given limits. With these five set of values as the input parameters, the ABAQUS model is

executed and the output values along with the constraints is found. The best solution set

values for the given iteration is the set of input values which gives the maximum output

within the constraint limit. The same procedure is repeated and the best solution sets are

reported for every iteration. It is observed that after a few iterations, the optimization

converges and stabilizes as the best solution set remains almost constant. If the maximum

output calculated for a given iteration is less than that found in the preceding iteration,

then the solution set with higher value is reported.

The graphs below show the history of the optimization. The first population of the first

iteration starts with the initially entered input values. At this point, the algorithm iterates

within the limits of the input values to solve the ABAQUS model and finds the maximum

which is reported as the first best solution set. The range of variation of the input

variables to find the maximum reduces with every iteration as the algorithm gets a fair

idea of where the optimum can be located.

64

5.1.1 Optimization results: Solid substrate, Limits as given in table 4.1

From the table below it is observed that the solution converges after the seventh iteration.

After the seventh iteration, the output values are consistent and do not tend to change.

The same is the case with the constraint values and the input parameters.

Input-1 Input-2 Output Best Constraint Worst Constraint

d31(m/V) Depth (mm) Epot(V) Stress(MPa) Stress(MPa)

-4.06497E-10 0.325 3.945 7.993 0.895

-4.3959E-10 0.333 4.182 8.149 0.893

-4.46917E-10 0.332 4.257 8.204 0.892

-4.56142E-10 0.336 4.330 8.232 0.892

-4.68447E-10 0.362 4.402 8.233 0.892

-4.78826E-10 0.372 4.470 8.263 0.891

-4.79707E-10 0.388 4.472 8.208 0.892

-4.78826E-10 0.390 4.472 8.208 0.892

-4.7974E-10 0.388 4.472 8.208 0.892

-4.79857E-10 0.390 4.472 8.208 0.892

-4.79333E-10 0.389 4.472 8.208 0.892

-4.75802E-10 0.386 4.472 8.208 0.892

-4.79726E-10 0.390 4.472 8.208 0.892

-4.7666E-10 0.386 4.472 8.208 0.892

-4.7666E-10 0.386 4.472 8.208 0.892

-4.79894E-10 0.387 4.472 8.208 0.892

-4.79894E-10 0.387 4.472 8.208 0.892

-4.79977E-10 0.389 4.472 8.208 0.892

-4.79924E-10 0.388 4.472 8.208 0.892

-4.79723E-10 0.387 4.472 8.208 0.892

Table 5.1: Best solution set (Solid substrate, parameter limits in table 4.1)

65

Figure 5.1: Variable histogram for d31 (Solid substrate, parameter limits in table 4.1)

Figure 5.2: Variable histogram for depth (Solid substrate, parameter limits in table 4.1)

-4.90E-10

-4.80E-10

-4.70E-10

-4.60E-10

-4.50E-10

-4.40E-10

-4.30E-10

-4.20E-10

-4.10E-10

-4.00E-10

0 5 10 15 20d

31

(m

/V)

Iterations

d31

0.00032

0.00033

0.00034

0.00035

0.00036

0.00037

0.00038

0.00039

0 5 10 15 20

Dep

th (

m)

Iterations

Depth

66

Figure 5.3: Variable histogram for E-pot (Solid substrate, parameter limits in table 4.1)

Figure 5.4: Variable histogram for stress (Solid substrate, parameter limits in table 4.1)

3.9

4

4.1

4.2

4.3

4.4

4.5

0 5 10 15 20

Ep

ot(

V)

Iterations

Epot

7.9

7.95

8

8.05

8.1

8.15

8.2

8.25

8.3

0 5 10 15 20

Str

ess(

MP

a)

Iterations

Stress

67

5.1.2 Optimization results : Solid substrate, Limits as given in table 4.2

From the table below it is observed that the solution converges after the eighth iteration.

After the eight iteration, the output values are consistent and do not tend to change. The

same is the case with the constraint values and the input parameters.

Input-1 Input-2 Output Best Constraint Worst Constraint

d31(m/V) Depth (mm) Epot(V) Stress(MPa) Stress(MPa)

-4.15E-10 0.309 3.862 8.213 0.8882724

-5.37E-10 0.319 3.984 8.322 0.8844308

-5.48E-10 0.317 4.136 8.426 0.8835478

-5.65E-10 0.342 4.297 8.521 0.8813542

-5.82E-10 0.356 4.465 8.561 0.8824574

-5.98E-10 0.369 4.475 8.557 0.8810338

-5.75E-10 0.378 4.482 8.543 0.8832701

-6.00E-10 0.388 4.485 8.547 0.8818482

-6.00E-10 0.387 4.485 8.547 0.8818482

-6.00E-10 0.387 4.485 8.547 0.8818482

-6.00E-10 0.386 4.485 8.547 0.8818482

-6.00E-10 0.388 4.485 8.547 0.8818482

-6.00E-10 0.386 4.485 8.547 0.8818482

-5.86E-10 0.390 4.485 8.547 0.8818482

-5.90E-10 0.389 4.485 8.547 0.8818482

-6.00E-10 0.389 4.485 8.547 0.8818482

-6.00E-10 0.389 4.485 8.547 0.8818482

-6.00E-10 0.390 4.485 8.547 0.8818482

-6.00E-10 0.389 4.485 8.547 0.8818482

Table 5.2: Best solution set (Solid substrate, parameter limits in table 4.2 )

68

Figure 5.5: Variable histogram for d31 (Solid substrate parameter limits in table 4.2)

Figure 5.6: Variable histogram for depth (Solid substrate, parameter limits in table 4.2)

-6.50E-10

-6.00E-10

-5.50E-10

-5.00E-10

-4.50E-10

-4.00E-10

0 5 10 15 20d

31

(m/V

)

Iterations

d31

0.290

0.310

0.330

0.350

0.370

0.390

0 5 10 15 20

dep

th (

mm

)

Iterations

depth

69

Figure 5.7: Variable histogram for E-pot (Solid substrate, parameter limits in table 4.2)

Figure 5.8: Variable histogram for stress (Solid substrate, parameter limits in table 4.2)

3.75

3.85

3.95

4.05

4.15

4.25

4.35

4.45

4.55

0 5 10 15 20

Ep

ot

(V)

Iterations

Epot

8.200

8.250

8.300

8.350

8.400

8.450

8.500

8.550

8.600

0 5 10 15 20

Str

ess

(MP

a)

Iterations

Stress

70

5.1.3 Optimization results: Regular honeycomb substrate

From the table below it is observed that the solution converges after the thirteenth

iteration. After this iteration, the output values are consistent and do not tend to change.

The same is the case with the constraint values and the input parameters.

Input-1 Input-2 Output Best Constraint Worst Constraint

d31(m/V) Depth (mm) Epot(V) Stress(MPa) Stress(MPa)

-3.6696E-10 0.298 28.381 72.552 0.045

-4.2136E-10 0.305 31.910 75.109 0.012

-4.2136E-10 0.323 32.307 75.593 0.005

-4.2946E-10 0.317 32.736 75.935 0.001

-4.2946E-10 0.317 32.736 75.935 0.001

-4.2946E-10 0.317 32.736 75.935 0.001

-4.2946E-10 0.317 32.736 75.935 0.001

-4.2946E-10 0.317 32.736 75.935 0.001

-4.3804E-10 0.311 32.762 75.820 0.002

-4.3804E-10 0.311 32.762 75.820 0.002

-4.3804E-10 0.311 32.762 75.820 0.002

-4.3804E-10 0.311 32.762 75.820 0.002

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

-4.3602E-10 0.315 33.070 76.215 0.003

Table 5.3: Best solution set (Reg Honeycomb substrate)

71

Figure 5.9: Variable histogram for d31 (Reg Honeycomb substrate)

Figure 5.10: Variable histogram for depth (Reg Honeycomb substrate)

-4.50E-10

-4.30E-10

-4.10E-10

-3.90E-10

-3.70E-10

-3.50E-10

0 5 10 15 20d

31 (

m/V

)

Iterations

d31

0.00029

0.000295

0.0003

0.000305

0.00031

0.000315

0.00032

0.000325

0.00033

0 5 10 15 20

Dep

th (

m)

Iterations

Depth

72

Figure 5.11: Variable histogram for electrical potential (Reg Honeycomb substrate)

Figure 5.12: Variable histogram for stress (Reg Honeycomb substrate)

28

29

30

31

32

33

34

0 5 10 15 20

Ep

ot

(V)

Iterations

Epot

72

72.5

73

73.5

74

74.5

75

75.5

76

76.5

0 5 10 15 20

Str

ess

(MP

a)

Iterations

Stress

73

5.4 Optimization results: Auxetic honeycomb substrate

From the table below it is observed that the solution converges after the eighteenth

iteration. After this iteration, the output values are consistent and do not tend to change.

The same is the case with the constraint values and the input parameters.

Input-1 Input-2 Output Best Constraint Worst Constraint

d31(m/V) Depth (mm) Epot(V) Stress(MPa) Stress(MPa)

-3.382E-10 0.237 19.622 55.582 0.269

-3.3554E-10 0.238 19.622 55.582 0.269

-3.3554E-10 0.238 19.622 55.582 0.269

-3.3554E-10 0.262 20.238 56.143 0.261

-3.3647E-10 0.276 20.776 56.533 0.256

-3.5582E-10 0.277 21.787 57.040 0.249

-3.5582E-10 0.277 21.787 57.040 0.249

-3.7677E-10 0.271 22.462 57.433 0.244

-3.857E-10 0.276 23.203 57.893 0.238

-4.5432E-10 0.266 25.325 59.766 0.214

-4.571E-10 0.265 25.674 60.144 0.209

-4.571E-10 0.265 25.674 60.144 0.209

-4.6927E-10 0.271 26.007 60.532 0.204

-4.6027E-10 0.313 26.818 60.439 0.205

-4.4805E-10 0.317 26.685 60.064 0.210

-4.7701E-10 0.365 28.482 60.697 0.201

-4.7755E-10 0.357 28.482 60.697 0.201

-4.7829E-10 0.362 28.482 60.697 0.201

-4.7997E-10 0.371 28.625 60.697 0.204

-4.7994E-10 0.388 28.861 60.697 0.210

Table 5.4: Best solution set (Aux Honeycomb substrate)

74

Figure 5.13: Variable histogram for d31 (Aux Honeycomb substrate)

Figure 5.14: Variable histogram for depth (Aux Honeycomb substrate)

-5.00E-10

-4.80E-10

-4.60E-10

-4.40E-10

-4.20E-10

-4.00E-10

-3.80E-10

-3.60E-10

-3.40E-10

-3.20E-10

0 5 10 15 20d

31

(m

/V)

Iterations

d31

0.000235

0.000255

0.000275

0.000295

0.000315

0.000335

0.000355

0.000375

0.000395

0 5 10 15 20

Dep

th (

m)

Iterations

Depth

75

Figure 5.15: Variable histogram for electrical potential (Aux Honeycomb substrate)

Figure 5.16: Variable histogram for stress (Aux Honeycomb substrate)

19.6

20.6

21.6

22.6

23.6

24.6

25.6

26.6

27.6

28.6

0 5 10 15 20

Ep

ot

(V)

Iterations

Epot

55.5

56.5

57.5

58.5

59.5

60.5

0 5 10 15 20

Str

ess

(MP

a)

Iterations

Stress

76

Note: The maximum stress value for the solid substrate models is less than the constraint

stress because of the limits given for the input parameters. These limits are selected to

maintain consistency across all the four models analyzed such that the optimized stress

does not exceed the constraint limit for any of these models. Also from the tables above,

it is observed that the optimized value of d31 tends towards the upper limit value.

5.2 Verification of the optimization results & comparison of the ABAQUS models

The ABAQUS models are executed with the optimized values obtained in section 5.1 as

the input parameters to verify the output results of VisualDOC. The results are shown in

table 5.5. It is observed that for the same input parameters, there is a variation in the

output parameters. The reason for this variation is that VisualDOC optimizes only two

parameters of the ABAQUS model. However, the output of the ABAQUS depends on all

the material and geometric parameters of both the substrate and the piezoelectric beams.

77

Epot (Vs) Stress (MPa)

Solid Substrate: Load =16Mpa

VisualDOC 4.470 8.210

ABAQUS 4.451 9.843

% change 0.420 19.890

Reg Honeycomb Substrate:

Load =16Mpa

VisualDOC 33.700 76.220

ABAQUS 29.174 68.805

% change 13.429 9.728

Aux Honeycomb Substrate:

Load =16Mpa

VisualDOC 28.860 60.690

ABAQUS 28.284 57.591

% change 1.998 5.106

Table 5.5: Verification of the optimization results

78

Solid Substrate: Load = 16MPa

Parameters Before After %

change

Input Parameters

Depth of PZT (mm) - tp 0.260 0.387 48.846

Width of PZT (m) - b 0.010 0.010 0

Length of PZT (m) - L 0.067 0.067 0

Piezoelectric Relative Dielectric Constant -

K3t 3800 3800 0

Permittivity of Free space (F/m) 8.85E-12 8.85E-12 0

d31 (m/V) -3.20E-10 -4.80E-10 50

Load (Pa) 16 16 0

UTS of PZT(MPa) 76 76 0

Core Mass (g) 4.3 4.3 0

Total Mass (g) 6.93 8.21 18.5

Output Parameters

Resonant Frequency (Hz) 139.974 144.956 3.559

Load Voltage (V) 2.21 3.14 42.08

Max. Normal Stress (MPa) 7.763 9.843 26.789

Capacitance (nF) 167.515 112.543 32.817

Resistance (KΩ) 6.791 9.761 43.730

Power (mW) 0.72 1.01 40.83

Energy (μJ) 0.41 0.56 36.59

Table 5.6: Comparison of FEA results before and after optimization-I

79

Reg Honeycomb Substrate:

Load = 16MPa

Aux Honeycomb Substrate:

Load = 16MPa

Parameters Before After % change Before After %

change

Input Parameters

Depth of

PZT (mm) -

tp

0.260 0.315 21.154 0.260 0.388 49.231

Width of

PZT (m) - b 0.010 0.010 0.000 0.010 0.010 0.000

Length of

PZT (m) - L 0.067 0.067 0.000 0.067 0.067 0.000

Piezoelectric

Relative

Dielectric

Constant -

K3t

3800 3800 0 3800 3800 0

Permittivity

of Free

space (F/m)

8.85E-12 8.85E-

12 0 8.85E-12 8.85E-12 0

d31 (m/V) -3.20E-

10

-4.36E-

10 36.250

-3.20E-

10

-4.80E-

10 50.000

Load (Pa) 16.000 16.000 0.000 16.000 16.000 0.000

UTS of

PZT(MPa) 76.000 76.000 0.000 76.000 76.000 0.000

Core Mass

(g) 0.686 0.686 0 0.918 0.918 0

Total Mass

(g) 4.34 5.11 17.7 4.59 6.4 39.4

Output Parameters

Resonant

Frequency

(Hz)

181.011 189.721 4.812 176.576 194.670 10.247

Load

Voltage (V) 16.94 20.63 21.78 13.58 20.00 47.28

Max.

Normal

Stress

(MPa)

69.153 68.805 0.503 55.678 57.591 3.436

Capacitance

(nF) 22.906 15.349 32.990 22.906 18.907 17.460

80

Resistance

(KΩ) 38.405 44.393 15.592 39.369 53.290 35.360

Power

(mW) 7.47 9.58 28.25 4.69 9.25 97.23

Energy (μJ) 3.29 4.02 22.19 2.11 3.78 79.15

Table 5.7: Comparison of FEA results before and after optimization-II

From the tables above, it is observed that the optimized input parameters are nearly 50%

more than the initial input values. The only exception seen is for regular honeycomb

substrate, where the percentage increase for the dimension and the material properties of

the piezoelectric plates after optimization is 21% and 36%. The reason for the lower

difference in the input parameters for the regular honeycomb is because the stress

induced before optimization is close to the limiting value. Due to this, when the regular

honeycomb substrate model is optimized, the constraint limit is reached within a shorter

increase in the input parameters as compared to the other models. Also it can be observed

that the energy harvested for the regular honeycomb substrate model is lower (~22%)

compared to the other models.

The voltage and the power gain after optimization is almost twice for the auxetic

substrate honeycomb models. This increase is substantial and it justifies the optimization

model for the bimorph cantilever beams for the different substrates. The comparison of

different output parameters for all the models is shown in the figures below.

81

Figure 5.17: Relation between electrical potential and frequency (Before and after optimization)

Source Voltage (V), Vs

Before

Optimization After

Optimization % Change

Solid homogenous substrate

3.12 4.45 42.63

Regular honeycomb substrate

23.96 29.17 21.74

Auxetic honeycomb substrate

19.2 28.3 47.40

Table 5.8: Comparison of optimization results for Source Voltage

0

5

10

15

20

25

30

35

100 120 140 160 180 200

Ep

ot

(V)

Frequency (Hz)

Solid-Before

Solid-After

Regular Honeycomb- Before

Regular Honeycomb-After

Auxetic Honeycomb-Before

Auxetic Honeycomb-After

82

Figure 5.18: Relation between voltage and frequency (Before and after optimization)

Load Voltage (V),VL

Before

Optimization After

Optimization % Change

Solid homogenous substrate

2.21 3.14 42.08

Regular honeycomb substrate

16.94 20.63 21.78

Auxetic honeycomb substrate

13.58 20 47.28

Table 5.9: Comparison of optimization results for Load Voltage

0

5

10

15

20

25

100 120 140 160 180 200

Lo

ad

Vo

ltag

e (V

)

Frequency (Hz)

Solid-Before Solid-After

Regular Honeycomb- Before Regular Honeycomb-After

Auxetic Honeycomb-Before Auxetic Honeycomb-After

83

Figure 5.19: Relation between energy and frequency (Before and after optimization)

Energy (μJ)

Before

Optimization After

Optimization % Change

Solid homogenous substrate

0.41 0.56 36.59

Regular honeycomb substrate

3.29 4.02 22.19

Auxetic honeycomb substrate

2.11 3.78 79.15

Table 5.10: Comparison of optimization results for Energy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 120 140 160 180 200

En

erg

y (μ

J)

Frequency (Hz)

Solid-Before Solid-After

Regular Honeycomb- Before Regular Honeycomb-After

Auxetic Honeycomb-Before Auxetic Honeycomb-After

84

Figure 5.20: Relation between power and frequency (Before and after optimization)

Power (mW)

Before

Optimization After

Optimization % Change

Solid homogenous substrate

0.72 1.01 40.83

Regular honeycomb substrate

7.47E+00 9.58 28.25

Auxetic honeycomb substrate

4.69 9.25 97.23

Table 5.11: Comparison of optimization results for Power

0

2

4

6

8

10

12

100 120 140 160 180 200

Po

wer

(m

W)

Frequency (Hz)

Solid-Before Solid-After

Regular Honeycomb- Before Regular Honeycomb-After

Auxetic Honeycomb-Before Auxetic Honeycomb-After

85

Figure 5.21: Relation between stress and frequency (Before and after optimization)

Stress (Mpa)

Before

Optimization After

Optimization % Change

Solid homogenous substrate

7.763 9.843 26.789

Regular honeycomb substrate

69.153 6.88E+01 0.503

Auxetic honeycomb substrate

55.678 57.591 3.436

Table 5.12: Comparison of optimization results for stress

0

10

20

30

40

50

60

70

80

100 120 140 160 180 200

Str

ess,

S1

1 (

MP

a)

Frequency (Hz)

Solid-Before Solid-After

Regular Honeycomb- Before Regular Honeycomb-After

Auxetic Honeycomb-Before Auxetic Honeycomb-After

86

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS FOR

FUTURE WORK

In this thesis, the design and finite element analysis of the bimorph cantilever beam is

studied. The substrate used in the bimorph cantilever beam for this study is brass and the

piezoelectric plate material used is Lead Zirconate Titanate (PZT-5H). Three different

geometries of brass substrates were analyzed and compared in this study- solid

homogenous, regular hexagonal honeycomb and an auxetic hexagonal honeycomb. Also

an optimization study is conducted by linking the finite element software, ABAQUS to

the commercial optimization software, VisualDOC.

It is found that using the honeycomb material as a substrate is more efficient for

energy harvesting compared to a solid homogenous beam. The energy harvested

using the honeycomb brass substrate is nearly 8 times more than using the solid

homogenous plate with the increase in the load voltage generated as high as 8

times for the same applied load and boundary conditions. The main factor

contributing to this is the lower mass of the honeycomb beams. It is observed that

the mass of the regular and the auxetic honeycomb is lower than that of the solid

beam substrate by a factor of 6.3 and 4.5 respectively. As the mass reduce, the

cantilever beam vibrates with higher amplitude. As the frequency of vibration

increases, the resistance reduces and power, which is inversely proportional to the

resistance, increases.

87

The optimization variables selected were the depth and the piezoelectric strain

constant in the x direction, d31. These parameters were found to be the critical

factors affecting the energy harvesting performance of bimorph cantilever beam

in a sensitive analysis study done in a previous research [12]. Hence these

parameters were optimized with the ultimate tensile strength of the piezoelectric

plate as the constraining limit. It is observed that by the input and output

parameters increase substantially after optimization for all three types of

substrates. This proves that optimization helps to increase the efficiency of

harvesting energy from a vibrating bimorph cantilever beam in terms of utilizing

the dimensional and material parameters within the constraint limits

The results of optimization were verified by analyzing all three types of substrates

with the input parameters obtained from the optimization results. The output

parameters of the analysis results vary from the results of optimization software.

The reason for this variation is that VisualDOC optimizes only two parameters of

the ABAQUS model. However, the output of the ABAQUS depends on all the

material and geometric parameters of both the substrate and the piezoelectric

beams.

VisualDOC is found to be an effective tool in optimizing the parameters for the

bimorph cantilever beam problem as the convergence is obtained after a few

iterations for the given population size. The best estimates of the required output

parameters are plotted to visualize the relationship between the parameters and

the number of iterations. The maximum stress value for the solid substrate models

88

is less than the constraint stress because of the limits given for the input

parameters. These limits are selected to maintain consistency across all the four

models analyzed such that the optimized stress does not exceed the constraint

limit for any of these models.

Recommendations for Future Work

The thesis can be extended to constructing a finite element model of the bimorph

beam by replacing the solid brass substrate with honeycomb geometry (regular

and auxetic) with in-plane and out–of-plane configuration, with wall thickness of

the substrate as an additional design variable and comparing the optimization

results with the solid brass substrate configuration.

This work is limited to the use of brass as the substrate material with three

different types of geometries. Research can be extending the use of different

materials as the substrate and also different types of honeycomb geometries such

as square honeycombs, triangular honeycombs, chiral honeycombs etc.

Research can also be extended by varying the electrical configuration of the

bimorph cantilever beam assembly. Research has already been done by

assembling the beam plates in parallel and series configuration for a solid beam

substrate. This work can be extended to the use of honeycomb substrates and a

comparison study with the in-plane and out-of-plane loading conditions can be

done to identify the optimal combination that can harvest the maximum energy.

89

REFERENCES

1. Choi, W.J., Jeon, Y., Jeong, J.-H., Sood, R., and Kim, S.G., 2006, “Energy harvesting

MEMS device based on thin film piezoelectric cantilevers”, Journal of Electro-

ceramics, 17:543-548.

2. Erturk, A. and Inman, D.J., 2008, “A Distributed Parameter Electromechanical Model

for Cantilevered Piezoelectric Energy Harvesters”, Transactions of the ASME:

Journal of Vibration and Acoustics, 130: 041002.

3. Wang, D., 2009, “Impact behavior and energy absorption of paper honeycomb

sandwich panels”, International Journal of Impact Engineering, 36:1, pp. 110–114.

4. Erturk, A. and Inman, D.J., 2009, “An experimentally validated bimorph cantilever

model for piezoelectric energy harvesting from base excitations”, Smart Materials

and Structures, 18, 025009.

5. Kim, S., Clark, W.W., and Wang, Q.M., 2005, “Piezoelectric Energy Harvesting with

a Clamped Circular Plate: Analysis”, Journal of Intelligent Material Systems and

Structures, 16:847-854.

6. Liao, Y. and Sodano, H.A., 2008, “Model of a single mode energy harvester and

properties for optimal power generation”, Smart Materials Structures, 17:065026.

7. Roundy, S. and Wright, P.K., 2004, “A Piezoelectric Vibration Based Generator for

Wireless Electronics”, Smart Materials and Structures, 13:1131-1142.

8. Mansour, M.O., Arafa, M.H., and Megahed, S.M., 2010, “Design of vibration based

energy harvesters with adjustable natural frequency”, International Design

engineering technical conferences & Computers and information in engineering

conference, ASME 2010-28429.

9. Shu, Y.C. and Lien, J., 2006, “Efficiency of energy conversion for a piezoelectric

power harvesting system”, Journal of Micromechanics and Micro engineering,

16:2429–2438.

10. Ertuk, A., Inman, D.J., 2011, “Piezoelectric Energy Harvesting”, John Wiley & Sons,

Sussex, U.K.

11. Sodano, H.A., Park, G. and Inman, D.J., 2004, “Estimation of Electric Charge Output

for Piezoelectric Energy Harvesting”, Strain, 40:49-58.

90

12. Chandrasekharan, N., Jaehyung, Ju., Thompson, L., 2013, “Effect of Geometrical and

Material Properties on Electrical Power Harvested from a Bimorph Piezoelectric

Cantilever beam”, Multidiscipline Modeling in Material and Structures.

13. Galgalikar, R.R., 2012, “Design Automation and Optimization of honeycomb

structures for maximum sound transmission loss”, Clemson University.

14. Seera, N. K., 2011, “Viscoelastic damping of hexagonal honeycomb sandwich

panels”, Clemson University.

15. Telukunta, R., 2011, “Constrained layer damping of honeycomb composite

structures”, Clemson University.

16. Evans, K. E., and Alderson, K. L., 2000, “Auxetic materials : the positive side of

being negative”, Engineering Science and Education Journal, (August), pp. 148–154.

17. Masters, I. G. and Evans, K. E., 1996, “Models for the Elastic Deformation of

Honeycombs”, Composite Structures, 35:403–422.

18. Sodano, H.A. and Inman, D.J., 2005, “Generation and Storage of Electricity from

Power Harvesting Devices”, Journal of Intelligent material systems and structures,

16:16-67.

19. Sodano, H.A, Inman, D.J., Park,G., 2005, “Comparison of Piezoelectric Energy

Harvesting Devices for Recharging Batteries”, Journal of Sound and Vibration, 16:

799-807.

20. Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey,

J.M., and Wright, P.K., “Improving the power output for vibration based energy

scavengers”, IEEE CS and IEEE ComSoc 1536-1268, 2005.

21. Renno, J.M., Daqaq, M.F., and Inman, D.J., 2008, “On the Optimal Energy

Harvesting from a Vibration Source”, Journal of Sound and Vibration, 320:386-405.

22. Ahmed, K.M., 1971, “Static and Dynamic Analysis of Sandwich Structures by the

Method of Finite Elements”, Journal of sound and Vibration, 18:75-91.

23. Nabarrette, A., Almeida, S.D.M., and Hansen, J.S., 2003, “Sandwich-Plate Vibration

Analysis: Three-Layer Quasi-Three-Dimensional Finite Element Model”, AIAA

Journal, 41:1547-1555.

24. Amichi, K. and Atalla, N., 2009, “A New 3D Finite Element for Sandwich Beams

with a Viscoelastic Core”, The Transactions of the ASME: Journal of Vibration and

Acoustics, 131:1-9

91

25. Gibson, L. J. and Ashby, M.F., 1988, “Cellular Solids: Structures and Properties”,

Pergamon, Oxford, England, U.K.

26. Grediac, M, 1993, “A Finite Element Study of the Transverse Shear in Honeycomb

Cores,” International Journal of Solids and Structures, 30:1777-1788

27. Ruzzene, M. and Scarpa, F., 2003, “Control of Wave Propagation in Sandwich Beams

with Auxetic Core”, Journal of Intelligent Material Systems and Structures, 14: 443-

453.

28. Ikeda, T., 1996, “Fundamentals of Piezoelectricity”, Oxford University Press, New

York.

29. Gibson, L.J. and Ashby, M.F., 1997, “Cellular Solids: Structure and properties”,

Cambridge University Press, Cambridge, U.K.

30. Yamashita, M., and Gotoh, M., 2005, “Impact behavior of honeycomb structures with

various cell specifications numerical simulation and experiment”, International

Journal of Impact Engineering, 32(1-4):618–630.

31. Fisher, R.A, 1951, “Design of Experiments”, 6th edition, Oliver & Boyd, London,

U.K.

32. Overvelde, J. T. B., 2010, “Learn Abaqus script in one hour”, pp. 1–12.

33. Piezoceramics- Technical description and Material characteristics, 2011, Nolaic A/S,

Retrieved, May 20, 2013, from http://www.noliac.com/Technical_description-

6585.aspx.

34. Choi, S.B., Han, Y.M., 2010, “Piezoelectric Actuators-Control Applications of Smart

Materials”, CRC Press, Florida, USA.

35. Ertuk, A., Inman, D.J., 2011, “Piezoelectric Energy Harvesting”, John Wiley and

Sons, Ltd, Publication, West Sussex, U.K.

36. Ju, J., Summers, J. D., Ziegert, J., and Fadel, G., 2012, “Design of Honeycombs for

Modulus and Yield Strain in Shear”, Journal of Engineering Materials and

Technology, 134(1), p. 011002.

37. Chee, C. Y. K, Tong, L., and Steven, G. P., 1999, “A mixed model for composite

beams with piezoelectric actuators and sensors”, Smart Mater. Struct. 8 417–32

92

38. Beheshti-Aval, S. B., Lezgy-Nazargah, M., Vidal, P., and Polit, O., 2011, “ A refined

sinus finite element model for the analysis of piezoelectric-laminated beams”, J.

Intell. Mater. Syst. Struct. 22 203

39. Elshafei, M. A., Bendary, I. M., and Riad, A. M., 2010, “Finite element model of

smart beams with distributed piezoelectric actuators”, J. Intell. Mater. Syst. Struct. 21

747–58

40. Saravanos, D. A., and Heyliger, P. R., 1995, “Coupled layer wise analysis of

composite beams with embedded piezoelectric sensors and actuators”, J. Intell. Mater.

Syst. Struct. 6 350–63

41. Robbins, D. H., and Reddy, J. N., 1991, “Analysis of piezo-electrically actuated

beams using a layer-wise displacement theory”, J. Comput. Struct. 41 265–79

42. Elshafei, M.A., and Alraiess, F., 2013, “Modeling and Analysis of smart piezoelectric

beams using simple higher order shear deformation theory”, Smart Mater. Struct. 22

035006.

43. Dassault Systems and Simulia, ABAQUS Example Problems Manual.

44. “http://abaqus.civil.uwa.edu.au:2080/v6.9/”.

45. VisualDOC User Manual, Version 7.1, Nov. 2012, Vanderplaats Research and

Development, Inc., Colorado,USA.

46. Elements of Structural Optimization – Haftka and Gurdal, Kluwer, 1996

47. Genetic Algorithms in Search, Optimization and Machine learning. Goldberg,

Addison Wesley, 1992.

48. Optimization concepts and applications in engineering by Belegundu, Chandrupatla

Prentice Hall, 1999

93

APPENDICES

94

Appendix A: solid_parallel_optim.py

Python script for generating and solving the bimorph cantilever beam with solid

homogenous brass substrate subjected to a pressure load of 50MPa

************************************************************************

1. # -*- coding: mbcs -*-

Generation of the 3D model

2. mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.1)

3. mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(

4. decimalPlaces=3) 5. mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-

0.015, 0.004),

6. point2=(-0.0005, -0.001)) 7. mdb.models['Model-

1'].sketches['__profile__'].ObliqueDimension(textPoint=(

8. -0.00754163786768913, 0.00688284449279308), value=0.06662, vertex1=

9. mdb.models['Model-1'].sketches['__profile__'].vertices[3], vertex2=

10. mdb.models['Model-

1'].sketches['__profile__'].vertices[0])

11. mdb.models['Model-

1'].sketches['__profile__'].ObliqueDimension(textPoint=(

12. -0.01823172532022,

0.000512551516294479), value=0.00972, vertex1=

13. mdb.models['Model-

1'].sketches['__profile__'].vertices[0], vertex2=

14. mdb.models['Model-

1'].sketches['__profile__'].vertices[1])

15. mdb.models['Model-

1'].Part(dimensionality=THREE_D, name='brass', type=

16. DEFORMABLE_BODY)

17. mdb.models['Model-

1'].parts['brass'].BaseSolidExtrude(depth=0.00076, sketch=

18. mdb.models['Model-

1'].sketches['__profile__'])

19. del mdb.models['Model-

1'].sketches['__profile__']

20. mdb.models['Model-

1'].ConstrainedSketch(name='__profile__', sheetSize=0.1)

21. mdb.models['Model-

1'].sketches['__profile__'].sketchOptions.setValues(

22. decimalPlaces=3)

95

23. mdb.models['Model-

1'].sketches['__profile__'].rectangle(point1=(-0.0155,

24. 0.0055), point2=(0.0015, 0.001))

25. mdb.models['Model-

1'].sketches['__profile__'].ObliqueDimension(textPoint=(

26. -0.0118616037070751,

0.00849372334778309), value=0.06662, vertex1=

27. mdb.models['Model-

1'].sketches['__profile__'].vertices[3], vertex2=

28. mdb.models['Model-

1'].sketches['__profile__'].vertices[0])

29. mdb.models['Model-

1'].sketches['__profile__'].ObliqueDimension(textPoint=(

30. -0.0183049440383911,

0.00300209224224091), value=0.00972, vertex1=

31. mdb.models['Model-

1'].sketches['__profile__'].vertices[0], vertex2=

32. mdb.models['Model-

1'].sketches['__profile__'].vertices[1])

33. mdb.models['Model-

1'].Part(dimensionality=THREE_D, name='pztb', type=

34. DEFORMABLE_BODY)

35. mdb.models['Model-

1'].parts['pztb'].BaseSolidExtrude(depth=3.9E-4 , sketch=

36. mdb.models['Model-

1'].sketches['__profile__'])

37. del mdb.models['Model-

1'].sketches['__profile__']

38. mdb.models['Model-

1'].ConstrainedSketch(name='__profile__', sheetSize=0.1)

39. mdb.models['Model-

1'].sketches['__profile__'].sketchOptions.setValues(

40. decimalPlaces=3)

41. mdb.models['Model-

1'].sketches['__profile__'].rectangle(point1=(-0.0215, 0.006)

42. , point2=(-0.0015, -0.003))

43. mdb.models['Model-

1'].sketches['__profile__'].ObliqueDimension(textPoint=(

44. -0.013911759480834,

0.00988493673503399), value=0.06662, vertex1=

45. mdb.models['Model-

1'].sketches['__profile__'].vertices[3], vertex2=

46. mdb.models['Model-

1'].sketches['__profile__'].vertices[0])

47. mdb.models['Model-

1'].sketches['__profile__'].ObliqueDimension(textPoint=(

48. -0.0246018469333649,

0.00161087885499001), value=0.00972, vertex1=

49. mdb.models['Model-

1'].sketches['__profile__'].vertices[0], vertex2=

50. mdb.models['Model-

1'].sketches['__profile__'].vertices[1])

51. mdb.models['Model-

1'].Part(dimensionality=THREE_D, name='pztt', type=

96

52. DEFORMABLE_BODY)

53. mdb.models['Model-

1'].parts['pztt'].BaseSolidExtrude(depth=0.00026, sketch=

54. mdb.models['Model-

1'].sketches['__profile__'])

55. del mdb.models['Model-

1'].sketches['__profile__']

56. mdb.models['Model-

1'].Material(name='brass')

Assigning Material properties

57. mdb.models['Model-

1'].materials['brass'].Density(table=((8740.0, ), ))

58. mdb.models['Model-

1'].materials['brass'].Elastic(table=((97000000000.0, 0.34),

59. ))

60. mdb.models['Model-

1'].materials['brass'].Damping(alpha=17.1, beta=2.111e-05)

61. mdb.models['Model-1'].Material(name='pzt')

62. mdb.models['Model-

1'].materials['pzt'].Density(table=((7800.0, ), ))

63. mdb.models['Model-

1'].materials['pzt'].Elastic(table=((62000000000.0,

64. 62000000000.0, 49000000000.0, 0.289,

0.512, 0.512, 23500000000.0,

65. 23000000000.0, 23000000000.0), ),

type=ENGINEERING_CONSTANTS)

66. mdb.models['Model-

1'].materials['pzt'].Dielectric(table=((3.89e-08, 3.89e-08,

67. 3.36e-08), ), type=ORTHOTROPIC)

68. mdb.models['Model-

1'].materials['pzt'].Piezoelectric(table=((0.0, 0.0, 0.0,

69. 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, -4.8E-10, -3.2e-10, 6.5e-10,

70. 0.0, 0.0, 0.0), ), type=STRAIN)

Defining Sections properties for brass and pzt

71. mdb.models['Model-

1'].HomogeneousSolidSection(material='brass', name='brass',

72. thickness=None)

73. mdb.models['Model-

1'].HomogeneousSolidSection(material='pzt', name='pzt',

74. thickness=None)

Assigning section properties and material orientation

75. mdb.models['Model-

1'].parts['brass'].Surface(name='bt', side1Faces=

76. mdb.models['Model-

1'].parts['brass'].faces.getSequenceFromMask(('[#10 ]',

77. ), ))

97

78. mdb.models['Model-

1'].parts['brass'].Surface(name='bb', side1Faces=

79. mdb.models['Model-

1'].parts['brass'].faces.getSequenceFromMask(('[#20 ]',

80. ), ))

81. mdb.models['Model-

1'].parts['brass'].SectionAssignment(offset=0.0, offsetField=

82. '', offsetType=MIDDLE_SURFACE,

region=Region(

83. cells=mdb.models['Model-

1'].parts['brass'].cells.getSequenceFromMask(mask=(

84. '[#1 ]', ), )), sectionName='brass',

thicknessAssignment=FROM_SECTION)

85. mdb.models['Model-

1'].parts['brass'].MaterialOrientation(

86. additionalRotationType=ROTATION_NONE,

axis=AXIS_1, fieldName='', localCsys=

87. None, orientationType=GLOBAL,

region=Region(

88. cells=mdb.models['Model-

1'].parts['brass'].cells.getSequenceFromMask(mask=(

89. '[#1 ]', ), )), stackDirection=STACK_3)

Meshing the brass substrate

90. mdb.models['Model-

1'].parts['brass'].seedPart(deviationFactor=0.1, size=0.0034)

91. mdb.models['Model-

1'].parts['brass'].setElementType(elemTypes=(ElemType(

92. elemCode=C3D20R, elemLibrary=STANDARD),

ElemType(elemCode=C3D15,

93. elemLibrary=STANDARD),

ElemType(elemCode=C3D10, elemLibrary=STANDARD)),

94. regions=(mdb.models['Model-

1'].parts['brass'].cells.getSequenceFromMask((

95. '[#1 ]', ), ), ))

96. mdb.models['Model-

1'].parts['brass'].generateMesh()

Meshing the pzt plates

97. mdb.models['Model-

1'].parts['pztb'].Surface(name='pbt', side1Faces=

98. mdb.models['Model-

1'].parts['pztb'].faces.getSequenceFromMask(('[#10 ]', ),

99. ))

100. mdb.models['Model-

1'].parts['pztb'].Surface(name='pbb', side1Faces=

101. mdb.models['Model-

1'].parts['pztb'].faces.getSequenceFromMask(('[#20 ]', ),

102. ))

98

103. mdb.models['Model-

1'].parts['pztb'].SectionAssignment(offset=0.0, offsetField=

104. '', offsetType=MIDDLE_SURFACE,

region=Region(

105. cells=mdb.models['Model-

1'].parts['pztb'].cells.getSequenceFromMask(mask=(

106. '[#1 ]', ), )), sectionName='pzt',

thicknessAssignment=FROM_SECTION)

107. mdb.models['Model-

1'].parts['pztb'].MaterialOrientation(additionalRotationType=

108. ROTATION_NONE, axis=AXIS_1,

fieldName='', localCsys=None, orientationType=

109. GLOBAL, region=Region(

110. cells=mdb.models['Model-

1'].parts['pztb'].cells.getSequenceFromMask(mask=(

111. '[#1 ]', ), )), stackDirection=STACK_3)

112. mdb.models['Model-

1'].parts['pztb'].seedPart(deviationFactor=0.1, size=0.0034)

113. mdb.models['Model-

1'].parts['pztb'].setElementType(elemTypes=(ElemType(

114. elemCode=C3D20RE,

elemLibrary=STANDARD), ElemType(elemCode=C3D15E,

115. elemLibrary=STANDARD),

ElemType(elemCode=C3D10E, elemLibrary=STANDARD)),

116. regions=(mdb.models['Model-

1'].parts['pztb'].cells.getSequenceFromMask((

117. '[#1 ]', ), ), ))

118. mdb.models['Model-

1'].parts['pztb'].generateMesh()

119. mdb.models['Model-

1'].parts['pztt'].Surface(name='ptt', side1Faces=

120. mdb.models['Model-

1'].parts['pztt'].faces.getSequenceFromMask(('[#10 ]', ),

121. ))

122. mdb.models['Model-

1'].parts['pztt'].Surface(name='ptb', side1Faces=

123. mdb.models['Model-

1'].parts['pztt'].faces.getSequenceFromMask(('[#20 ]', ),

124. ))

125. mdb.models['Model-

1'].parts['pztt'].SectionAssignment(offset=0.0, offsetField=

126. '', offsetType=MIDDLE_SURFACE,

region=Region(

127. cells=mdb.models['Model-

1'].parts['pztt'].cells.getSequenceFromMask(mask=(

128. '[#1 ]', ), )), sectionName='pzt',

thicknessAssignment=FROM_SECTION)

129. mdb.models['Model-

1'].parts['pztt'].MaterialOrientation(additionalRotationType=

130. ROTATION_NONE, axis=AXIS_1,

fieldName='', localCsys=None, orientationType=

131. GLOBAL, region=Region(

132. cells=mdb.models['Model-

1'].parts['pztt'].cells.getSequenceFromMask(mask=(

99

133. '[#1 ]', ), )), stackDirection=STACK_3)

134. mdb.models['Model-

1'].parts['pztt'].seedPart(deviationFactor=0.1, size=0.0034)

135. mdb.models['Model-

1'].parts['pztt'].setElementType(elemTypes=(ElemType(

136. elemCode=C3D20RE,

elemLibrary=STANDARD), ElemType(elemCode=C3D15E,

137. elemLibrary=STANDARD),

ElemType(elemCode=C3D10E, elemLibrary=STANDARD)),

138. regions=(mdb.models['Model-

1'].parts['pztt'].cells.getSequenceFromMask((

139. '[#1 ]', ), ), ))

140. mdb.models['Model-

1'].parts['pztt'].generateMesh()

Generating master and slave node sets for equation constraint

141. mdb.models['Model-

1'].rootAssembly.DatumCsysByDefault(CARTESIAN)

142. mdb.models['Model-

1'].rootAssembly.Instance(dependent=ON, name='pztb-1', part=

143. mdb.models['Model-1'].parts['pztb'])

144. mdb.models['Model-

1'].rootAssembly.Instance(dependent=ON, name='brass-1', part=

145. mdb.models['Model-1'].parts['brass'])

146. mdb.models['Model-

1'].rootAssembly.instances['brass-1'].translate(vector=(

147. 0.07278200182271, 0.0, 0.0))

148. mdb.models['Model-

1'].rootAssembly.translate(instanceList=('brass-1', ),

149. vector=(-0.073282, 0.0015, 0.00026))

150. mdb.models['Model-

1'].rootAssembly.Instance(dependent=ON, name='pztt-1', part=

151. mdb.models['Model-1'].parts['pztt'])

152. mdb.models['Model-

1'].rootAssembly.instances['pztt-1'].translate(vector=(

153. 0.079282002709806, 0.0, 0.0))

154. mdb.models['Model-

1'].rootAssembly.translate(instanceList=('pztt-1', ), vector=

155. (-0.073282, -0.0005, 0.00102))

Assembling the bimorph cantiveler beam

156. mdb.models['Model-

1'].rootAssembly.Set(name='tm', nodes=

157. mdb.models['Model-

1'].rootAssembly.instances['pztt-1'].nodes.getSequenceFromMask(

158. mask=('[#0:5 #800000 ]', ), ))

159. mdb.models['Model-

1'].rootAssembly.Set(name='ts', nodes=

160. mdb.models['Model-

1'].rootAssembly.instances['pztt-1'].nodes.getSequenceFromMask(

161. mask=(

100

162. '[#f0f0f0f:5 #c443180f #e18c384

#e18c3863 #18c38630 #8c38630e #c38630e1',

163. ' #38630e18 #8630e18c #630e18c3

#30e18c38 #e18c386 #18c3863 ]', ), ))

164. mdb.models['Model-

1'].rootAssembly.Set(name='bm', nodes=

165. mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].nodes.getSequenceFromMask(

166. mask=('[#0:5 #2000000 ]', ), ))

167. mdb.models['Model-

1'].rootAssembly.Set(name='bs', nodes=

168. mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].nodes.getSequenceFromMask(

169. mask=(

170. '[#f0f0f0f0:5 #181c42f0 #70a31c2a

#a31c28c #a31c28c7 #31c28c70 #1c28c70a',

171. ' #c28c70a3 #28c70a31 #8c70a31c

#c70a31c2 #70a31c28 #231c28c ]', ), ))

Defining Steps

172. mdb.models['Model-

1'].FrequencyStep(acousticCoupling=AC_OFF, eigensolver=

173. SUBSPACE, maxIterations=30, name='f',

normalization=DISPLACEMENT, numEigen=

174. 10, previous='Initial',

simLinearDynamics=OFF, vectors=18)

175. mdb.models['Model-

1'].steps['f'].setValues(maxEigen=1000.0, normalization=MASS)

176. mdb.models['Model-

1'].SteadyStateDirectStep(frequencyRange=((100.0, 200.0, 20,

177. 1.0), ), frictionDamping=ON,

matrixStorage=SYMMETRIC, name='dy', previous=

178. 'f', subdivideUsingEigenfrequencies=ON)

Requesting field output

179. mdb.models['Model-

1'].fieldOutputRequests['F-Output-1'].setValues(rebar=EXCLUDE

180. , region=mdb.models['Model-

1'].rootAssembly.sets['bm'], sectionPoints=

181. DEFAULT, variables=('S', 'EPOT'))

182. mdb.models['Model-

1'].fieldOutputRequests['F-Output-2'].setValues(variables=(

183. 'S', 'EPOT'))

Defining Constraints

184. mdb.models['Model-1'].Tie(adjust=ON,

master=

185. mdb.models['Model-

1'].rootAssembly.instances['brass-1'].surfaces['bt'],

101

186. name='Constraint-1',

positionToleranceMethod=COMPUTED, slave=

187. mdb.models['Model-

1'].rootAssembly.instances['pztt-1'].surfaces['ptb'],

188. thickness=ON, tieRotations=ON)

189. mdb.models['Model-1'].Tie(adjust=ON,

master=

190. mdb.models['Model-

1'].rootAssembly.instances['brass-1'].surfaces['bb'],

191. name='Constraint-2',

positionToleranceMethod=COMPUTED, slave=

192. mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].surfaces['pbt'],

193. thickness=ON, tieRotations=ON)

194. mdb.models['Model-

1'].rootAssembly.features['brass-1'].suppress()

195. mdb.models['Model-

1'].Equation(name='Constraint-3', terms=((-1.0, 'bs', 9), (

196. 1.0, 'bm', 9)))

197. mdb.models['Model-

1'].Equation(name='Constraint-4', terms=((-1.0, 'ts', 9), (

198. 1.0, 'tm', 9)))

Assigning loading conditions

199. mdb.models['Model-

1'].Pressure(amplitude=UNSET, createStepName='dy',

200. distributionType=UNIFORM, field='',

magnitude=(16+0j), name='Load-1',

201. region=Region(

202. side1Faces=mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].faces.getSequenceFromMask(

203. mask=('[#20 ]', ), )))

204. mdb.models['Model-

1'].ElectricPotentialBC(createStepName='Initial',

205. distributionType=UNIFORM, fieldName='',

magnitude=0.0, name='BC-1', region=

206. Region(

207. faces=mdb.models['Model-

1'].rootAssembly.instances['pztt-1'].faces.getSequenceFromMask(

208. mask=('[#20 ]', ), )))

Assigning boundary conditions

209. mdb.models['Model-

1'].ElectricPotentialBC(createStepName='Initial',

210. distributionType=UNIFORM, fieldName='',

magnitude=0.0, name='BC-2', region=

211. Region(

212. faces=mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].faces.getSequenceFromMask(

213. mask=('[#10 ]', ), )))

102

214. mdb.models['Model-

1'].rootAssembly.features['brass-1'].resume()

215. mdb.models['Model-

1'].EncastreBC(createStepName='Initial', localCsys=None,

216. name='BC-3', region=Region(

217. faces=mdb.models['Model-

1'].rootAssembly.instances['brass-1'].faces.getSequenceFromMask(

218. mask=('[#4 ]', ), )+\

219. mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].faces.getSequenceFromMask(

220. mask=('[#4 ]', ), )+\

221. mdb.models['Model-

1'].rootAssembly.instances['pztt-1'].faces.getSequenceFromMask(

222. mask=('[#4 ]', ), ),

223. edges=mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].edges.getSequenceFromMask(

224. mask=('[#200 ]', ), )))

225. mdb.Job(atTime=None, contactPrint=OFF,

description='', echoPrint=OFF,

226. explicitPrecision=SINGLE,

getMemoryFromAnalysis=True, historyPrint=OFF,

227. memory=90, memoryUnits=PERCENTAGE,

model='Model-1', modelPrint=OFF,

228. multiprocessingMode=DEFAULT,

name='solid16-job', nodalOutputPrecision=

229. SINGLE, numCpus=1, queue=None,

scratch='', type=ANALYSIS, userSubroutine=''

230. , waitHours=0, waitMinutes=0)

Executing the analysis

231. mdb.jobs['solid16-

job'].submit(consistencyChecking=OFF)

232. mdb.jobs['solid16-job']._Message(STARTED,

{'phase': BATCHPRE_PHASE,

233. 'clientHost': 'Jadesha-PC', 'handle':

0, 'jobName': 'solid16-job'})

234. mdb.jobs['solid16-job']._Message(WARNING,

{'phase': BATCHPRE_PHASE,

235. 'message': 'FOR *TIE PAIR

(ASSEMBLY_PZTT-1_PTB-ASSEMBLY_BRASS-1_BT), ADJUSTED NODES WITH

VERY SMALL ADJUSTMENTS WERE NOT PRINTED. SPECIFY

*PREPRINT,MODEL=YES FOR COMPLETE PRINTOUT.',

236. 'jobName': 'solid16-job'})

237. mdb.jobs['solid16-job']._Message(WARNING,

{'phase': BATCHPRE_PHASE,

238. 'message': 'FOR *TIE PAIR

(ASSEMBLY_PZTB-1_PBT-ASSEMBLY_BRASS-1_BB), ADJUSTED NODES WITH

VERY SMALL ADJUSTMENTS WERE NOT PRINTED. SPECIFY

*PREPRINT,MODEL=YES FOR COMPLETE PRINTOUT.',

239. 'jobName': 'solid16-job'})

240. mdb.jobs['solid16-job']._Message(WARNING,

{'phase': BATCHPRE_PHASE,

103

241. 'message': '26 nodes have dof on which

incorrect boundary conditions may have been specified. The nodes

have been identified in node set WarnNodeBCIncorrectDof.',

242. 'jobName': 'solid16-job'})

243. mdb.jobs['solid16-job']._Message(WARNING,

{'phase': BATCHPRE_PHASE,

244. 'message': '26 nodes have dof on which

incorrect boundary conditions may have been specified. The nodes

have been identified in node set WarnNodeBCIncorrectDof.',

245. 'jobName': 'solid16-job'})

246. mdb.jobs['solid16-job']._Message(ODB_FILE,

{'phase': BATCHPRE_PHASE,

247. 'file': 'C:\\Temp\\solid16-job.odb',

'jobName': 'solid16-job'})

248. mdb.jobs['solid16-job']._Message(COMPLETED,

{'phase': BATCHPRE_PHASE,

249. 'message': 'Analysis phase complete',

'jobName': 'solid16-job'})

250. mdb.jobs['solid16-job']._Message(STARTED,

{'phase': STANDARD_PHASE,

251. 'clientHost': 'Jadesha-PC', 'handle':

2368, 'jobName': 'solid16-job'})

252. mdb.jobs['solid16-job']._Message(STEP,

{'phase': STANDARD_PHASE, 'stepId': 1,

253. 'jobName': 'solid16-job'})

254. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

255. 'step': 0, 'frame': 0, 'jobName':

'solid16-job'})

256. mdb.jobs['solid16-job']._Message(STATUS,

{'totalTime': 0.0, 'attempts': 1,

257. 'timeIncrement': 1e-36, 'increment': 0,

'stepTime': 0.0, 'step': 1,

258. 'jobName': 'solid16-job', 'severe': 0,

'iterations': 0,

259. 'phase': STANDARD_PHASE, 'equilibrium':

0})

260. mdb.jobs['solid16-

job']._Message(MEMORY_ESTIMATE, {'phase': STANDARD_PHASE,

261. 'jobName': 'solid16-job', 'memory':

57.6551237106323})

262. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

263. 'step': 0, 'frame': 1, 'jobName':

'solid16-job'})

264. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

265. 'step': 0, 'frame': 2, 'jobName':

'solid16-job'})

266. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

267. 'step': 0, 'frame': 3, 'jobName':

'solid16-job'})

104

268. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

269. 'step': 0, 'frame': 4, 'jobName':

'solid16-job'})

270. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

271. 'step': 0, 'frame': 5, 'jobName':

'solid16-job'})

272. mdb.jobs['solid16-job']._Message(STATUS,

{'totalTime': 0.0, 'attempts': 1,

273. 'timeIncrement': 1e-36, 'increment': 1,

'stepTime': 1e-36, 'step': 1,

274. 'jobName': 'solid16-job', 'severe': 0,

'iterations': 0,

275. 'phase': STANDARD_PHASE, 'equilibrium':

0})

276. mdb.jobs['solid16-job']._Message(END_STEP,

{'phase': STANDARD_PHASE,

277. 'stepId': 1, 'jobName': 'solid16-job'})

278. mdb.jobs['solid16-job']._Message(STEP,

{'phase': STANDARD_PHASE, 'stepId': 2,

279. 'jobName': 'solid16-job'})

280. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

281. 'step': 1, 'frame': 0, 'jobName':

'solid16-job'})

282. mdb.jobs['solid16-job']._Message(STATUS,

{'totalTime': 0.0, 'attempts': 0,

283. 'timeIncrement': 100.0, 'increment': 0,

'stepTime': 0.0, 'step': 2,

284. 'jobName': 'solid16-job', 'severe': 0,

'iterations': 0,

285. 'phase': STANDARD_PHASE, 'equilibrium':

0})

286. mdb.jobs['solid16-

job']._Message(MEMORY_ESTIMATE, {'phase': STANDARD_PHASE,

287. 'jobName': 'solid16-job', 'memory':

143.1667137146})

288. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

289. 'step': 1, 'frame': 1, 'jobName':

'solid16-job'})

290. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

291. 'frequency': 100.0, 'increment': 1,

'jobName': 'solid16-job'})

292. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

293. 'step': 1, 'frame': 2, 'jobName':

'solid16-job'})

294. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

295. 'frequency': 101.78568311609,

'increment': 2, 'jobName': 'solid16-job'})

105

296. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

297. 'step': 1, 'frame': 3, 'jobName':

'solid16-job'})

298. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

299. 'frequency': 103.603252874092,

'increment': 3, 'jobName': 'solid16-job'})

300. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

301. 'step': 1, 'frame': 4, 'jobName':

'solid16-job'})

302. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

303. 'frequency': 105.453278668385,

'increment': 4, 'jobName': 'solid16-job'})

304. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

305. 'step': 1, 'frame': 5, 'jobName':

'solid16-job'})

306. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

307. 'frequency': 107.33634006093,

'increment': 5, 'jobName': 'solid16-job'})

308. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

309. 'step': 1, 'frame': 6, 'jobName':

'solid16-job'})

310. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

311. 'frequency': 109.253026962828,

'increment': 6, 'jobName': 'solid16-job'})

312. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

313. 'step': 1, 'frame': 7, 'jobName':

'solid16-job'})

314. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

315. 'frequency': 111.20393981912,

'increment': 7, 'jobName': 'solid16-job'})

316. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

317. 'step': 1, 'frame': 8, 'jobName':

'solid16-job'})

318. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

319. 'frequency': 113.189689796898,

'increment': 8, 'jobName': 'solid16-job'})

320. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

321. 'step': 1, 'frame': 9, 'jobName':

'solid16-job'})

322. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

106

323. 'frequency': 115.210898976756,

'increment': 9, 'jobName': 'solid16-job'})

324. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

325. 'step': 1, 'frame': 10, 'jobName':

'solid16-job'})

326. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

327. 'frequency': 117.26820054768,

'increment': 10, 'jobName': 'solid16-job'})

328. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

329. 'step': 1, 'frame': 11, 'jobName':

'solid16-job'})

330. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

331. 'frequency': 119.362239005403,

'increment': 11, 'jobName': 'solid16-job'})

332. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

333. 'step': 1, 'frame': 12, 'jobName':

'solid16-job'})

334. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

335. 'frequency': 121.49367035431,

'increment': 12, 'jobName': 'solid16-job'})

336. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

337. 'step': 1, 'frame': 13, 'jobName':

'solid16-job'})

338. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

339. 'frequency': 123.663162312946,

'increment': 13, 'jobName': 'solid16-job'})

340. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

341. 'step': 1, 'frame': 14, 'jobName':

'solid16-job'})

342. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

343. 'frequency': 125.871394523191,

'increment': 14, 'jobName': 'solid16-job'})

344. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

345. 'step': 1, 'frame': 15, 'jobName':

'solid16-job'})

346. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

347. 'frequency': 128.11905876318,

'increment': 15, 'jobName': 'solid16-job'})

348. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

349. 'step': 1, 'frame': 16, 'jobName':

'solid16-job'})

107

350. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

351. 'frequency': 130.406859164008,

'increment': 16, 'jobName': 'solid16-job'})

352. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

353. 'step': 1, 'frame': 17, 'jobName':

'solid16-job'})

354. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

355. 'frequency': 132.735512430323,

'increment': 17, 'jobName': 'solid16-job'})

356. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

357. 'step': 1, 'frame': 18, 'jobName':

'solid16-job'})

358. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

359. 'frequency': 135.105748064848,

'increment': 18, 'jobName': 'solid16-job'})

360. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

361. 'step': 1, 'frame': 19, 'jobName':

'solid16-job'})

362. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

363. 'frequency': 137.518308596909,

'increment': 19, 'jobName': 'solid16-job'})

364. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

365. 'step': 1, 'frame': 20, 'jobName':

'solid16-job'})

366. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

367. 'frequency': 139.973949815057,

'increment': 20, 'jobName': 'solid16-job'})

368. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

369. 'step': 1, 'frame': 21, 'jobName':

'solid16-job'})

370. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

371. 'frequency': 142.627807464993,

'increment': 21, 'jobName': 'solid16-job'})

372. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

373. 'step': 1, 'frame': 22, 'jobName':

'solid16-job'})

374. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

375. 'frequency': 145.331981337592,

'increment': 22, 'jobName': 'solid16-job'})

376. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

108

377. 'step': 1, 'frame': 23, 'jobName':

'solid16-job'})

378. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

379. 'frequency': 148.087425411026,

'increment': 23, 'jobName': 'solid16-job'})

380. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

381. 'step': 1, 'frame': 24, 'jobName':

'solid16-job'})

382. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

383. 'frequency': 150.895111750559,

'increment': 24, 'jobName': 'solid16-job'})

384. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

385. 'step': 1, 'frame': 25, 'jobName':

'solid16-job'})

386. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

387. 'frequency': 153.756030851479,

'increment': 25, 'jobName': 'solid16-job'})

388. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

389. 'step': 1, 'frame': 26, 'jobName':

'solid16-job'})

390. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

391. 'frequency': 156.671191988519,

'increment': 26, 'jobName': 'solid16-job'})

392. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

393. 'step': 1, 'frame': 27, 'jobName':

'solid16-job'})

394. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

395. 'frequency': 159.641623571914,

'increment': 27, 'jobName': 'solid16-job'})

396. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

397. 'step': 1, 'frame': 28, 'jobName':

'solid16-job'})

398. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

399. 'frequency': 162.6683735102,

'increment': 28, 'jobName': 'solid16-job'})

400. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

401. 'step': 1, 'frame': 29, 'jobName':

'solid16-job'})

402. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

403. 'frequency': 165.752509579897,

'increment': 29, 'jobName': 'solid16-job'})

109

404. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

405. 'step': 1, 'frame': 30, 'jobName':

'solid16-job'})

406. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

407. 'frequency': 168.895119802197,

'increment': 30, 'jobName': 'solid16-job'})

408. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

409. 'step': 1, 'frame': 31, 'jobName':

'solid16-job'})

410. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

411. 'frequency': 172.097312826799,

'increment': 31, 'jobName': 'solid16-job'})

412. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

413. 'step': 1, 'frame': 32, 'jobName':

'solid16-job'})

414. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

415. 'frequency': 175.360218323016,

'increment': 32, 'jobName': 'solid16-job'})

416. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

417. 'step': 1, 'frame': 33, 'jobName':

'solid16-job'})

418. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

419. 'frequency': 178.684987378299,

'increment': 33, 'jobName': 'solid16-job'})

420. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

421. 'step': 1, 'frame': 34, 'jobName':

'solid16-job'})

422. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

423. 'frequency': 182.07279290432,

'increment': 34, 'jobName': 'solid16-job'})

424. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

425. 'step': 1, 'frame': 35, 'jobName':

'solid16-job'})

426. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

427. 'frequency': 185.524830050751,

'increment': 35, 'jobName': 'solid16-job'})

428. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

429. 'step': 1, 'frame': 36, 'jobName':

'solid16-job'})

430. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

110

431. 'frequency': 189.042316626886,

'increment': 36, 'jobName': 'solid16-job'})

432. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

433. 'step': 1, 'frame': 37, 'jobName':

'solid16-job'})

434. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

435. 'frequency': 192.626493531264,

'increment': 37, 'jobName': 'solid16-job'})

436. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

437. 'step': 1, 'frame': 38, 'jobName':

'solid16-job'})

438. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

439. 'frequency': 196.27862518943,

'increment': 38, 'jobName': 'solid16-job'})

440. mdb.jobs['solid16-job']._Message(ODB_FRAME,

{'phase': STANDARD_PHASE,

441. 'step': 1, 'frame': 39, 'jobName':

'solid16-job'})

442. mdb.jobs['solid16-job']._Message(STATUS,

{'phase': STANDARD_PHASE, 'step': 2,

443. 'frequency': 200.0, 'increment': 39,

'jobName': 'solid16-job'})

444. mdb.jobs['solid16-job']._Message(END_STEP,

{'phase': STANDARD_PHASE,

445. 'stepId': 2, 'jobName': 'solid16-job'})

446. mdb.jobs['solid16-job']._Message(COMPLETED,

{'phase': STANDARD_PHASE,

447. 'message': 'Analysis phase complete',

'jobName': 'solid16-job'})

448. mdb.jobs['solid16-

job']._Message(JOB_COMPLETED, {

449. 'time': 'Tue May 07 18:31:21 2013',

'jobName': 'solid16-job'})

450. del mdb.models['Model-1'].loads['Load-1']

451. mdb.models['Model-

1'].Pressure(amplitude=UNSET, createStepName='dy',

452. distributionType=UNIFORM, field='',

magnitude=(16+0j), name='Load-1',

453. region=Region(

454. side1Faces=mdb.models['Model-

1'].rootAssembly.instances['pztb-1'].faces.getSequenceFromMask(

455. mask=('[#20 ]', ), )))

456. # Save by …………….

111

Appendix B: runabaqus-solid-parallel.bat

******************************************************************************

rem cd C:\temp\solid16

abaqus cae noGUI=solid_parallel_16.py

Appendix C: abaqus-solid-parallel.py

************************************************************************

1. # -*- coding: mbcs -*- 2. # 3. # Abaqus/CAE Release 6.10-EF1 replay file 4. # Internal Version: 2010_11_10-12.50.59 106506 5. # Run by Yash on Sat Apr 27 17:57:55 2013 6. # 7. 8. # from driverUtils import executeOnCaeGraphicsStartup 9. # executeOnCaeGraphicsStartup() 10. #: Executing "onCaeGraphicsStartup()" in

the site directory ...

11. #: Abaqus Error:

12. #: This error may have occurred due to a

change to the Abaqus Scripting

13. #: Interface. Please see the Abaqus

Scripting Manual for the details of

14. #: these changes. Also see the "Example

environment files" section of

15. #: the Abaqus Site Guide for up-to-date

examples of common tasks in the

16. #: environment file.

17. #: Execution of "onCaeGraphicsStartup()" in

the site directory failed.

Importing the model in ABAQUS GUI

112

18. from abaqus import *

19. from abaqusConstants import *

20. session.Viewport(name='Viewport: 1',

origin=(0.0, 0.0), width=266.405578613281,

21. height=178.196624755859)

22. session.viewports['Viewport:

1'].makeCurrent()

23. session.viewports['Viewport: 1'].maximize()

24. from caeModules import *

25. from driverUtils import executeOnCaeStartup

26. executeOnCaeStartup()

27. session.viewports['Viewport:

1'].partDisplay.geometryOptions.setValues(

28. referenceRepresentation=ON)

29. openMdb(pathName='solid_parallel_optim.cae'

)

30. #: The model database

"solid_parallel_optim.cae" has been opened.

31. session.viewports['Viewport:

1'].setValues(displayedObject=None)

32. p = mdb.models['Model-1'].parts['brass']

33. session.viewports['Viewport:

1'].setValues(displayedObject=p)

34. a = mdb.models['Model-1'].rootAssembly

35. session.viewports['Viewport:

1'].setValues(displayedObject=a)

Loading the result tab of the previously executed job

36. o3 = session.openOdb(name='solid-parallel-

job.odb')

37. #: Model: C:/Temp/solid-parallel-job.odb

38. #: Number of Assemblies: 1

39. #: Number of Assembly instances: 0

40. #: Number of Part instances: 3

41. #: Number of Meshes: 3

42. #: Number of Element Sets: 1

43. #: Number of Node Sets: 10

44. #: Number of Steps: 2

45. session.viewports['Viewport:

1'].setValues(displayedObject=o3)

46. session.viewports['Viewport:

1'].odbDisplay.basicOptions.setValues(

47. numericForm=COMPLEX_MAGNITUDE)

48. odbName=session.viewports[session.currentVi

ewportName].odbDisplay.name

49. session.odbData[odbName].setValues(activeFr

ames=(('dyn', ('0:-1', )), ))

50. odb = session.odbs['solid-parallel-

job.odb']

Viewing the electrical potential in the results tab

113

51. xyList =

xyPlot.xyDataListFromField(odb=odb, outputPosition=NODAL,

variable=((

52. 'EPOT', NODAL), ),

numericForm=COMPLEX_MAGNITUDE, nodeSets=(

53. 'PZT-1.PZT-MASTER2', ))

54. xyp = session.XYPlot('XYPlot-1')

55. chartName = xyp.charts.keys()[0]

56. chart = xyp.charts[chartName]

57. curveList = session.curveSet(xyData=xyList)

58. chart.setValues(curvesToPlot=curveList)

59. session.viewports['Viewport:

1'].setValues(displayedObject=xyp)

60. odb = session.odbs['solid-parallel-

job.odb']

Viewing the stress in the results tab

61. xyList =

xyPlot.xyDataListFromField(odb=odb, outputPosition=NODAL,

variable=((

62. 'S', INTEGRATION_POINT, ((COMPONENT,

'S11'), )), ),

63. numericForm=COMPLEX_MAGNITUDE,

nodeSets=('PZT-1.PZT-MASTER2', ))

64. xyp = session.xyPlots['XYPlot-1']

65. chartName = xyp.charts.keys()[0]

66. chart = xyp.charts[chartName]

67. curveList = session.curveSet(xyData=xyList)

68. chart.setValues(curvesToPlot=curveList)

69. session.viewports['Viewport:

1'].odbDisplay.setFrame(step=1, frame=20)

70. odb = session.odbs['solid-parallel-

job.odb']

Extracting the report file

71. session.fieldReportOptions.setValues(printX

YData=OFF, printTotal=OFF)

72. session.writeFieldReport(fileName='solid-

parallel-report.rpt', append=OFF,

73. sortItem='Node Label', odb=odb, step=1,

frame=20, outputPosition=NODAL,

74. variable=(('EPOT', NODAL), ('S',

INTEGRATION_POINT, ((COMPONENT, 'S11'),

75. )), ), numericForm=COMPLEX_MAGNITUDE)

76. mdb.save()

Appendix D: postprocessing-solid-parallel.bat

114

******************************************************************************

rem cd C:\temp\solid16

abaqus cae noGUI=abaqus-solid16.py

Appendix E: solid16report.rpt

******************************************************************************

Field Output Report, written Sat May 11 14:53:03 2013

Source 1

---------

ODB: C:/temp/solid16/solid16-job.odb

Step: dy

Frame: Increment 20: Frequency = 145.0

Complex: Magnitude

Loc 1 : Nodal values from source 1

Output sorted by column "Node Label".

Field Output reported at nodes for part: BRASS-1

Computation algorithm: EXTRAPOLATE_COMPUTE_AVERAGE

Averaged at nodes

Averaging regions: ODB_REGIONS

EPOT S.S11

115

@Loc 1 @Loc 1

-------------------------------------------------

Minimum 0. 33.3684

At Node 538 505

Maximum 0. 7.15842E+06

At Node 538 184

Field Output reported at nodes for part: PZTB-1

Computation algorithm: EXTRAPOLATE_COMPUTE_AVERAGE

Averaged at nodes

Averaging regions: ODB_REGIONS

EPOT S.S11

@Loc 1 @Loc 1

-------------------------------------------------

Minimum 0. 29.908E+03

At Node 537 166

Maximum 4.45122 9.84297E+06

At Node 538 186

Field Output reported at nodes for part: PZTT-1

Computation algorithm: EXTRAPOLATE_COMPUTE_AVERAGE

Averaged at nodes

Averaging regions: ODB_REGIONS

116

EPOT S.S11

@Loc 1 @Loc 1

-------------------------------------------------

Minimum 0. 4.8838E+03

At Node 538 508

Maximum 4.4722 8.20782E+06

At Node 537 184

Appendix F: Optimization Results

Optimization results for the bimorph cantilever beam with solid homogenous brass

substrate subjected to a pressure load of 16MPa showing all the population results. The

best solution set identified at every iteration is plotted.

******************************************************************************

Iteration Population Depth of pzt (mm)

d31 (m/V) Epot (V)

Best Constraint

(Stress, MPa)

Worst Constraint

(Stress, MPa)

0

1 0.382 -2.91E-10 2.83661 7.374 0.9029795

2 0.245 -3.48E-10 3.41342 7.890 0.89619

3 0.325 -4.06E-10 3.94475 7.993 0.8948336

4 0.380 -3.60E-10 3.51253 7.628 0.8996326

5 0.298 -3.67E-10 3.59769 7.881 0.8962992

Best Soln 0.325 -4.06E-10 3.94475 7.993 0.8948336

1 1 0.327 -4.21E-10 4.02609 8.043 0.8941662

2 0.289 -3.64E-10 3.50644 7.861 0.8965634

117

3 0.323 -3.78E-10 3.6879 7.876 0.89637

4 0.301 -4.05E-10 3.85955 8.020 0.8944717

5 0.333 -4.40E-10 4.18223 8.149 0.8927757

Best Soln 0.333 -4.40E-10 4.18223 8.149 0.8927757

2

1 0.350 -4.40E-10 4.18385 8.094 0.893503

2 0.317 -3.94E-10 3.77523 7.922 0.8957615

3 0.327 -3.91E-10 3.7759 7.896 0.8961099

4 0.325 -4.06E-10 3.94475 7.993 0.8948336

5 0.332 -4.47E-10 4.2569 8.204 0.8920532

Best Soln 0.332 -4.47E-10 4.2569 8.204 0.8920532

3

1 0.363 -4.53E-10 4.25944 8.120 0.8931524

2 0.350 -4.24E-10 4.02768 7.989 0.894887

3 0.323 -4.58E-10 4.3285 8.287 0.890955

4 0.336 -4.56E-10 4.33 8.232 0.8916792

5 0.350 -4.46E-10 4.25853 8.148 0.8927846

Best Soln 0.336 -4.56E-10 4.33 8.232 0.8916792

4

1 0.340 -4.31E-10 4.10605 8.068 0.8938403

2 0.316 -4.56E-10 4.3285 8.287 0.890955

3 0.335 -4.39E-10 4.18301 8.122 0.8931375

4 0.362 -4.68E-10 4.4017 8.233 0.8916696

5 0.352 -4.58E-10 4.33086 8.204 0.8920491

Best Soln 0.362 -4.68E-10 4.4017 8.233 0.8916696

5

1 0.336 -4.27E-10 4.10605 8.068 0.8938403

2 0.365 -4.44E-10 4.18475 8.066 0.8938687

3 0.372 -4.79E-10 4.47016 8.263 0.8912766

4 0.314 -4.37E-10 4.18091 8.202 0.8920784

5 0.349 -4.67E-10 4.40078 8.261 0.891297

Best Soln 0.372 -4.79E-10 4.47016 8.263 0.8912766

6 1 0.381 -4.74E-10 4.40367 8.177 0.8924036

2 0.388 -4.80E-10 4.4722 8.208 0.8920024

118

3 0.362 -4.71E-10 4.4017 8.233 0.8916696

4 0.380 -4.64E-10 4.33373 8.121 0.893148

5 0.365 -4.70E-10 4.4017 8.233 0.8916696

Best Soln 0.388 -4.80E-10 4.4722 8.208 0.8920024

7

1 0.381 -4.79E-10 4.47117 8.235 0.8916436

2 0.386 -4.80E-10 4.4722 8.208 0.8920024

3 0.371 -4.80E-10 4.47016 8.263 0.8912766

4 0.388 -4.80E-10 4.4722 8.208 0.8920024

5 0.390 -4.79E-10 4.4722 8.208 0.8920024

Best Soln 0.390 -4.79E-10 4.4722 8.208 0.8920024

8

1 0.388 -4.80E-10 4.4722 8.208 0.8920024

2 0.386 -4.66E-10 4.4047 8.150 0.8927595

3 0.390 -4.79E-10 4.4722 8.208 0.8920024

4 0.382 -4.80E-10 4.47117 8.235 0.8916436

5 0.388 -4.80E-10 4.4722 8.208 0.8920024

Best Soln 0.388 -4.80E-10 4.4722 8.208 0.8920024

9

1 0.388 -4.80E-10 4.4722 8.208 0.8920024

2 0.390 -4.75E-10 4.4722 8.208 0.8920024

3 0.390 -4.80E-10 4.4722 8.208 0.8920024

4 0.382 -4.80E-10 4.47117 8.235 0.8916436

5 0.390 -4.80E-10 4.4722 8.208 0.8920024

Best Soln 0.390 -4.80E-10 4.4722 8.208 0.8920024

-

10

1 0.389 -4.80E-10 4.4722 8.208 0.8920024

2 0.386 -4.76E-10 4.4722 8.208 0.8920024

3 0.390 -4.78E-10 4.4722 8.208 0.8920024

4 0.389 -4.79E-10 4.4722 8.208 0.8920024

5 0.385 -4.19E-10 4.03047 7.907 0.89596

Best Soln 0.389 -4.79E-10 4.4722 8.208 0.8920024

11 1 0.371 -4.78E-10 4.47016 8.263 0.8912766

2 0.390 -4.63E-10 4.33476 8.094 0.8935012

119

3 0.389 -4.80E-10 4.4722 8.208 0.8920024

4 0.376 -4.80E-10 4.47117 8.235 0.8916436

5 0.386 -4.76E-10 4.4722 8.208 0.8920024

Best Soln 0.386 -4.76E-10 4.4722 8.208 0.8920024

12

1 0.374 -4.77E-10 4.47016 8.263 0.8912766

2 0.389 -4.80E-10 4.4722 8.208 0.8920024

3 0.386 -4.76E-10 4.4722 8.208 0.8920024

4 0.390 -4.80E-10 4.4722 8.208 0.8920024

5 0.377 -4.80E-10 4.47117 8.235 0.8916436

Best Soln 0.390 -4.80E-10 4.4722 8.208 0.8920024

13

1 0.386 -4.77E-10 4.4722 8.208 0.8920024

2 0.363 -4.80E-10 4.46919 8.291 0.890904

3 0.386 -4.28E-10 4.1107 7.932 0.8956284

4 0.389 -4.69E-10 4.4047 8.150 0.8927595

5 0.386 -4.68E-10 4.4047 8.150 0.8927595

Best Soln 0.386 -4.77E-10 4.4722 8.208 0.8920024

14

1 0.390 -4.38E-10 4.1877 7.985 0.8949361

2 0.389 -4.75E-10 4.4047 8.150 0.8927595

3 0.365 -4.70E-10 4.4017 8.233 0.8916696

4 0.389 -4.66E-10 4.4047 8.150 0.8927595

5 0.388 -4.56E-10 4.33476 8.094 0.8935012

Best Soln 0.386 -4.77E-10 4.4722 8.208 0.8920024

15

1 0.387 -4.80E-10 4.4722 8.208 0.8920024

2 0.387 -4.80E-10 4.4722 8.208 0.8920024

3 0.380 -4.78E-10 4.47117 8.235 0.8916436

4 0.359 -4.59E-10 4.33177 8.176 0.8924192

5 0.386 -4.27E-10 4.1107 7.932 0.8956284

Best Soln 0.387 -4.80E-10 4.4722 8.208 0.8920024

16 1 0.368 -4.76E-10 4.47016 8.263 0.8912766

2 0.348 -4.80E-10 4.46826 8.320 0.8905287

120

3 0.390 -4.6229E-10 4.33476 8.094 0.8935012

4 0.389 -4.66E-10 4.4047 8.150 0.8927595

5 0.387 -4.71E-10 4.4047 8.150 0.8927595

Best Soln 0.387 -4.80E-10 4.4722 8.208 0.8920024

17

1 0.376 -4.71E-10 4.40367 8.177 0.8924036

2 0.389 -4.80E-10 4.4722 8.208 0.8920024

3 0.387 -4.80E-10 4.4722 8.208 0.8920024

4 0.388 -4.80E-10 4.4722 8.208 0.8920024

5 0.388 -4.80E-10 4.4722 8.208 0.8920024

Best Soln 0.389 -4.80E-10 4.4722 8.208 0.8920024

18

1 0.347 -4.80E-10 4.46826 8.320 0.8905287

2 0.389 -4.80E-10 4.4722 8.208 0.8920024

3 0.375 -4.80E-10 4.47016 8.263 0.8912766

4 0.388 -4.80E-10 4.4722 8.208 0.8920024

5 0.388 -4.80E-10 4.4722 8.208 0.8920024

Best Soln 0.388 -4.80E-10 4.4722 8.208 0.8920024

19

1 0.388 -4.65E-10 4.4047 8.150 0.8927595

2 0.355 -4.80E-10 4.46919 8.291 0.890904

3 0.390 -4.80E-10 4.4722 8.208 0.8920024

4 0.389 -4.59E-10 4.33476 8.094 0.8935012

5 0.387 -4.80E-10 4.4722 8.208 0.8920024

Best Soln 0.388 -4.80E-10 4.4722 8.208 0.8920024