52
Imperial Irrigation District Metropolitan Water District of Southern California Water Conservation Agreement Development of Hourly and Daily Data Records from Stevens Recorder Charts for Lateral Spill Flowsin the Imperial Irrigation District ConservationVerification Consaltants MmTay, Burns and Kienlen Consulting Civil Engineers Sacramento,California ,April 1997

Development of Hourly and Daily Data Records from Stevens

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Development of Hourly and Daily Data Records from Stevens

Imperial Irrigation District

Metropolitan Water Districtof Southern California

Water Conservation Agreement

Development ofHourly and Daily Data Recordsfrom Stevens Recorder Chartsfor Lateral Spill Flows in theImperial Irrigation District

Conservation Verification Consaltants

MmTay, Burns and KienlenConsulting Civil Engineers

Sacramento, California

,April 1997

Page 2: Development of Hourly and Daily Data Records from Stevens

Development of Hourly and Daily Recordsfrom Stevens Recorder Charts for Lateral Spill Flows

in the Imperial Irrigation District

Table of Contents

1. Introduction ........................................................... 1

2. Procedure ............................................................ 1

2.1. Digitizing ..................................................... 1

2.2. Pre-processing Raw Digitized Data Using Program PRESORT1 .......... 1

2.2.1. PRESORT1 Execution ................................... 2

2.3. Computing Hourly Flows Using Program SC-HOUR ................... 2

2.3.1. SC-HOUR Execution .................................... 4

2.4. Computing Daily Flows Using Program SC-DAY ..................... 4

2.4.1. SC-DAY Execution ..................................... 5

3. Comparison of Computed Spills with Hydrographer’s Estimates ................. 6

4. Data Logger Record Processing ........................................... 6

5. Database File Development .............................................. 6

CVC(MBK)MBKDIGTZ.RPT i April 23, 1997

Page 3: Development of Hourly and Daily Data Records from Stevens

Development of Hourly and Daily Recordsfrom Stevens Recorder Charts for Lateral Spill Flows

in the Imperial Irrigation District

Exhibits

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Stevens Recorder Chart and Description

Summary of Spill Sites and Measurement Periods

Digitized Stevens Chart Raw Data File

Output File from PRESORT1 Processing of Raw Digitized Data

PRESORT1 Batch Input File

SC-HOUR.OUT: Program SC-HOUR Output File

SC-HOUR.ASC: Program SC-HOUR Output File

SC-HOUR.IN: Batch Input File for Program SC-HOUR

SC-DAY.OUT: Program SC-DAY Output File

SC-DAY.ASC: Program SC-DAY Output File

SC-DAY.TB 1: Program SC-DAY Output File -- Daily Flow without CVC Estimates

SC-DAY.TB2: Program SC-DAY Output File -- Daily Flow with CVC Estimates

Comparison of Computed Daily Flow and Hydrographer’s Estimates of Daily Flow

Hourly Spill Database File

Daily Spill Database File

Appendices

Ao

B.

C.

D.

Program PRESORT1 FORTRAN Source Code

Program SC-HOUR FORTRAN Source Code

Program CHKDAT FORTRAN Source Code

Program SC-DAY FORTRAN Source Code

CVC(MBK)MBKDIGTZ.RPT April 23, 1997

Page 4: Development of Hourly and Daily Data Records from Stevens

1. Introduction

Spills from a number of canals and laterals in the Imperial Irrigation District (IID) have beenmonitored for some time using Stevens Recorders. The Stevens Recorders produce weekly chartsthat record a continuous water surface stage. A sample chart for the Rose Canal spill, withaccompanying descriptive notes, is shown in Exhibit 1. By converting the stage to a head on a spillweir, the flow can be computed.

IID hydrographers estimated mean daily flows from the Stevens Recorder charts by estimatingthe average daily head on the spill weir and applying a rating curve for the given site. The ratingcurve is based on the sharp-crested weir equation. The mean daily flow estimated by thehydrographer is based on a day that generally starts at 10:00 a.m. or 12:00 noon.

The procedure described in this document was developed to generate an hourly flow recordfrom Stevens Recorder charts and to compute daily flows from this hourly record. A list of the spillsites for which the charts were processed, and their periods of record, is provided in Exhibit 2. For anumber of these spill sites Stevens Recorders have been removed and replaced with data loggers.The periods of record for which flow records were recorded by data loggers are also listed in Exhibit2. The data loggers provide an hourly record which was processed by IID staff and incorporated intothe final spill data base. Daily flows were computed from the data logger record using the sameprocedure used with the Stevens Recorder chart record.

2. Procedure

2.1. Digitizing

Each weekly Stevens Recorder chart was converted to a table of hourly stage records using aJandel Scientific digitizer pad and Sigmaplot software. The digitizer was calibrated such that whenthe chart was traced a data point was recorded on each hour. The raw digitized data record fromeach weekly chart was stored in a separate data file. These weekly data files were given names thatidentify the spill site, the year and the chart number for that year. For example, the data file for thefirst chart in 1995 for the Rose Canal spill was named ROS95-01 .PRN. It should be noted that thedata processing procedure requires that the main part of the filename (the part to the left of the ".")must have eight characters. The raw digitized data file for the Rose Canal chart shown in Exhibit 1 isprovided in Exhibit 3.

2.2. Pre-processing Raw Digitized Data Using Program PRESORT1

The first step in processing the digitized chart data was converting the sequential time in thedigitized data file (column 1 in Exhibit 3) to the corresponding date and time from the chart. To this, a FORTRAN program called PRESORT1 was developed (see Appendix A for the PRESORT1source code listing). For each weekly chart, PRESORT1 requires as input the raw digitized data file,the filename of the raw digitized data file and the date of the first day on the chart. The filename anddate are input interactively by the user, that is, PRESORT1 prompts the user for this informationduring its execution. The resulting data file is similar to the weekly raw digitized data file, but nowincludes the date and time. The PRESORTI output file corresponding to the Rose Canal spill raw

CVC(MBK)File: MBKDIGTZ.RPT I April 22, 1997

Page 5: Development of Hourly and Daily Data Records from Stevens

digitized data file shown in Exhibit 3 is provided in Exhibit 4.

The raw digitized data file may contain more than one record for a given hour (which wouldbe the case for a nearly vertical line on the chart). The PRESORT1 program removes duplicate hoursby using only the last record for an hour with more than one record.

It is also a characteristic of the digitizer that if the digitizer pointer is moved horizontally tooquickly, which can be the case for flat horizontal lines on the chart, data points may not be recordedfor each hour. PRESORT1 fills in these missing points using linear interpolation.

2.2.1. PRESORT1 Execution

The following is a step-by-step description of the procedure used for the PRESORT 1program execution.

ao Set up a working directory for each year of record for the given site. Place all of theweekly raw digitized data files for the corresponding years in these directories.

bo Set up a batch input file that contains the information that the PRESORT1 programrequires the user to provide interactively, that is, the weekly raw digitized datafilenames and first date of each chart. The batch input file for the 1995 Rose Canalspill, ROSE95.IN, is provided in Exhibit 5.

c. Execute PRESORT1 by entering the following command at the DOS prompt:

PRESORT 1 filename.in

Where "filename.in" is the name of the batch input file described in step (b),e.g. ROSE95.IN.

do The PRESORT1 weekly output files are combined and edited so that each year’s datais stored in a separate file. These yearly data files are called the DAT files and aregiven names that identify the spill site and the year. For example, the data file thatcontains the 1995 hourly Rose Canal spill record is called ROSE95.DAT.

2.3. Computing Hourly Flows Using Program SC-HOUR

SC-ttOUR is a FORTRAN program that was developed to compute the hourly flows from thedigitized chart record. A listing of the SC-HOUR source code is provided in Appendix B.

SC-HOUR converts the digitized elevation data to a head on the spill weir and computes thecorresponding flow using the sharp-crested weir equation (1) with a weir coefficient of 3.33. exception to this occurs at the Trifolium Lateral 5 and Trifolium Lateral 9 spills. These sites areunique in that their Stevens Recorders were able to record water surface elevations when the gateswere open. However, with the gates open it is assumed that the spills have the characteristics of abroad-crested weir and that the weir coefficient of 3.33 is not appropriate. For the gate open periodsat these sites a weir coefficient of 2.7 is used. The discharge equation follows.

CVC(MBK)File: MBKDIGTZ.RPT 2 April 22, 1997

Page 6: Development of Hourly and Daily Data Records from Stevens

Q = Cw(W)(H)3/ 2 (1)

Where Q = flow in cfs,c,~ = weir coefficientw = weir crest width in feet,H -- head on weir in feet.

The stage data from the digitized Stevens Recorder charts ranges from -0.05 feet to 0.95 feet,a total range of 1 foot. To convert this reading to an elevation, the elevation corresponding to zeroon the chart (called the chart datum) must be provided. To calculate the head on the weir, theelevation of the weir crest (called the overpour elevation) must also be provided. The overpourelevation can be changed by adding and removing grade boards.

As an example, refer to the record for the Rose Canal spill on hour 12 of 3/5/95 in Exhibit 6(p. 6-2). The digitized stage for this hour, as also seen in Exhibit 4, is 0.846 feet. The chart datum 2.00 feet and the overpour elevation is 2.50 feet. The head is computed as the stage plus the chartdatum minus the overpour elevation, which in this example equals 0.346 feet. The weir crest widthfor the Rose Canal spill is 12 feet (144 inches). Therefore the computed flow for hour 12

Q = 3.33(12)(0.346)3/~ = 8.13 cfs.

During execution, the SC-HOUR programs prompts the user to provide the followinginformation:

- Yearly digitized data filename (e.g. ROSE95.DAT)- Site Name (e.g. Rose Canal)- Weir width in inches- Initial chart datum- Date and time of each datum change and the new datum- Initial overpour elevation- Date and time of each overpour elevation change and the new overpour elevation- Starting and ending dates and times of periods in which the record is no good

The SC-HOUR program produces the following output files:

SC-HOUR.OUT Tabulation of hourly records listing recorded stage, datum, overpourelevation, computed head, computed flow (see Exhibit 6).

SC-HOUR.ASC Comma delimited file with data, hour and flow used for importing intodatabase file (see Exhibit 7).

The output files are renamed to identify the spill site and the year. For example, the hourlyoutput files for the 1995 Rose Canal spill were renamed ROS95-HR.OUT and ROS95-HR.ASC.

CVC(MBK)File: MBKDIGTZ.RPT 3 April 22, 1997

Page 7: Development of Hourly and Daily Data Records from Stevens

2.3.1. SC-HOUR Execution

The following is a step-by-step description of the procedure used for the SC-HOUR programexecution.

ao Set up a batch input file that contains the information required by the SC-HOURprogram as noted in Section 2.3. The SC-HOUR batch input file for the 1995 RoseCanal spill is provided in Exhibit 8.

b. Execute SC-HOUR by entering the following command at the DOS prompt:

SC-HOUR filename.in

Where "filename.in" is the name of the batch input file described in step (a),e.g. ROS95HR.IN.

Run the CHKDAT program (see Appendix C for source code listing) to findconsecutive records with excessive flow changes (the definition of excessive dependson the site, but for most sites is in the range of 5 cfs to 10 cfs). This step helps to flagerrors that may occur if the date and time of datum and overpour changes areincorrectly defined.

d. Review results of CHKDAT and rerun SC-HOUR if necessary.

2.4. Computing Daily Flows Using Program SC-DAY

SC-DAY is a FORTRAN program that is used to compute daily flow volumes from the hourlyrecord produced by SC-HOUR. A listing of the SC-DAY source code is provided in Appendix D.SC-DAY provides the user with the option of defining the hour on which the measurement daybegins; for the spill sites listed in Exhibit 2, the measurement day starts at hour 1 and ends at hour 24.The mean daily flow is computed as the average of the hourly flows for hours 1 through 24.

Estimates are made for periods of missing record of 120 hours or less. The estimationprocedure fills in data gaps using the average of the hourly records preceding the gap equal in numberto the number of missing hourly records in the gap and the hourly records following the gap equal innumber to the number of missing hourly records in the gap. For example, the spill volume in a datagap of thirty hours is estimated using the average flow of the thirty hours preceding the data gap andthe thirty hours following the data gap. SC-DAY, however, does not make estimates for data gapsthat occur at the beginning or end of a year.

During execution, SC-DAY prompts the user to provide the following information:

The name of the ASC file resulting from the SC-HOUR executionThe hour on which the day beginsThe date and time of the first good record if not Jan. 1 at 0100 hoursThe date and time of the last good record if not Dec. 31 at 2400 hours

CVC(MBK)File: MBKDIGTZ.RPT 4 April 22, 1997

Page 8: Development of Hourly and Daily Data Records from Stevens

SC-DAY produces the following output files:

SC-DAY.OUT Tabulation of daily flows and volumes without and with the CVCestimates (see Exhibit 9); also includes the number of good records each day.

SC-DAY.ASC Comma delimited file containing date, daily flow and volume withoutCVC estimates, and daily flow and volume with CVC estimates (seeExhibit 10) for importing into database file.

SC-DAY.TB1 Annual table of daily volumes without CVC estimates (see Exhibit 11).

SC-DAY.TB2 Annual table of daily volumes with CVC estimates (see Exhibit 12).

The output files are renamed to identify the spill site and the year. For example, the dailyoutput files for the 1995 Rose Canal spill were renamed ROS95-DY.OUT, ROS95-DY.ASC,ROS95-DY.TB1 and ROS95-DY.TB2.

2.4.1. SC-DAY Execution

The following is a step-by-step description of the procedure used for the SC-DAY programexecution.

Set up a batch input file that contains the information that is interactively requested bySC-DAY. Two examples are provided below.

Example 1: ROS95-HR.ASC100

(hourly data file)(day starts at hour 1 (0100 hours))(record starts at 0100 hrs. on Jan. 1)(record ends at 2400 hrs. on Dec. 31)

Example 2: ROS95-HR.ASC111,5,12112,15,8

(hourly data file)(day starts at hour 1 (0100 hours))(record does not start at 0100 hrs. on Jan. 1)(record starts at 1200 hrs. on Jan. 5)(record does not end at 2400 hrs. on Dec. 31)(record ends at 0800 hrs. on Dec. 15)

b. Execute SC-DAY by entering the following command at the DOS prompt:

SC-DAY filename.in

Where "filename.in" is the name of the batch input file described in step (a),e.g. ROS95DY.IN.

CVC(MBK)File: MBKDIGTZ.RPT 5 April 22, 1997

Page 9: Development of Hourly and Daily Data Records from Stevens

3. Comparison of Computed Spills with Hydrographer’s Estimates

A graphical comparison was made of the computed mean daily flows and the hydrographer’sestimated mean daily flows. Since the daily flows computed from the digitized Stevens Recordercharts were defined as midnight to midnight, and the hydrographer’s daily flows generally started at1000 or 1200 hours, the daily flows would not match exactly. However, this comparison was usefulin checking for obvious differences that may indicate differences in interpretation of the charts. Whenobvious differences were found, the charts were reviewed and a determination was made as towhether the interpretation made in the digitizing procedure or the interpretation by the hydrographerwas correct. If a misinterpretation was made in the digitizing, the procedure described in Section 2was repeated with the correct interpretation. The comparison chart for the 1995 Rose Canal spill isprovided in Exhibit 13.

4. Data Logger Record Processing

As can be seen in Exhibit 2, most of the processed spill sites changed measurement devicesfrom Stevens Recorders to data loggers prior to the end of 1995. The data loggers take watersurface readings and compute discharges at fifteen minute intervals, but only record hourly values.The hourly stages and discharges are the averages of the four fifteen minute readings that make upthat hour.

The data loggers are calibrated to the top of the spill gate, therefore the recorded values mustbe adjusted for the addition or removal of grade boards at the spill gate. I.I.D. staff made thisadjustment as part of the quality control processing of the data logger record. The quality controlprocess also included a review of the hydrographers’ logs to determine and designate periods duringwhich the record was unreliable. The final product of this quality control process was the hourlydischarge record.

The daily discharge record for the data logger measurement periods was computed from thehourly record in the same way as was done for the Stevens Recorder measurement periods asdescribed in Section 2.4.

5. Database File Development

The hourly and daily spill records from the digitized Stevens Recorder charts and from thedata loggers are combined and imported into database files. This results in an hourly database file anda daily database file for each spill site. The database files contain the spill data for the entire period ofrecord for the given site. Exhibits 14 and 15 show examples of the contents of the hourly and dailydatabase files, respectively.

CVC(MBK)File: MBKDIGTZ.RPT 6 April 22, 1997

Page 10: Development of Hourly and Daily Data Records from Stevens

Exhibit 1Stevens Recorder Chart

( Rose Canal spill, 3/1/95 to 3/8/95)

[See page 1-2 for descriptions of notes on chart.]

~i ,~ Letm, d & Stevens r’ Inc ~¢-,;’e(i )n Or.~ Laho m t:.5..~

~ ~ ’ ~ ~ ’~’’’I .... ~ ’ ~ ,,’~ ..~’~ r . :~ .. ~. , ~’ I .... ~ ’ ’

= /’ ’ ~ ’ , ’ I . ’ : ’~ ’. ; ~ " :: ’. ’, ’ ~ :’: ,_~;:: . ’ ~ "’ ~ ’" ,: ’ " ....... i.~ X ’, : ~ ~ ’ ~ ~ " ’ ¯ ’~ ;, , " ~¯ : " ’ " - I ’ ’ ’ ¯ .

~ ~~’. :. :: :~:.~ .~, ~,. ~ .-., . .’ , : : . ;. ’,, .,,. : ... ~ ,..~ ~:~ ~ , ,. , , , ~: ,, , . ~ , . , ~. , ~ , . ; , ,.~ 0 .... ~ ........... ~ ..... ~ ...... ~ ......... ~,, , ~ .....

I’~ ,~ ,,, ....... ~ .... , .... :, .’ ,~, , . ~ ....... , ’ . ,’. , .... ’,,~ ...... . ,~ .................. ~’. ............. t,.~ i~ . F .. . i "~’,~;~’, I ; ~. .~ . ~ ’ ~,, . ’. .. - . ¯ .’,’,~; ~ "’, ..... ’ , ’ ,i ’’, Pa’ ,;~: :1’’ ’ ’: " ""’

.:. I .... ¯ .. ¯ 1~,, .......

~ ,, ’’’’1’ ’ ’ ’ .... ’’’ " ’ ’’ ....... :~ ’’’~ ’: ’~ ~1 ’1 ’ " ’ ~:: I I i "~ l , ’ ] ’, ,~ . : , : I , , I

~~ ::.~, ’.. ,,’. : ~. ., ’, ~ ’ -,, i,,’,- ,.,, ....

. . . ., , .,.I!~’ ~ ~ ~ ] [ i ] ; " , i i ,~’_u

CVC(MBK) 1-1

Page 11: Development of Hourly and Daily Data Records from Stevens

Exhibit 1Stevens Recorder Chart

( Rose Canal spill, 3/1/95 to 3/8/95)

General Notes:

The Stevens Recorder chart is read from (ight to left.

The vertical axis is the water level measurement relative to chart zero. Each numbered increment is a tenth of a foot(0.1 feet) and each grid increment is a hundredth of a foot (0.01 feet).

The horizontal axis represents time. Each grid increment is 2 hours. The chaR spans a period of eight days.

The charts were changed once a week.

Notes Referenced to Sample Chart on page 1-1:

[1] Horizontal axis: Date. Note that time increases from right to left.

[2] Vertical axis: Water level relative to gage zero in tenths of a foot ("9" = 0.9 feet)

[3] "I-3-95, G=2.83, 1:05 P.M." : This note indicates the date ("1-3-95", which, to be consistent with otherdate notations on the chart, should be 3-1-95), the water level ("G=2.83’’) and the time ("1:05 P.M.") which the char was installed. Based on the initial water level of 2.83 and the char reading of 0.83, thechart datum, or char zero, is at an elevation of 2.00 feet.

[4] "O.P. @ 2.50" : This note indicates that the overpour elevation at the time the char was installed was2.50 ft.

[5] "ROSE LATERAL" : This note identifies the spill.

[6] "-1 6" Board, OP 2.00" : This note indicates that one 6 inch board was removed from the spill weir ("-16" board"), changing the overpour elevation to 2.00 feet ("OP 2.00") on 3/I/95 at 1800 hours. overpour elevation is the elevation of the weir crest.

[7] "+1 - 6" Board, OP 2.50" : This note indicates that one 6 inch board was added to the spill weir ("+1 - 6"board"), changing the overpour elevation to 2.50 feet ("OP 2.50") on 3/5/95 at 0800 hours.

[8] "O.P. 2.50" : This note indicates that the overpour elevation at the time the char was removed was 2.50feet.

[9] "3-8-9~, G - 2.87, T o 11:30" : This note indicates the date ("3-8-95"), the water level ("G - 2.87") the time ("T - 11:30") at which the char was removed.

[10] "0.36" : Hydrographer’s estimate of the mean daily head in feet of water on the spill weir. Themeasurement day, as defined by the hydrographer, generally starts at 10:00 A.M. or 12:00 noon.

[11] "8.0" : Hydrographer’s estimate of mean daily flow. This is determined using the mean daily headdescribed in Note [10] and the rating curve for the given site.

CVC(MBK) 1-2

Page 12: Development of Hourly and Daily Data Records from Stevens

Exhibit 2Summary of Spill Sites and Measurement Periods

Stevens Recorder Data Logger

Spill Site Number ofPeriod of Record Charts Period of Record

Elder Canal 01/01/82 - 09/07/90 455 10/01/90 - 07/01/96

Elder Lateral 13 10/31/85 - 08/31/90 253 10/01/90 - 07/01/96

Elm Canal 01/04/82 - 10/25/95 723 10/26/95 - 08/27/96

Fillaree Canal 01/01/83 - 11/30/95 674 12/01/95 - 06/30/96

Munyon Lateral 02/15/85 - 11/02/95 561 11/03/95 - 07/01/96

Myrtle Lateral 02/14/85 - 11/02/95 561 11/03/95 - 07/01/96

Olive Lateral 01/05/83 - 10/27/95 670 10/28/95 - 07/01/96

Orchid Lateral 01/05/83 - 11/02/95 671 11/03/95 - 07/01/96

R Lateral 01/01/82 - 12/13/95 729 12/14/95 - 07/01/96

Redwood Canal 01/01/82 - 12/14/94 I/ 210

Rose Canal 01/01/82 - 10/27/95 722 10/28/95 - 07/01/96

S Lateral 11/08/85 - 11/29/95 526 11/30/95 - 07/01/96

Trifolium Lateral 5 11/20/85 - 11/29/95 524 11/30/95 - 07/01/96

Trifolium Lateral 9 11/14/85 - 09/21/93 ~/ 475 3/

Vail Lateral 6 01/01/82 - 12/08/95 4/ 668 12/09/95 - 07/01/96

Wormwood Canal 10/30/85 - 08/31/90 254 09/03/90 - 07/01/96

Total ]l 8,676

Charts for 1986 through 1991 and 1994 ",,,ere digitized by Kcller-Bliesner and processcd by liD (1992 and1993 charts were not awfilable).

z, Charts for 1992 and 1993 were digitized by Keller-Bliesner and processed by liD.

Drop lcafgate installcd at Trifolium Latcral 9 spill and measurement made by PLC starting on 03/02/94.

No charls available from 01/01/91 to 12/29/91.

CVC(MI3K) 2-1 rcv Nov. 25,1997

Page 13: Development of Hourly and Daily Data Records from Stevens

Exhibit 3Digitized Stevens Chart Raw Data File

Example: File ROS95-09.PRN - 1995 Rose Canal spill, chart number 9 (see Exhibit 1), 3/1/95 at 1300 hours

3/8/95 at 1200 hours.

The first column is the sequential time in hours and the second column is the chart reading relative to chart

zero. The initial hour of 13.00000 is 1:00 p.m. on 3/1/95, the first hourly value recorded on the chart.

13 0000014 0000015 0000016 0000017 0000018 0000019 0000019 0000020 0000020 0000020 0000021 0000022 0000023 0000024 0000025 0000026 0000027 0000028 0000029 0000030 0000031 0000032 0000033 0000034 0000035 0000036 0000037 0000038 0000039 0000040 0000041 0000042 0000043 0000044 0000045 0000046 0000047 0000048 0000049 0000050 0000051 0000052.0000053.0000054.0000055.0000056.0000057.000O058.0000059.0000060.OOOOO61.0000062.0000063.0000064.0000065.0000066.0000067.00000

0.838430.855920.848710.829890.795490.771490.724090.644400.518330.493010.463380.423260.382600.357180.338950.330110.328920.328520.332470.345320.363010.380770.401660.388570.369830.381760.399330.387750.419450.412540.388420.419240.421320.417520.412620.404660.398010.393830.385850.386460.409230.500110.577590.593720.592180 590710 589510 499760 393290 347770 333860 328170 331420 352730 362880 373780 384960 39792 (cont.)

CVC(MBK) 3-1

Page 14: Development of Hourly and Daily Data Records from Stevens

Exhibit 3Digitized Stevens Chart Raw Data File

68.0000069.0000070.0000071.0000072.0000073.0000074.0000075.OOO0076.0000077.0000078.0000079.0000080.0000081.0000082.0000083.0000083.0000083,0000084.0000085.0000086.0000087.0000088.0000089.0000090.0000091.0000092.0000093.0000094.0000095.0000096.0000097.0000098.0000099.00000

i00.00000101.00000102.00000103.00000104.00000104 00000104 00000105 00000106 00000107 00000108 00000109 00000II0 00000iii 00000112 00000113 00000114 00000115 00000116 00000117 00000118 00000119 00000120 00000121.00000122.00000123.00000124.00000125.00000126.00000127.00000128.00000129.00000

0.400390.396570.391440.387280.380740.375240.367180.364150.362880.362970.36460O. 367680.370850.369270.348790.099190.142250.236760.276430.272710.275700.268930.265530.264660.264910.268860.281530.280150.273030.263930.255470.250130.249730.253450.272580.286520.294310.304720.325560.390380.539200.716740.804100.854380.845900.840010.832060.823550.808620.799840.803440.810020.814400.828580.825180.82926

82815828958347684243838268422485343859978633086545 (cont.)

CVC(MBK) 3-2

Page 15: Development of Hourly and Daily Data Records from Stevens

Exhibit 3Digitized Stevens Chart Raw Data File

130 00000131 00000132 00000133 00000134 00000135 00000136.00000137.00000138.00000139.00000140.00000141.00000142.00000143.00000144.00000145.00000146.00000147.00000148.00000149.00000150.00000151.00000152.00000153.00000154.00000155.00000156.00000157.00000158.00000159.00000160.00000161.00000162.00000163.00000164.00000165.00000166.00000167.00000168,00000169.00000170.00000171.00000172.00000173.00000174.00000175.00000176.00000177.00000178.00000179.00000180.00000

0.857790.861570.861100.837200.807900.783130.752960.737150.738240.739680.741200.741660.743790.751710.766620.795140.809570.811900.811720.804680.795640.785550 782610 781470 780470 780150 783300 792040 797420 801790 804920.805220.798630.786940.778080.775040.775200.775220.774810.774280.774230.779780.784730.786640.791010.803520.832180.939790.899540.878390.87223

CVC(MBK) 3-3

Page 16: Development of Hourly and Daily Data Records from Stevens

Exhibit 4Output File from PRESORT1 Processing of Raw Digitized Data

Example: File ROS9509.OUT - 1995 Rose Canal spill, chart number 9 (see Exhibit 1), 3/1/95 at 1300 hours

3/8/95 at 1200 hours.

The first column is the sequential time in hours corresponding to the sequential time in the raw digitizeddata file (see Exhibit 3), the second through fifth columns are the month, day, year and time of day,

respectively, and the sixth column is the chart reading relative to chart zero.

13 3 1 1995 1314 3 1 1995 1415 3 1 1995 1516 3 1 1995 1617 3 1 1995 1718 3 1 1995 1819 3 1 1995 1920 3 1 1995 2021 3 1 1995 2122 3 1 1995 2223 3 1 1995 2324 3 1 1995 2425 3 2 1995 126 3 2 1995 227 3 2 1995 328 3 2 1995 429 3 2 1995 530 3 2 1995 631 3 2 1995 732 3 2 1995 833 3 2 1995 934 3 2 1995 i035 3 2 1995 ii36 3 2 1995 1237 3 2 1995 1338 3 2 1995 1439 3 2 1995 1540 3 2 1995 1641 3 2 1995 1742 3 2 1995 1843 3 2 1995 1944 3 2 1995 2045 3 2 1995 2146 3 2 1995 2247 3 2 1995 2348 3 2 1995 2449 3 3 1995 150 3 3 1995 251 3 3 1995 352 3 3 1995 453 3 3 1995 554 3 3 1995 655 3 3 1995 756 3 3 1995 857 3 3 1995 958 3 3 1995 I059 3 3 1995 ii60 3 3 1995 1261 3 3 1995 1362 3 3 1995 1463 3 3 1995 1564 3 3 1995 1665 3 3 1995 1766 3 3 1995 1867 3 3 1995 1968 3 3 1995 2069 3 3 1995 21

.838

.856

.849

.830

.795.771.644.463.423.383.357.339.330.329.329.332.345.363.381

402389370382399388419413388419421418413405398394

.386

.386

.409

.500

.578

.594

.592

.591

.590

.500

.393

.348

.334

.328

.331

.353

.363

.374

.385

.398

.400

.397 (cont.

CVC(MBK) 4-I

Page 17: Development of Hourly and Daily Data Records from Stevens

Exhibit 4Output File from PRESORT1 Processing of Raw Digitized Data

70 3 3 1995 2271 3 3 1995 2372 3 3 1995 2473 3 41995 174 3 4 1995 275 3 4 1995 376 3 4 1995 477 3 4 1995 578 3 4 1995 679 3 4 1995 780 3 4 1995 881 3 4 1995 982 3 4 1995 i083 3 4 1995 II84 3 4 1995 1285 3 4 1995 1386 3 4 1995 1487 3 4 1995 1588 3 4 1995 1689 3 4 1995 1790 3 4 1995 1891 3 4 1995 1992 3 4 1995 2093 3 4 1995 2194 3 4 1995 2295 3 4 1995 2396 3 4 1995 24

97 3 5 1995 198 3 5 1995 299 3 5 1995 3

i00 3 5 1995 4I01 3 5 1995 5102 3 5 1995 6103 3 5 1995 7104 3 5 1995 8105 3 5 1995 9106 3 5 1995 10107 3 5 1995 Ii108 3 5 1995 12109 3 5 1995 13ii0 3 5 1995 14iii 3 5 1995 15112 3 5 1995 16113 3 5 1995 17114 3 5 1995 18115 3 5 1995 19116 3 5 1995 20117 3 5 1995 21118 3 5 1995 22119 3 5 1995 23120 3 5 1995 24121 3 6 1995 1122 3 6 1995 2123 3 6 1995 3124 3 6 1995 4125 3 6 1995 5126 3 6 1995 6127 3 6 1995 7128 3 6 1995 8129 3 6 1995 9130 3 6 1995 i0131 3 6 1995 Ii132 3 6 1995 12133 3 6 1995 13134 3 6 1995 14135 3 6 1995 15136 3 6 1995 16

.391

.387

.381

.375

.367

.364

.363¯ 363.365.368.371.369.349.237.276.273.276.269.266.265.265.269.282.280,2732642552502502532732872943055397178O4854846840832824809800803810814829825829828829835842838842

.853

.860

.863

.865

.858

.862

.861

.837

.808

.783

.753 (cont.)

CVC(MBK) 4-2

Page 18: Development of Hourly and Daily Data Records from Stevens

Exhibit 4Output File from PRESORT1 Processing of Raw Digitized Data

137 3 6 1995 17138 3 6 1995 18139 3 6 1995 19140 3 6 1995 20141 3 6 1995 21142 3 6 1995 22143 3 6 1995 23144 3 6 1995 24145 3 7 1995146 3 7 1995 2147 3 7 1995 3148 3 7 1995 4149 3 7 1995 5150 3 7 1995 6151 3 7 1995 7152 3 7 1995 8153 3 7 1995 9154 3 7 1995 I0155 3 7 1995 II156 3 7 1995 12157 3 7 1995 13158 3 7 1995 14159 3 7 1995 15160 3 7 1995 16161 3 7 1995 17162 3 7 1995 18163 3 7 1995 19164 3 7 1995 20165 3 7 1995 21166 3 7 1995 22167 3 7 1995 23168 3 7 1995 24169 3 8 1995 1170 3 8 1995 2171 3 8 1995 3172 3 8 1995 4173 3 8 1995 5174 3 8 1995 6175 3 8 1995 7176 3 8 1995 8177 3 8 1995 9178 3 8 1995 10179 3 8 1995 Ii180 3 8 1995 12

7377387407417427447527677958108128128O579678678378178078078379279780280580579978777877577577577577477478078578779180483294090O878872

CVC(MBK) 4-3

Page 19: Development of Hourly and Daily Data Records from Stevens

Exhibit 5PRESORT1 Batch Input File

Example: File ROSE95.1N - 1995 Rose Canal Spill

The first line is the name of a file containing raw digitized d~a. The second line is the date of the first day

on the chart co~esponding to the data file named on the preceding line. The third line is a response to the

program indicating whether to process an additional file or not (Y = yes, N = no).

ROSE9501.PRN1 4 1995YROSE9502.PRN1 ii 1995YROSE9503.PRN1 18 1995YROSE9504.PRN1 25 1995YROSE9505.PRN2 1 1995YROSE9506.PRN2 8 1995YROSE9507.PRN2 15 1995YROSE9508.PRN2 22 1995YROSE9509.PRN3 1 1995Y

ROSE9539.PRN9 27 1995YROSE9540.PRNi0 4 1995YROSE9541.PRNI0 ii 1995YROSE9542.PRNi0 18 1995YROSE9543.PRN10 25 1995N

Note:The Rose Lateralspill Stevens Recorder was removed on 10-27o95, thereforethe chart beginning on 10-25-95 was thelastchartin1995.

CVC(MBK) 5-t

Page 20: Development of Hourly and Daily Data Records from Stevens

Exhibit 6SC-HOUR.OUT: Program SC-HOUR Output File

Example: Except ~om file ROS95-HR.OUT - Rose Canal 1995 Spill, 3/1/95 at 1300 hours to 3/8/95 at 1200

hours (corresponds to period shown on chart in Exhibit 1).

Hourly Stevens Chart Data for: ROSE CANAL

Weir Width = 144.0 inches

Processed on: 10-21-1996 at 16:00

OverpourMo Dy Yr Hr Stage(ft) Datum(ft) Elev(ft) Head(ft) Flow(cfs)

3 1 1995 133 1 1995 143 1 1995 153 1 1995 163 1 1995 173 i 1995 183 1 1995 193 I 1995 203 1 1995 213 1 1995 223 1 1995 233 i 1995 243 2 1995 13 2 1995 23 2 1995 33 2 1995 43 2 1995 53 2 1995 63 2 1995 73 2 1995 83 2 1995 93 2 1995 I03 2 1995 ii3 2 1995 123 2 1995 133 2 1995 143 2 1995 153 2 1995 163 2 1995 173 2 1995 183 2 1995 193 2 1995 203 2 1995 213 2 1995 223 2 1995 233 2 1995 243 3 1995 13 3 1995 23 3 1995 33 3 1995 43 3 1995 53 3 1995 63 3 1995 73 3 1995 83 3 1995 93 3 1995 i03 3 1995 II3 3 1995 123 3 1995 133 3 1995 14

.84

.86

.85

.83

.80

.77

.64

.46

.42

.38

.3634333333333436384O3937384O394241394242.42.41.41.40.39.39.39.41.505859595959503935333333

2.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002 002 002 002 002 002 002 002 002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.00

2.502.502.502.502.502.002.002 002 002 002 002 002 002 002 002 002 002 002 002 002 002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02.002.002.00

.34

.36

.35

.33

.30

.77

.64.46.42.38.36.34.33.33.33.33.34.36.38.40.3937384O39424139424242414140393939

.41

.50

.58

.59.59.59.59.50.39.35.33.33.33

7 858 498 247 586 40

27 0520 6512 5910 99

9 478 527 897 587 547 547.648.i08.749.40

10.199.708.999.43

10.079.66

10.8410.61

9.6610.8410.9210.8010.6110.30i0 03

9 889 589 58

I0 4514 1317 5618 2918 2018 1618.1114.13

9.848.207.717.517.61 (cont.)

CVC(MBK) 6-1

Page 21: Development of Hourly and Daily Data Records from Stevens

Exhibit 6SC-HOUR.OUT: Program SC-HOUR Output File

3 !9953 19953 19953 19953 19953 19953 19953 19953 19953 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19954 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19955 19956 19956 19956 19956 19956 19956 19956 19956 1995

15161718192O21222324

123456789

i0Ii12131415161718192021222324

123456789

I0ii12131415161718192021222324

12345678

.35,36.37.38.40.40.40.39.39.38.38.37.36.36.36,37.37,37.37.3524282728272726262728282726252525252729293154728085858483.82.81.80.80.81.81.83.82.83.83.83.83.84.84.84.85.86.86

2.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002 O02 O02 O02 O02 O02 O02 O02 O02 002 O02 O02 O02.002.002.002.002.002.002.002,00

2 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502 502 502 502 502 502 502 50

.35

.36

.37

.38

.40

.40

.40

.39

.39

.38

.38

.37

.36

.36

.36

.37

.37

.37

.37

.35

.2428272827272626272828

2726

2525252527292931O422303535343332313030313133.32.33.33.33.33.34.34.34.35.36.36

8 388 749 149 55

i0 03i0 iii0 O0

9.779.629.409.188.888.788.748.748.818.929.038.968.244.615.795.705.795.585.485.455.455.585.985.925.705.425.154.994.995.095.706.146.376.73

.314.046.708.428.137 927 647 376 866 576 666 907 037 547 407 547 517.547.757.997.857.998.388.638.74 (cont.)

CVC(MBK) 6-2

Page 22: Development of Hourly and Daily Data Records from Stevens

Exhibit 6SC-HOUR.OUT: Program SC-HOUR Output File

3333333333333333333333333333333333333333333333333333

1995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995199519951995

9i0Ii12131415161718192021222324

123456789

i0ii12131415161718192021222324

123456789

i0ii12

.87

.86.86.86.84.81.78.75.74.74.74.74.7474757780

8181818180797878787878798O8O81818079

787777

7777777778.79.79.79.80.83.94.90.88.88

2.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02 O02.002.002.00

2 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.502.50

.37

.36.36.36.34.31.28.25.24.24.24.24.24.24.25.27.30.31.31.31.31.30.29.28.28.28.2828293O3031313029282727272727272829292930334440.38.38

8818 568 708 677 826 836 025 094 614 644 704 734 764 825 O65 516 406 906 966 966.736.446.116.025.955.925.926.026.316.476.636.736.736.536.145.865.765.765.765.765.735.735.926.086.146.276.707.64

11.6610.11

9.299.25

CVC(MBK) 6-3

Page 23: Development of Hourly and Daily Data Records from Stevens

Exhibit 7SC-HOUR.ASC: Program SC-HOUR Output File

Example: Excerpt from file ROS95-HR.ASC - 1995 Rose Canal spill, 3/I/95 at 1300 hours to 3/8/95 at 1200

hours (corresponds to period recorded on Stevens Recorder chart in Exhibit 1).

This file contains the date, time of day and flow in cfs in a comma delimited format that facilitates the

importation of this data into a database file.

03/01/b503/01/9503/01/9503/01/9503/01/9503/01/9503/01/9503/01/9503/01/9503/01/9503/01/9503/01/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/02/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/9503/03/95

13141516171819202122

,2324

123456789

i0ii1213141516171819

.20,21,22,2324

123456789

I0ii12131415161718192O21

7.9,8.5,8.2,7.6,6.4,

27.1,20.7,12.6,Ii.0,

9.5,8.5,7.9,7.6,7.5,7.5,7.6,8.1,87,9 4,

i0 2,9 7,9 O,9 4,

i0 I,97,

i0 8,i0 6,

97,i0 8,i0 9,i0 8,10 6,i0 3,i0 O,

9 9,9 6,9 6,

10 5,14 I,17 6,18 3,18 2,18 2,18 I,14 i,

98,8 2,7 7,7 5,7 6,84,8 7,91,9 5,

I0 O,i0 i,10 O, (cont.)

CVC(MBK) 7-1

Page 24: Development of Hourly and Daily Data Records from Stevens

Exhibit 7SC-HOUR.A$C: Program SC-HOUR Output File

03/03/9503/03/9503/03/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/04/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/05/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/95

,222324

123456789

i0ii12131415161718192021222324

123456789

i0ii12131415161718192021222324

123456789

i0ii121314151617

6,4,2,9,8,7,7,8,9,O,O,2,6,8,7,8,6,5,5,5,6,O,9,7,4,i,O,O,i,7,i,4,7,3,O,7,4,i,9,6,4,9,6,7,9,O,5,4,5,5,5,7,O,9,O,4,6,7,8,6,7,7,8,8,O,I,6, (cont.)

CVC(MBK) 7-2

Page 25: Development of Hourly and Daily Data Records from Stevens

Exhibit 7SC-HOUR.ASC: Program SC-HOUR Output File

03/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/06/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/07/9503/08/9503/08/9503/08/9503/08/9503/08/9503/08/9503/O8/9503/08/9503/08/9503/08/9503/08/9503/08/95

18192021222324

123456789

i0ii12131415161718192021222324

123456789

i0ii12

4.6,4.7,4.7,4.8,4.8,5.1,5.5,6.4,6.9,7.0,7.0,6.7,6.4,6.1,6.0,6.0,5.9,5.9,6.0,6.3,6.5,6.6,6.7,6.7,6.5,6.1,5.9,5.8,5.8,5.8,5.8,5.7,5.7,5.9,6.1,6.1,6.3,6.7,7.6,

11.7,10.1,

9.3,9.2,

CVC(MBK) 7-3

Page 26: Development of Hourly and Daily Data Records from Stevens

Exhibit 8SC-HOUR.IN: Batch Input File for Program SC-HOUR

Example: File ROS95HR.IN - 1995 Rose Canal spill.

Note: Program SC-HOUR is executed separately for each calendar year, therefore, this batch input filecontains all of the information needed for the given year (1995, in this example).

3 i0 84 4 ii4 6 84 17 84 22 65 3 125 6 65 16 125 24 i07 4 87 5 87 24 i07 31 188 ii 68 13 88 23 89 4 89 7 89 8 14

i0 4 i0i0 7 8i0 18 i0i0 26 8

ROSE 95. DATROSE CANAL144.2 Datum

1 13 6 i.1 13 7 2.i 13 12 i.1 14 i0 2.1 14 13 i.1 18 ii 2.5 5 Ii 3.5 5 14 2.5 16 12 I.5 24 i0 2.8 25 13 3.8 25 15 2.

i0 18 ii 3.i0 18 15 2.-999 0 0 02.00 Overpour

1 12 15 1.51 18 II 2.2 28 9 2.53 1 18 2.3 5. ff .2..5

2.2.52.2.52.2.52.1.5

2.2 522 522 522 5

2.2.5

2.2.52.2.52.

-999 0 0 0

(File containing the digitized 1995 Rose Canal spill data)(Spill site name)(Weir crest length in inches)(Initial chart datum, in feet)

(This section contains the month, day and timeof each datum change and the new datum)

("-999" indicates the end of the datum change section)(Initial overpour elevation, in feet)

(This section contains the month, day and time of eachoverpour elevation change and the new overpour elevation)

(The shaded lines contain information pertinentto the chart shown in Exhibit i)

("-999" indicates the end of the overpour elevation changesection)

(cont.

CVC(MBK) 8-1

Page 27: Development of Hourly and Daily Data Records from Stevens

Exhibit 8SC-HOUR.IN: Batch Input File for Program SC-HOUR

5 19 9 15 24 I0 08 28 8 19 1 I0 0

i0 16 12 1I0 18 ii 0i0 27 I0 1-999 0 0 0

(This section defines periods of bad or missing record.A "I" in the fourth column indicates the start of a periodwith bad or missing record; a "0" in the fourth columnindicates the start of a period of good record)

("-999" indicates the end of the input file)

Note: The Rose Canal spill Stevens Recorder was removed on 10-27-95, therefore the record following this time isdefined as missing.

CVC(MBK) 8-2

Page 28: Development of Hourly and Daily Data Records from Stevens

Exhibit 9SC-DAY.OUT: Program SC-DAY Output File

Example: Excerpt from file ROS95-DY.OUT - Rose Canal 1995 Spill.

The records highlighted by the box are for the period shown in the chart in Exhibit 1.

Site: ROSE CANAL

Processed on: 12-11-1996 at 8:32

Day of # of Records With CVC EstimatesYear Month Day Year Total Est. Q(cfs) Vol(AF) Rcrds Q(cfs) VoI(AF)

32 2 1 95 24 233 2 2 95 24 034 2 3 95 24 035 2 4 95 24 036 2 5 95 24 0

37 2 6 95 24 038 2 7 95 24 039 2 8 95 24 040 2 9 95 24 041 2 i0 95 24 0

42 2 Ii 95 24 043 2 12 95 24 044 2 13 95 24 045 2 14 95 24 046 2 15 95 24 0

47 2 16 95 24 148 2 17 95 24 049 2 18 95 24 050 2 19 95 24 0

51 2 20 95 24 052 2 21 95 24 053 2 22 95 23 254 2 23 95 24 055 2 24 95 24 056 2 25 95 24 0

57 2 26 95 24 058 2 27 95 24 059 2 28 95 24 0

4.366.504.394.577.40

10.9510.42

7.219.978.919.466.625 36

000000

8 7114 5113 2213 39ii 01

7.8O8.566.054.216.226.263.87

8.6412.89

8.719.07

14.6821.7120.6714.3119.7817 6718 7713 1210 63

00O000

17.2828.7926.2126.5621.8314.8216.9812.00

8.3612.3412.41

7.69

242424242424

242424242424242424242424242424242424242424

24

4.366.504.394 577 40

10 95i0 42

7 219 978 919 466 625 36

000000

8.7114.5113.2213.39ii.01

7.808.566.054.216.226.263.87

8.6412.89

8.719.07

14.6821 7120 6714 3119 7817 6718 7713 12i0 63

0000

.0017.2828.7926.2126.5621.8315.4616.9812.00

8.3612.3412.41

7.6960 3 1 95 24 0 6.82 13.53 24 6.82 13.5361 3 2 95 24 0 9.52 18.88 24 9.52 18.8862 3 3 95 24 0 11.42 22.65 24 11.42 22.6563 3 4 95 24 0 6.91 13.71 24 6.91 13.7164 3 5 95 24 0 6.43 12.76 24 6.43 12.7665 3 6 95 24 0 6.84 13.56 24 6.84 13.5666 3 7 95 24 0 6.28 12.46 24 6.28 12.4667 3 8 95 24 1 8.59 17.03 24 8.59 17.03 ,

68 3 9 95 24 1 9.54 18 92 24 9.54 18.9269 3 10 95 24 0 10.52 20 87 24 10.52 20.8770 3 ii 95 24 0 6.97 13 82 24 6.97 13.82

71 3 12 95 24 0 10.92 21 67 24 10.92 21.6772 3 13 95 24 0 11.24 22 29 24 11.24 22.2973 3 14 95 24 0 5.53 10 98 24 5.53 10.98

CVC(MBK) 9- i

Page 29: Development of Hourly and Daily Data Records from Stevens

Exhibit 10SC-DAY.ASC: Program SC-DAY Output File

Example: Excerpt from file ROS95-DY.ASC - 1995 Rose Canal spill.

This file contains the following data in a comma delimited format that is easily imported into a databasefile:

DATEGOODRECORDAVGFLW CFSMEASVOL AFESTFLW CFSESTVOL AF

DateNumber of hourly records in the given day.Mean daily flow in cfs without estimates for missing records.Daily volume in ac-ft.without estimates for missing records.Mean daily flow in cfs with CVC estimates for missing records.Daily volume in ac-ft.with CVC estimates for missing records.

The records highlighted by the box are for the period shown in the chart in Exhibit 1.

ROSE CANALDATE,GOODRECORD, AVGFLW_CFS,MEASVOL_AF, ESTFLW_CFS,ESTVOL_AF

02/’01/9502/02/9502/03/9502/04/9502/05/9502/06/9502/07/9502/08/9502/09/9502/10/9502/11/9502/12/9502/13/9502/14/9502/15/9502/16/9502/17/9502/18/9502/19/9502/20/9502/21/9502/22/9502/23/9502/24/9502/25/9502/26/95

24242424

242424

2424

242424

2424242424

,24,24,24,24,23,24,24,24,24

4.46.54.44.67.4

10.910.4

7.2i0.0

8.99.56.65.4

.0

.0

.08.7

14.513.213.411.0

7.88.66.14.26.2

8.612.9

8.79.1

14.721.720.714.319.817.718.813.110.6

.0

.0

.017.328.826.226.621 814 817 012 0

8 412 3

4.46.54.44.67.4

10.910.4

7.2I0.0

8.99.56.65 4

000

8 714 513 213 4ii 0

7 88 66 14 26 2

8.612.9

8.79.1

14.721.720.714.319.817 718 813 110 6

000

17 328 826226 621 815 517 012 0

8 412 3

02/27/95 ,24 6.3 12 4 6 3 12 4

..... ~2233Y)~_~23_~ ..... 1~2_~ ..... !_!_. .... ~_~%J ..... 2~2 .......03/01/95 ,24

03/02/95 ,24

03/03/95 ,24

03/04/95 24

03/05/95 24

03/06/95 24

03/07/95 24

03/08/95 24

6.8

9.5

ii 4

6 9

6 4

6 8

6 3

8 6

13.5

18.9

22.7

13.7

12.8

13.6

12.5

17.0

6.8

9.5

11.4

6.9

6.4

6.8

6.3

8.6

13.5

18,9

22.7

13.7

12.8

13.6

12.5

17.0

03/09/95 24 9 5 18.9 9.5 18.903/10/95 24 10.5 20.9 10.5 20.903/11/95 24 7.0 13.8 7.0 13.803/12/95 24 10.9 21.7 10.9 21.703/13/95 24 11.2 22.3 11.2 22.303/14/95 24 5.5 11.0 5.5 11.0

CVC(MBK) 10-1

Page 30: Development of Hourly and Daily Data Records from Stevens

Exhibit 11.SC-DAY.TBI" Program SC-DAY Output File

Daily Flow Without CVC Estimates(Rose Canal Spill, 1995; file ROS95-DY.TBI)

YEAR: 1995

DAILY FLOW VOLUMEFROM DIGITIZED STEVENS RECORDER CHARTS

(In Acre-Feet)

ROSE CANAL SPILL

Day Jan Feb Mar Apr May Oun Jul Aug Sep Oct Nov Dec

1 17.3 8.6 13.5 16.2 20.1 9.5 13.1 I0.0 2.9 * 8.0 89 16.92 23.8 12.9 18.9 23.7 6,7 ,5 16.8 12,8 ll,O 9.5 1.7 13.53 17,1 8,7 22.7 10.2 4,8 4,8 18.2 16.2 16.1 5.2 1.3 8,74 13,3 9.1 13,7 4.5 3.8 12.7 8.6 12,0 21,3 4.8 .0 13,95 15,1 14.7 12.8 7.7 11.3 4.7 25.4 4.4 17.7 7,3 ,0 9,9

6 14.2 21.7 13.6 11.2 15.2 16.8 10.2 8.0 12.1 15.3 .0 7.97 17.6 20.7 12.5 14.8 7.2 14.9 .5 8.2 5.5 22.9 9.0 13.28 16.4 14.3 17.0 13.6 2.4 14.0 10.2 1.2 10.3 14.7 13.3 22.49 16.8 19.8 18.9 8.7 .0 16.6 13.B 16.8 6.5 12.8 5.1 20.9

I0 19.2 17.7 20.9 2.5 .0 8.0 10.7 5.5 5.9 3.0 8.4 15.0

II 24.4 18.8 13.8 18.0 .0 10.3 15.3 3.1 13.8 ,6 11.3 1.312 25.5 13.1 21.7 9.2 .0 20.8 9.4 3.6 14.0 9.7 10.6 4.913 25.9 10.6 22.3 9.7 .0 6.8 6.5 6.1 6.7 13,0 10.3 2.B14 22.1 .0 11.0 5.9 .0 11.8 9.3 3.7 5.3 9.1 8.6 1.515 17.4 .0 6.5 21.3 .0 3.5 15.2 9.0 8.3 9.9 3.4 3.5

16 14.9 .0 11.1 7.4 1.1 5.9 21.6 4.4 9.4 15,2 * 1.6 7.717 16.3 17.3 3.6 .0 .4 8.4 18.1 .0 2.7 nr 2.0 13.418 16.0 28.8 21./ .0 l.B 9.5 12.2 .0 13.2 11.2 * 6.5 9.519 14,4 26.2 23,3 3.4 2.0" 15,0 20.4 ,2 14,8 9,9 11,6 14.720 10.3 26.6 8.6 1.0 nr 18.1 17.5 13.7 15.0 8.3 2.3 15.8

21 14.7 21.8 23.9 12.0 nr 13.5 5.7 16.6 18.3 6.2 .0 15.522 14.1 14.8 29.7 22.1 nr 7.7 6.8 2.3 7.0 Ii.8 .0 24.123 20.7 17.0 12.5 15.9 nr 12.8 11.1 .0 .2 12.4 .0 36.424 12.3 12.0 16.9 4.7 10.9" 26.9 9.7 6.2 .0 13.3 .0 * 37,025 ]1.0 8.4 12.0 3.3 10.0 24.7 .I 17.2 .0 14.1 nr 19.4

26 7.3 12.3 12.6 2.1 12.6 14.4 1.1 3.8 2.5 12.8 nr 6.4 *27 6.7 12.4 8.5 12.9 2.7 16.1 5.6 .0 14.3 9.7 * nr nr28 10.8 7.7 16.6 11.0 9.5 12.6 11.4 .0 * 13.7 2,5 6.3 * nr29 10.2 --- 14.4 13.4 11.8 10.2 .0 nr 7.9 1.6 11.3 nr30 10.6 --- 11.1 14.8 11.9 7.4 .0 nr 3.4 2.9 10.2 nr31 15.0 --- 16.1 --- 13.0 --- 6.9 nr --- .5 --- nr

Total 491.4 396.0 482.4 301.2 159.2 359.5 331.4 185.0 279.8 278.2 143.7 362.2

Annual Total: 3770.0 acre-feet

* - partial day

nr - no record

NOTES:Flows are computed using the sharp-crested weir equation with a weir coefficient of 3.33.A day is defined by the 24 hours starting at 0100 hrs.

Processed on: 12-11-1996 at 8:32

CVC(MBK) 11-1

Page 31: Development of Hourly and Daily Data Records from Stevens

Exhibit 12SC-DAY.TB 1: Program SC-DAY Output File

Daily Flow With CVC Estimates(Rose Canal Spill, 1995; file ROS95-DY.TB21

DAILY FLOW VOLUMEFROM DIGITIZED STEVENS RECORDER CHARTS

( In Acre-Feet)

CVC Estimation Procedure used for Missing Data(No estimate made for gaps greater than 120 hours)

ROSE CANAL SPILL

YEAR: 1995

Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

I 17.3 8.6 13.5 16.2 20.1 9.5 13.1 10.0 6.9 * 8.0 8.9 16.9

2 23.8 12.9 18.9 23.7 6.7 .5 16.8 13.3 11.0 9.5 1.7 13.53 17.1 8.7 22.7 10.2 4.B 4.8 18.2 16.2 16.1 5.2 1.3 B.7

4 13.3 9.1 13.7 4.5 3.8 12./ 8.6 12.0 21.3 4.8 .0 13.9

5 15.1 14.7 12.8 7.7 11.3 4.7 25.4 4.4 17.7 7.3 .0 9.9

6 14.2 21.7 13.6 11.2 15.2 16.8 10.2 8.0 12.1 15.3 .0 1.97 17.6 20.7 12.5 14.8 7.2 14.9 .5 8.2 5.5 22.9 9.0 13.2

8 16.4 14.3 17,0 13.6 2.4 14.0 10.2 1.2 10.3 14.7 13.3 22.4

9 16.8 19.8 18.9 8.7 .0 ]6.6 13.8 16.8 6.5 12.8 5.1 20.9i0 19.2 17 7 20.9 2.5 .0 8.0 10.7 5.5 5.9 3.0 8.4 15.0

11 24.4 18.8 13.8 18.0 .0 10.3 15.3 3.1 13.8 .6 11.3 7.3

12 25.5 13.1 21.7 9.2 .0 20.8 9.4 3.6 14.0 9.7 10.6 4.9

13 25.9 10.6 22.3 9.7 .0 6.8 6.5 6.1 6,7 13.0 10.3 2.814 22.1 .0 11.0 5.9 .0 11.8 9.3 3.7 5,3 9.1 8.6 1.515 17.4 .0 6.5 21.3 .0 3.5 15.2 9.0 8.3 9.9 3.4 3.5

16 14.9 .0 11.1 7.4 1.1 5.9 21.6 4.4 9.4 22.3 * 1.6 7.717 16.3 17.3 3.6 .0 .4 8.4 18.1 .0 2.7 13.2 e 2.0 13.4IB 16.0 28.B 21.7 .0 1.8 9.5 12.2 .0 13.2 16.7 * 6.5 9.519 14.4 26.2 23.3 3.4 2.0 P 15.0 20.4 .2 14.8 9.9 11.6 14.7

20 10.3 26.6 8.6 1.0 nr 18.7 17.5 13.7 15,0 8.3 2.3 15.8

21 14.7 21.8 23.9 12.0 nr 13.5 5.7 16.6 18.3 6.2 .O 15.522 14.1 15.5 29.7 22.1 nr 7.7 6.8 2.3 7.0 11.8 .0 24.123 20.7 17.0 12.5 1519 nr 12.8 11.1 .0 .2 12.4 .0 36.424 12.3 12,0 16,9 4.7 10,9 P 26.9 9,7 6,2 .0 13.3 2.8 * 37.025 11,0 8,4 12.0 3.3 I0,0 24.7 ,I 17,2 ,0 14,1 6,7 e 19,4

26 7.3 12.3 12.6 2.1 12.6 14.4 I.I 3.B 2.5 12.B 6.7 e 6.4 P27 6.7 12.4 8.5 12.9 2.7 16.1 5.6 .0 14.3 12.0 * 6.Z e nr28 10.8 7.7 16.6 11.0 9.5 12.6 11.4 7.6" 13.7 2.5 10.2" nr29 10.2 --- 14.4 13.4 11.8 10.2 .0 10.7 e 7.9 1.6 11.3 nr30 10.6 --- 11.1 148 11.9 7.4 .0 10.7 e 3.4 2.9 10.2 nr31 15,0 --- 16,1 --- 13.0 --- 6,9 10.7 e --- ,5 --- nr

Total 491.4 396.7 482.4 301.2 159.2 359.5 331.4 225.2 283.8 306.3 II0.5 362.2

Annual Total: 3869.8 acre-feet

* - partial day: volume for missing period is estimated.p - partial day; volume for missing period is not estimated.e - no record for this day; voIu~ is an estimate.

NOTES:Flows are computed using the sharp-crested weir equation with a weir coefficient of 3.33.A day is defined by the 24 hours starting at 0100 hrs.

Processed on: 12-11-1996 at 8:32

CVC(MBK) 12-1

Page 32: Development of Hourly and Daily Data Records from Stevens

Exhibit 13Comparison of Computed Daily Flow and Hy_drogr.a_p_her’s Estimates of Daily Flow

Coml~rison of Daily Flows - Rose Lateral Spill - 1995llydrogr~pher’s .E.~.imal~ v. Compu~l from Digitized SIc,,’¢m CI~

I I

¯ .,. ,,:i I ! i I , ~ ..... . ~ ~.~.

’2; ’.f ’ . ... .

I ~ "~’ ~ .~. c~.~ ~om ~ c~ ]

Comparison of Daily Flows - Rose Lateral Spill - 1995Hydrographers Estimate v. Computed fi-orn Digitized St~’cm Cha~

Comparison of Daily Flows - Rose Lateral Spill - 1995l lydrog~apher’s Esfimale v. Computed from Digilizcd Stevens Cha~

~ -,--~,-~ ....~ ~ ~r---r .... r .........I .....r .....~--~ - " ; ....~ r r- -7 ...... rI [ I : I ~ , i I ! I I---~-+I i i ~ I I

4 --~-- I ~ I ~. I I , -A---I~ ; I- [ - , .’

ROS-CtlK.WK4 13-1 MBK 10t21/96

Page 33: Development of Hourly and Daily Data Records from Stevens

Exhibit 14Hourly Spill Database File

(Example: Excerpt from Rose Canal hourly spill database file ROS_HR.DBF)

DATE

3/1/95

3/1/953/i/95

HOUR

13

14

15

AVGFLW CFS

7.9

8.5

8.2

3/1/95 16 7.6

3/1/95 17 6.4

3/1/95 18 27.1

3/1/95 19 20.7

3/1/95 20 12.6

3/1/95 21 ii.0

3/1/95 22 9.5

3/1/95 23 8.5

3/1/95 24 7.9

3/2/95 1 7.6

3/2/95 2 7.5

3/2/95 3 7.5

3/2/95 4 7.6

3/2/95 5 8.1

3/2/95 6 8.7

3/2/95 7 9.4

3/2/95 8 10.2

3/2/95 9 9.7

3/2/95 i0 9.0

3/2/95 ii 9.4

3/2/95 12 i0.i

3/2/95

3/2/95

3/2/95

3/2/95

3/2/95

3/2/95

3/2/95

3/2/95

3/2/95

13

14

15

16

17

18

19

20

21

22

23

24

3/2/95

3/2/95

3/2/95

3/3/95

9.7

10.8

10.6

9.7

10.8

10.9

10.8

10.6

10.3

i0.0

9.9

9.6

9.6

CODES

CVC(MBK) 14-I

Page 34: Development of Hourly and Daily Data Records from Stevens

Exhibit 15Daily Spill Database File

(Example: Excerpt from Rose Canal spill database file ROS_DY.DBF)

DATE GOODRECORD MEASQ CFS MEASVOL AF ESTQ CFS ESTVOL_AF

8.62/1/95 24 4.4 8.6 4.4

2/2/95 24 6.5 12.9 6.5 12.9

2/3/95 24 4.4 8.7 4.4 8.7

2/4/95 24 4.6 9.1 4.6 9.1

2/5/95 24 7.4 14.7 7.4 14.7

2/6/95 24 10.9 21.7 10.9 21.7

2/7/95 24 10.4 20.7 10.4 20.7

2/8/95 24 7.2 14.3 7.2 14.3

2/9/95 24 i0.0 19.8 i0.0 19.8

2/10/95 24 8.9 17.7 8.9 17.7

2/11/95 24 9.5 18.8 9.5 18.8

2/12/95 24 6.6 13.1 6.6 13.1

2/13/95 24 5.4 10.6 5.4 10.6

24

24

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

2/14/95

2115195

2/16/95

2/17/95

24

24 8.7 17.3 8.7 17.3

2/18/95 24 14.5 28.8 14.5 28.8

2/19/95 24 13.2 26.2 13.2 26.2

2/20/95 24 13.4 26.6 13.4 26.6

2/21/95 24 ii.0 21.8 ii.0 21.8

2/22/95 23 7.8 14.8 7.8 15.5

2/23/95 24 8.6 17.0 8.6 17.0

2/24/95 24 6.1 12.0 6.1 12.0

2/25/95 24 4.2 8.4 4.2 8.4

2/26/95 24 6.2 12.3 6.2 12.3

2/27/95 24 6.3 12.4 6.3 12.4

2/28/95 24 3.9 7.7 3.9 7.7

3/I/95 24 6.8 13.5 6.8 13.5

3/2/95 24 9.5 18.9 9.5 18.9

3/3/95 24 11.4 22.7 11.4 22.7

3/4/95 24 6.9 13.7 6.9 13.7

3/5/95 24 6.4 12.8 6.4 12.8

3/6/95 24 6.8 13.6 6.8 13.6

3/7/95 24 6.3 12.5 6.3 12.5

CVC(MBK) 15-I

Page 35: Development of Hourly and Daily Data Records from Stevens

Appendix A

Program PRESORT 1FORTRAN Source Code

Page 36: Development of Hourly and Daily Data Records from Stevens

C

Ci0

i000C

PROGRAM PRESORTI

This program takes the digitized stevens chart data and attachesthe month, day and year to the head data. It also deletes repeatedhours and inserts missing hours with interpolated heads.

MBK/mca 7-10-96

DIMENSION NDAYS(12),HR(250).HD(250),IHR(250).HEAD(250)CHARACTER*12 INFILE.OUTFILE.EST(250)*1

DATANDAYS/31.28.31.30.31.30.31.31.30.31,30,31/

PRINT*,’ENTER INPUT FILE NAME:’PRINT*.’ (must have 8 characters in main part of name)’READ(*.IO00) INFILEFORMAT(A)

OPEN(5,FILE=INFILE)

DO I=1.200EST(1)=’’

END DOCC Read Data

ICNT:I20 READ(5.*,END=30) HR(ICNT),HD(ICNT)

IF(ICNT,GT.I) THENC Skip record if hour is less than previous record’s

IF(HR(ICNT).LT,HR(ICNT-I)) GO TO 20

ENDIFC If hour repeats, use last record with that hour

IF(HR(ICNT).LE.HR(ICNT-I)) HR(ICNT-I)=HR(ICNT)HD(ICNT-I)=HD(ICNT)GO TO 20

ENDIFENDIFICNT=ICNT+IGO TO 20

C30 CONTINUE

NCNT=ICNT- 11:iDO N=I .NCNT

IF(I.EQ.I) THENIHR(1)=HR(N)HEAD( I ):HD(N)GO TO 40

ENDIFCalcuate # of hrs. between, current and previous record

IHRDI F:I FIX(HR(N) ) - I FIX (HR(N- If more than i hr between records insert missing hoursand estimate heads using linear interpolation

IF( IHRDIF ,GT, 1) THENHDINC: (HD(N) -HD(N- I ) )/FLOAT( IHRD DO J=1. IHRDIF-I

IHR( I ): I FIX(HR(N- i) HEAD( I ):HD(N- I) +HDI NC*FLOAT(J EST(1):’e’I~I+I

CVC(MBK) A-I File: PRESORTI.FOR

Page 37: Development of Hourly and Daily Data Records from Stevens

4O

END DO[HR([)=HR(N)HEAD(1)=HD(N)GO TO 40

ELSEIHR(1)=HR(N)HEAD(1):HD(N)

ENDIFI:I+I

END DONTOT=I-I

PRINT*,’ ENTER "M(]NTH,DAY,YEAR" OF FIRST DAY (E.G, 1.4.1989):’READ(*.*) IMON, IDAY, IYRJYR:IYR-1980JNK)N= I MON

CC Define output file name

OUTFILE=’

WRITE(OUTFILE .1010) INFILE(1:8)1010 FORMAT(AS.’.OUT’)

OPEN(6. FILE=OUTFILE)C

CC

600C

IBT:O

Assign month, day and hour of day to each recordDO I=I,NTOT

JDAY:IDAY+(IHR(1)-I)/24JDAYTMP:JDAYIF(IYR/4*4/IYR,EQ.I.AND.I~]N.EQ,2) THEN

NDAY=NDAYS(IMON)+IELSE

NDAY=NDAYS(IIV~)N)ENDIF

Convert serial hour to daily hourJHR=IHR(1)-(JDAYTMP-IDAY)*24IF(JHR,EQ.O) JHR:24

IF(JDAY,GT,NDAY) THENIF(IBT.EQ.O) J~N=INXDN+IJDAY=JDAY-NDAYIBT=I

ENDIF

IF(JMON,GT,12) THEN JMON=JMON-12IYR=IYR+I

ENDIF

Write to output fileWR|TE(6.600) IHR(1),JMON.jDAY,IYR.jHR,HEAD(1),EST(1)FORMAT(515,FS,3.1X,AI)

END DO

PRINT*,’DO YOU WANT TO PROCESS ANOTHER FILE (Y/N)?’READ(*,IO00) ANSIF(ANS,EQ,’Y’.OR.ANS.EQ.’y’) GO TO

STOPEND

CVC(MBK) A-2 File: PRESORTI.FOR

Page 38: Development of Hourly and Daily Data Records from Stevens

Appendix B

Program SC-HOURFORTRAN Source Code

Page 39: Development of Hourly and Daily Data Records from Stevens

i000

C

PROGRAM SCHOUR

This program takes the results of PRESORT1 and computes hourlyflows from the hourly stage record.

The input file must consist of no more than one calendar year ofdigitized hourly data

MBK/mca 04/03/97

04/18/97

Modified to allow for different weir coefficientto be used in weir equation (specifically forTrif. 5 and 9 gate open periods).Code cleaned up.

DIMENSIONSTAGE(12,31,24),DATM1(12,31HEAD(12,31,24),QI(12,31.24)

DIMENSIONDATUM(2OO).IDATM(200),OP(IOO),IOVERP(IO0),NR(IOO),INOR(IO0)

CHARACTER*I2 INFILE,NAME*30.EST(12.31 24)’1DATA NDAYS/31.28.31.30,31,30,31.31,30,31,30,31/

24).OVERPR(12,31,24).NDAYS(12)

PRINT*,’Enter input file name:’READ(*.IO00) INFILEFORMAT(A)OPEN(5,FILE=INFILE)

PRINT*.’Enter site name (30 character limit):’PRINT*,’123456789012345678901234567890’READ(*.IO00) NAME

PRINT*,’Enter weir width in inches:’READ(*,*) WIDTHI

C Convert width to feetWIDTH=WIDTH1/12.

10

C20

PRINT*.’Enter initial chart datum:’READ(*,*) DATUMI

PRINT*,PRINT*,PRINT*,PRINT*,PRINT*,PRINT*,PRINT*,N=ON=N+I

Enter monthi day and hour of subsequent datum changes’and the new datum. Enter -999 and zeros when finished.’Example:’2 5 13 1.0 <cr>’6 24 6 0.0 <cr>’-999 0 00<cr>’

READ(*,*) IDMO.IDDAY,IDHR,DATUM(N)IDATM(N)=IDMO*IOOOO+IDDAY*IOO+IDHRIF(IDMO.EQ.-999) THEN

NDATUM=N-1GO TO 20

ENDIFGO TO 10

PRINT*,’Enter initial overpour elevation:’READ(*,*) OPI

PRINT*,’Enter month, day and hour of overpour elev. changes’

CVC(MBK) B-I File: SC-HOUR.FOR

Page 40: Development of Hourly and Daily Data Records from Stevens

3O

4OC

50

60C

PRINT*.’and the new elev. Enter i999 and zeros when finished.’PRINT*.’Example:’PRINT*.’2 5 13 0.5 <cr>’PRINT*.’6 24 6 0.0 <cr>’PRINT*.’-999 0 00<cr>’PRINT*.’’N=ON=N+IREAD(*.*) IOPMO.IOPDAY,IOPHR,OP(N)IOVERP(N)=IOPMO*IOOOO+IOPDAY*IOO+IOPHRIF(IOPMO.EQ.-999) THEN

NOP=N-IGO TO 40

ENDIFGO TO 30CONTINUE

PRINT*PRINT*PRINT*PRINT*PRINT*PRINT*PRINT*PRINT*PRINT*PRINT*N=OKGO=ON=N+I

’Enter month, day. & hour that period of no record starts’’followed by "1" or "2" if a GATE OPEN period, then on’the next line enter the month, day and hour that good ’’record starts again followed by "0".’’Enter "-999 0 0 O" when finished.’’Example:’’2 20 7 1 <cr>’

’2 21 9 0 <cr>’’-999 0 00<cr>’

READ(*.*) INRMO,INRDAY,INRHR,NR(N)IF(NR(N).EQ.2) KGO:IINOR(N)=INRMO*IOOOO+INRDAY*IOO+INRHRIF(INRMO.EQ.-999) THEN

NNR:N-IGO TO 60

ENDIFGO TO 50CONTINUE

IF(KGO.EQ.1) THENPRINT*,’Enter weir coefficient to use for GATE OPEN periods’READ(*,*)

ENDIFCC Define output file names

OPEN(8,FILE=’SC-HOURG.OUT’)OPEN(9,FILE=’SC-HOURG.ASC’)

CC---Get run date and time

CALL GETDAT(LYR,LMON,LDAY)CALL GETTIM(LHR.LMIN,LSEC,LIOOTH)

Write headings to files 9 and 10WRITE(9,900) NAME

DATE HOUR900 FORMAT(A30/5X,’C Initialization

IOP=I

FLOW CFS’)

CVC(MBK) B-2 File: SC-HOUR.FOR

Page 41: Development of Hourly and Daily Data Records from Stevens

C

800

IDTM=IINR=IDO I=i. 12

DO J=1,31DO K=I.24

STAGE(I,J.K):-999.HEAD(I.J.K):-999.QI(I.J.K)=-999.EST(I,J,K)=’

END DOEND DO

END DOITIMEP=-999

DATM=DATUMIOVRPR=OP1

WRITE(8.800) NAME,WIDTH1.LMON.LDAY,LYR.LHR,LMINFORMAT(5X,’Hourly Stevens Chart Data for: ’,A30//

5X,’Weir Width :’,F6.1.’ inches’//5X.’Processed on: ’.12.’-’,12.2,’-’,14.’ at ’,12,’:’.12.2//8x,’ Overpour’./8X,’Mo Dy Yr Hr Stage(ft) Datum(ft) Elev’,’(ft) Head(ft) Flow(cfs)’/)

CC

IIST=O70 READ(5.510.END=110)IMON.IDAY.JYR,IHR.STAGE(IMON,IDAY.IHR).

EST(IMON,IDAY.IHR)510 FORMAT(5X.415.F8.0,1X,AI)

IF(IIST.EQ.O) THENIYR=JYR

C Check for Leap YearIF(IYR/4*4/IYR.EQ.I) THEN

NDAYS(2)=29ENDIF

ENDIF

if(JYR.eq.O) go to 110

IDATE=IMON*IOOOO+IDAY*IOO+IHR

Determine datum and overpour elevation

IF(IDATE.GE.IDATM(IDTM).AND.NDATUM.GE.IDTM) DATM=DATUM(IDTM)IDTM:IDTM+I

ENDIFDATMI(IMON.IDAY,IHR)=DATM

IF(IDATE.GE.IOVERP(IOP).AND.NOP.GE.IOP) OVRPR=OP(IOP)IOP=IOP+I

ENDIFOVERPR(IMON.IDAY,IHR)=OVRPR

Check to see if record is "no record"IF(IDATE.GE.INOR(INR).AND.NNR.GE.INR)

JNR=NR(INR)

CVC(MBK) 8-3 File: SC-HOUR.FOR

Page 42: Development of Hourly and Daily Data Records from Stevens

INR~INR+IENDIF

C Set HEAD and QI equal to -999 if "no record"IF(JNR.EQ.I) THEN

HEAD(IMON.IDAY,IHR)=-999.Q1(IMON.IDAY.IHR)=-999.GO TO 100

ENDIF

C Compute head on weirHEAD(IMON.IDAY.IHR)=AMAXI((STAGE(IMON.IDAY.IHR)+DATM-OVRPR)

C Compute hourly flow using sharp-crested weir equation w/ C=3.33WEIRC=3.33IF(JNR.EQ.2) THEN

WEIRC=CWEST(IMON,IDAY,IHR)=’g’

ENDIFQI(IMON,IDAY,IHR)=WEIRC*WIDTH*HEAO(IMON.IOAY,~HR)**I.5

CI00C

1010C

CCii0

CONTINUE

IF(IDAY.NE.IDAYP) WRITE(*.I010)FORMAT(’.’\)

IDAYP=IDAYIIST=IGO TO 70

CONTINUEDO I:I.12

DO J=I.NDAYS(1)DO K=1,24

C Write hourly data to output fileWRITE(8,810) I.J.IYR,K,STAGE(I,j.K).DATMI(I.j.K).

OVERPR(I.J,K).HEAD(I.J,K).QI(I,J.K).EST(I.J.K)810 FORMAT(5X,415,5FIO.2,1X,AI)C Write hourly data to comma delimited file for import to database file

WRITE(9,910) I,J.IYR-1900.K.QI(I.J.K).EST(I.J.K)910 FORMAT(5X,12.2,’/’.I2.2.’/’.I2.’ ’.12.’ .’.F8.1.’.’,AI)

END DOWRITE(*.I010)

END DOEND DO

STOPEND

CVC(MBK) B-4 File: SC-HOUR.FOR

Page 43: Development of Hourly and Daily Data Records from Stevens

Appendix C

Program CHKDATFORTRAN Source Code

Page 44: Development of Hourly and Daily Data Records from Stevens

PROGRAM CHKDATCC This program checks the SC-DAILY.HR file for consecutiveC hours with large change in flow to help find occurencesC where adjustments for chart wrap-around missed by an hour.C MBK 8-6-96

C

600

C

I000

C

i050O

1010

C

CHARACTER*20 TITL(4)

OPEN(5,FILE:’SC-HOUR.OUT’)OPEN(6.FILE:’CHKDAT.OUT’)

PRINT*.’Enter change in flow (in cfs) to check for in’PRINT*,’consecutive records:’READ(*,*) QCHK

WRITE(6,600) QCHKFORMAT(//5X.’Summary of consecutive records with change in’,

’ flow greater than’,F5.1.’ cfs’/)

DO I=1.9READ(5,1000) (TITL(J) ,J=1,4)FORMAT(4A20)WRITE(6. I000) (TITL(J) ,J=1,4)

END DO

KEY:OREAD(5.5OO.END:30) MON.IDAY.IYR.IHR,STG,DATM,OVRPR,HD,QFORMAT(5X.415,5FIO.O)IF(KEY.EQ.O) GO TO IF(Q.LT.O.OR.QI.LT.O) GO TO IF(IDAY.NE.IDAYI) THEN

WRITE(*,I010)FORMAT(’.’,\)

ENDIF

QDIF=ABS(Q-QI)IF(QDIF.GT.QCHK) THEN

WRITE(6,610)610 FORMAT(’ ’)

WRITE(6.620) MONI.IDAYI.IYRI,IHRI,STG1.DATMI,0VRPR1,HD1.QIWRITE(6,630) MON,IDAY,IYR,IHR,STG,DATM,OVRPR,HD,Q,QDIF

620 FORMAT(5X,415,5FIO.2)630 FORMAT(5X.415,5FIO.2;5X.’DIFF:’,F6.2)

ENDIFC20

C30

KEY=IMONI:MONIDAYI=IDAYIYRI=IYRIHRI:IHRSTGI:STGDATMI:DATMOVRPRI:OVRPRHDI:HDQI=QGO TO I0

STOPEND

CVC(MBK) C-1 File: CHKDAT.FOR

Page 45: Development of Hourly and Daily Data Records from Stevens

Appendix D

Program SC-DAYFORTRAN Source Code

Page 46: Development of Hourly and Daily Data Records from Stevens

1000

C

PROGRAM SCDAY

This program takes the hourly flow results from SC-HOUR and computesdaily flows. Daily volumes are estimated using the CVC estimationprocedure for gaps up to 5 days (120 hrs) in length (flow for missingrecords is estimated as the average of the preceding flows equal innumber to the missing records and the following flows equal in numberto the missing records).

The hour on which the day begins is specified by the user.

The input file MUST consist of no more than one calendar year ofhourly data and MUST start with Jan. 1 at 0100 hrs.

MBK/mca8127196413/97

Changed name of output file from SC-DAY.PRN to SC-DAY.ASCAdded subscript "-" to designate days on which the gatewas open for those sites with water levels measuredwhen gate open (i.e. Trifolium 5 and Trifolium 9)

DIMENSIONIMON(9OOO),IDAY(9OOO).IHR(9OOO),FLOW(9OOO).FLOWI(9000)ILOC(IOO),ISIZ(IOO),AVG(IO0)

DIMENSIONJDAY(370),jMON(370).Q(12,32),QI(12,32),NCNT(370NCNTI(370).VOL(12,32),VOLI(12,32),NGO(370),TOTV(12),TOTVI(12),NEST(370).NDAYS(12)

INTEGER TMON.TDAY,THRCHARACTER*12INFILE,NAME*30,TMP(12)*6,1SKP*I.AST(12.32)*2

AST1(12.32)*2.EST(9000)*I.TMPI(12)*6DATA NDAYS/31.28.31.30,31.30,31,31,30,31,30,31/DATA NCUM/0,31.59,90,120,151,181,212,243,273,304,334/

PRINT*.’Enter input file name:’READ(*.IO00) INFILEprint*,infileFORMAT(A)OPEN(5.FILE=INFILE)

PRINT*.’Enter first hour of 24 hour period that defines the day:READ(*.*) INITHRIF(INITHR.EQ.O) INITHR=24print*.inithr

NBEG=-999999PRINT*.’If record starts after Jan. i. enter i’PRINT*.’Otherwise. enter O’READ(*.*) IBEGprint*,ibegIF(IBEG.EQ.I) THEN

PRINT*.’Enter Date and Hour (VI~ DD HH) of first record:’READ(*,*) TMON.TDAY.THR

print*,tmon,tday,thrNBEG=TMON*IOOOO+TDAY*IOO+THR

ENDIFNTERM=999999PRINT*,’If record terminates before end of year, enter I’PRINT*.’Otherwise, enter O’READ(*.*) ITERMprint*.itermIF(ITERM.EQ.I) THEN

PRINT*.’Enter Date and Hour (WM DD HH) of last record:’READ(*,*) TMON.TDAY.THR

CVC(MBK) D-I File: SC-DAY.FOR

Page 47: Development of Hourly and Daily Data Records from Stevens

print*,tmon.tday,thrNTERM=TMON*IOOOO+TDAY*IOO+THR

ENDIF

READ(5,500) NAMEprint*, name

500 FORMAT(A30)READ(5, i000) ISKP

CC Define output file names

OPEN(6. FILE=’ SC-DAYG. OUT’ OPEN( 7, FILE= ’ SC-DAYG. TBI’ )OPEN(8, F! LE=’ SC- DAYG. TB2’ )OPEN(9, FILE= ’ SC-DAYG.ASC’ )OPEN(12)

CC---Get run date and time

CALL GETDAT(LYR, LMON, LDAY)CALL GETTIM(LHR, LMIN, LSEC. LIOOTH)

CC Write headings to file 9

WRITE(9,900) NAME900 FORMAT(A30/5X. ’DATE.GOODRECORD.AVGFLW CFS,MEASVOL AF, ’,

’ ESTFLW_CFS, ESTVOL_AF ’ )C Initialization

ISKP=, ,ICNT=ODO L=1.370

NCNT(L) NCNTI(L )=0NEST(L)=OJDAY(L)=OJMON(L)=O

END DODO M=I, 12

DO J=l, 31Q(M,j)=-999.QI(M.j)=-999.VOL(M.J)=-999.VOL1(M,J)=-999.AST(M.j)=’

ASTI(M,j)=’

END DOEND DO

CC Read hourly data

N=I30 READ(5.510.END=40) IMON(N), IDAY(N),JYR, IHR(N),FLOW(N).EST(N)C30 READ(5.510, END=40) MMON, MDAY, JYR. MHR, FLO. 510 FORMAT(5X, 12, IX. 12, IX, 12,2X. 12.2X, F8. O. IX.AI)

IF(N.EQ. i) THENIYR=JYRIF(IMON(N) .NE. 1.0R. IDAY(N).NE. i .OR. IHR(N).NE.

WRITE(*, 1010)1010 FORMAT(/5X.’First record of input file is not Jan.1 at ’.

’0100 hrs.’/5x,’Input file must be modified. ’)STOP

ENDIFENDIFN:N+IGO TO 30

CVC(MBK) 0-2 File: SC-DAY.FOR

Page 48: Development of Hourly and Daily Data Records from Stevens

CCONT I NUENHRS=N- I

KDAYS=365LEAP:O

C Check for leap yearIF(IYR/4*4/IYR.EQ.1) THEN

KDAYS=366LEAP=I

ENDIFCC Take inventory of data gapsC NGAP=tota~ number of data gaps

ILOC(IGAP)=location of first record in gap # IGAPISIZ(IGAP)=number of records in gap # IGAP

5O

60

70

C

N=OIGAP=ON=N,IIF(N,GT.NHRS) GO TO ITMP=IMON(N)*IOOOO+IDAY(N)*IOO+IHR(N)IF(ITMP.LT.NBEG) GO TO IF(ITMP.GT.NTERM) GO TO IF(FLOW(N).LT.O.)

IGAP=IGAP+I[F(IGAP.GT.IO0) THEN

PRIN/*.’ Data file contains more gaps than program array’PRINT*.’ size allows (100).’STOP

ENDIFILOC(IGAP)=NISIZ(IGAP)=IN=N+IIF(FLOW(N).LT.O.)

!SIZ(IGAP)=ISlZ(IGAP)+IGO TO 60

ENDIFENDIFGO TO 50CONTINUENGAP=IGAP

DO I=I,NHRSFLOWI(1)=FLOW(1)

END DO

Estimate flow in gaps

IF(NGAPIEQ.O) GO TO 120DO L=I .NGAP

C Do not make estimate for gap greater than 5 days (120 hrs)IF(ISlZ(L).GT.120) GO TO TOTL=OI CNT=ON=OJCNT=ONAV=ISIZ(L)

80 N=N+IC Sum up required # of records preceding gap

JCNT=JCNT+I

CVC(MBK) D-3 File: SC-DAY.FOR

Page 49: Development of Hourly and Daily Data Records from Stevens

C90

NI=[LOC(L)-N1F(NI.LE.O.OR.SCNT.GT.NAV) GO TO IF(FLOW(NI).LT.O.)

JCNT=JCNT-IGO TO 80

ENDIFTOTL=TOTL+ABS(FLOW(NI))ICNT=ICNT+IGO TO 80

N=OJCNT=O

100 N=N+IC Sum up required # of records following gap

JCNT=jCNT+INI=ILOC(L)+ISIZ(L)-I+NIF(N1.GT.NHRS.OR.JCNT.GT.NAV GO TO 110IF(FLOW(N1) .LT.O. )

JCNT=JCNT- iGO TO 100

ENDIFTOTL=TOTL+ABS(FLOW(NI ) ICNT=ICNT+!GO TO iO0

110 CONTINUEC Compute gap fill averagec print*.] .isiz(l),icnt

AVG(L )= ,rOTL / FLOAT (ICNT)C Replace missing data with AVG

DO N=ILOC(L), ILOC(L)+IS[Z(L)-IFLOWI(N)=AVG(L)

END DO1i5 CONTINUE

END DOC!20C

CONTINUE

SUM=OSUMI=OIEST=OIGO=O

C SUM=cumulative hourly flows in day to be used to calculate mean daily flowC EST:e if record was interpolated in PRESORTI

ICNT~OICNTI=OICNT2=OKEY=OKDAY=OIF(INITHR.GT.12) KDAY=IDO [=I,NHRS

IF(I.LT.INITHR) GO TO 130IIMP=iMON(1)*IOOOO+IDAY(1)*IOO+IHR(1)IF(ICNTI.EQ.O) THEN

IF(INITHR.LE.12) THENJjMON=IMON(1)JJDAY=IDAY(1)

ELSEJJMON=IMON(1)IF(IDAY(1).EQ.NDAYS(IMON(1))) JJMON:jJMON+IIF(JJMON,GT.12) JJMON:JjMON-12JJDAY=IDAY(1)+I

CVC(MBK) D-4 File: SC-DAY.FOR

Page 50: Development of Hourly and Daily Data Records from Stevens

125C

C

i001C

IF(jJDAY.GT.NDAYS(IMON(1)))ENDIF

ENDIFIF(FLOW(1).GE.O)

SUM=SUM+FLOW(1)ICNT=ICNT+I

ENDIFIF(FLOWI(1).GE.O)

SUMI=SUMI+FLOWI(1)ICNTI=ICNTI+I

ENDIFICNT2=iCNT2~IiF(EST(~).EQ.’e’) IEST=IEST+IIF(EST(1).EQ.’g’) IGO=IGO+IIF(ICNT2.LT.24) GO TO 130

JJDAY=I

KDAY=KDAY+IJMON(KDAY)=jjMONJDAY(KDAY)=JjDAYNCNT(KDAY)=ICNTNCNTI(KDAY)=ICNTINEST(KDAY)=IESTNGO(KDAY)=IGOICNT=OICNTI=OICNT2=OIEST=OIGO=O

IF(NCNT(KDAY).EQ.O) ASTI(jMON(KDAY),JDAY(KDAY))=’e’GO TO 125

ENDIF

Q(~MON(KDAY).JDAY(KDAY))=SUM/FLOAT(NCNT(KDAY))VOL(JMON(KDAY).JDAY(KDAY))=

Q(JMON(KDAY),JDAY(KDAY))*I.98347*FLOAT(NCNT(KDAY))/24.IF(NCNT(KDAY).LT.22)

AST(jMON(KDAY).JDAY(KDAY))=’ ASTI(jMON(KDAY).JDAY(KDAY))=’

ENDIFCONTINUE

IF(AST(jMON(KDAY),JDAY(KDAY)).EQ.’ NGO(KDAY).GT.I) AST(jMON(KDAY).JDAY(KDAY))=’ -’

IF(ASTI(JMON(KDAY),JDAY(KDAY)).EQ.’ NGO(KDAY).GT.I) ASTI(jMON(KDAY).jDAY(KDAY))=’

IF(NCNTI(KDAY).NE.O) IF(ITMP.GT.NTERM.OR.ITMP.LT.NBEG) GO TO 130

QI(JMON(KDAY).JDAY(KDAY))=SUM]/FLOAT(NCNTI(KDAY)VOLI(JMON(KDAY).JDAY(KDAY))=

QI(jMON(KDAY).JDAY(KDAY))*I.98347*FLOAT(NCNT1(KDAY))/24.ENDIF

SUM=O.SUMI=O.

WRITE(*.IO01)FORMAT(’.’\)

CVC(MBK) D-5 File: SC-DAY.FOR

Page 51: Development of Hourly and Daily Data Records from Stevens

130 CONTINUEEND DO

CC Write to output fi~esCC Write daily record to SC-DAY.OUT (unit 6)140 WRITE(6,600) NAME.LMON.LDAY.LYR.LHR.LMIN600 FOR~T(//5x.’Site: ’,A30//SX,

’Processed on: ’.12,’-’,12.2.’-’,14.’ at ’,12.’:’.12.2///6X,’Day of # of Records’.25x,’With CVC Estimates’/7X.’¥ear Month Day Year Total Est. Q(cfs)’.

VoI(AF) Rcrds Q(cfs) VoI(AF)’/)DO I=!,365~LEAP

WRITE(6,610)I.JMON(1),JOAY(1).IYR.NCNT(1),NEST(1).Q(jMON(1),JOAY(1)),VOL(J~K]N(1),JDAY(1)),NCNTI(1).QI(jMON(1).JDAY(1)).VOLI(jMON(1).JDAY(1))

610 FORMAT(5X.416.218.2F10.2.18,2F10.2)C Write daily data to comma delimited file for import to database file

WRITE(9,910)JMON(1).JDAY(1).IYR.NCNT(1).Q(jMON([).JDAY(1)).VOL(jMON(1).JDAY(1)),QI(JMON(1),JDAY(1)).VOLI(J~K],N(1),jDAY(1))

910 FORMAT(SX.i2.2.’/’.~2.2.’I’,I2.’ .’.12,’ .’.F8.1,’ .’.F8.1.,’,F8.1.’ ,’.F8.1)

END DOCC Write daily record to table in SC-DAY.TBI (unit 7) and SC-DAY.TB2 (unit

WRITE(7,700) NAME.~YR+I9OOlO0 FORMAT(/48X,’DAILY FLOW VOLUME’/

38X,’FROM DIGITIZED STEVENS RECORDER CHARTS’/48X,’ (In Acre-Feet)’//41×.A30//8X.’YEAR:’.I5//8X,’Day Jan Feb Mar’,

Apr May Jun Jul Aug Sep’.Oct Nov Dec’/)

WRITE(8.800) NAME.IYR+1900800 FORMAT(/48X.’DAILY FLOW VOLUME’/

38X,’FROM DIGITIZED STEVENS RECORDER CHARTS’/48X,’ (In Acre-Feet)’//34X.’CVC Estimation Procedure used for Missing Data’/32X.’(No estimate made for gaps greater than 120 hours)’//41X.A30//SX.’YEAR:’,I5//8X. Day Jan Feb Mar’.

DO M=I.12TOTV(M)=OTOTVI(M)=O

END DO

Apr May Jun Jul Aug Sep’.Oct Nov Dec’/)

DO J=1.31IF(J.EQ.6.0R.J.EQ.I1.0R.J.EQ.16.0R.J.EQ.21.0R.J.EQ.26) THEN

WRITE(7,1000) ISKPWRITE(8.1000) ISKP

ENDIFC Write to scratch file

WRITE(12.1200) (VOL(M.j).M=I.12),(VOLI(M,J),~1.12)1200 FOR~T(24F6.1)C Re-read data so that totals are calulated with numbers in tableC (prevents round-off error from showing up in totals)

BACKSPACE 12READ(12.1200) (VOL~M.J).M=I.12).(VOL1(M.j),M=I.12)

CVC(MBK) D-6 File: SC-DAY.FOR

Page 52: Development of Hourly and Daily Data Records from Stevens

BACKSPACE 12C Write to output file

READ(12.1210) (~MP(M).M=I 12).(TMPI(M).M=I.12)1210 FORMAT(24A6)

DO M=1,12IF(LEAP.EQ.I.AND.M.EQ.2NDAYS(M)=29IF(J.GT.NDAYS(M))

TMP(M)=’ ---’TMPI(M)=’ ---’

END~F

IF(TMP(M).EQ.’-999.0’) TMP(M)=’ nr’IF(TMP1(M).EQ.’-999.0’)

TMPI(M)=’ nr’ASTI(M.j)=’

ENDIFEND DOWRITE(7.710) J.(TMP(M).AST(M,J),M=1,12)

710 FORMAT(8X.13.2X.12(A6.A2))WRITE(8,710) J.(TMP1(M).AST1(M.j).M=I.12)DO M=1,12

IF(VOL(M.J).GE.O) TOTV(M)=TOTV(M)+VOL(M,J)IF(VOLI(M.J).GE.O) TOTVl(M)=TOTVI(M)+VOLI(M,J)

END DOEND DO

CC Compute annual total

ANNTOT=O.A&NTOTI=O.DO M=I.12

ANNTOT=ANNTOT+TOTV(M)ANNTOTI=ANNTOTI+TOTVI(M)

END DOC

720

c

725

825

730

740

C

WRITE(7.720) (TOTV(M).M=1,12).ANNTOTFORMAT(16X.’Total’.12F8.1//

6X.’Annual Total:’,F8.1,’ acre-feet’)WRITE(8.720) (TOTV1(M),M=1,12).ANNTOT1

WRITE(7.725)FORMAT(/6X.’* partial day’/

6X,’- gate open for part or all of this day’/6X.’nr - no record’)

WRITE(8,825)FORPLAT(/6X.’* partial day; volume for missing period is’.

’ estimated.’/6X.’- - gate open for part or all of this day’/6X,’e no record for this day; volume is an estimate.’)

WRITE(7,730) INITHRWRITE(8./30) INITHRFORPtAT(//6X.’NOTES: Flows are computed using the’.

’ sharp-crested weir equation with a weir coefficient’.’ of 3.33 (except when gate open).’/14x.’A day is defined by the 24 hours starting at ’,12,2.’00 hrs.’)

WRITE(7.740) LMON.LDAY.LYR,LHR,LMINWRITE(8.740) LMON.LDAY.LYR.LHR.LMINFORMAT(//7OX.’Processed on: ’.12.’-’,12.2.’-’.14,’ at ’.

12.’:’,12.2)

STOPEND

CVC(MBK) D-7 File: SC-DAY.FOR