9
Materials and S tructures/Mat6riaux et C onstructions, Vol. 34 , November 001, pp 557-565 Drying/hydration in cement pastes during curing D. P. Bentz 1, K. K. Hansen 2, H. D. Madsen 2, F. Vail& 3 and E.J. Griesel 4 (1) B uilding and Fire Research Laboratory, 100 B ureau Drive Sto p 86 21, Nationa l Institute of St andards and Technology, Gaithe rsburg, MD 20899-8621 USA (2) Technical University of Denm ark, Lyngby, D enmark (3) Centre Scientifique et Technique du Bdtimen t, Ma rne-la-Vall&, France (4) University of Cape To wn, South Africa Pap er received: August 21, 2000; Paper accepted: March 23, 2001 A B S T R A C T R I~ S U M I~ As concrete cures in the field, there is a constant com- petition for the mixing water between evaporation and hydration processes. Understanding the mechanisms of water movement in the drying/hydrating cement paste is critical for designing curing systems and specialized ren- dering materials, as well as for selecting repair materials and methodologies. In this work, X-ray absorption mea- surements indicate that fresh cement paste dries uniformly throughout its thickness, as opposed to exhibiting the sharp drying front observed for most porous materials. Furthermore, in layered composite cement paste speci- mens, water always flows from the coarser-pore layer to the finer one, both when coarser pores are produced by using an increased water-to-cement ratio (w/c) and when they are present due to using a cement with a coarser par- ticle size distribution at a constant w/c. Conversely, no clear differential water movement is observed between layers of cement paste and mortar of the same nominal w/c. Based on the results of these experiments, drying has been introduced into the NIST CEMHYD3D cement hydration and microstructure development model, by emptying the largest water-filled pores present at any depth in the model specimen at a use>specified (drying) rate. With this addition, the CEM HYD3D model pro- duces results in good agreem ent with experimental obser- vations of both the drying profiles and the hydration kinetics of thin cement paste specimens. Lors de la cure du ciment sur chantier, la r&ction d'hydrata- tion est en constante cornp6tit ion avec I evaporatzon. La compre- hension des m& anismes de mouvements d'eau au sein de la pate en cours de se'chage/kydratation est essentielle non seulement en vue de d& erminer des m(thodes de cure adapt~es et de d6velopper des mortiers spe'ciaux, rnais ~galernent en rue de s&ctionner les bons produits et les bonnes rn~tkodologies de r(paration. D ans ce travail, les mesures d'absorption des rayons X mettent en & i- dence que la pate de ciment s&he de afon uniforme sur route son 6paisseur, et non selon un front marqu6 comme on peut courarn- ment l'observer dans les mat&iaux poreux. D e plus, clans le cas de pate de ciment bi-coucke, les mouvements d'eau se ont tou- jours de la couche contenant les pores de taiUe la plus importante vers celle contenant les pores les plus.fins, que les pores grossiers soient dus a un rapport e/c 6.1ev6 ou a une granulorn&ie grossi&e des particules de dment. A l'inverse, aucun mouvement d'eau n'est observ~ entre couches de pate de ciment et de mortier a rap- port e/c constant. Sur la base de ces r&ultats, le s&hage a (t~ introduit dans le module d'kydratation et de d&eloppernent de la microstructure du ciment CEMHYD3D d&eloppd par le NIST. Les pores satur6s d'eau de tailles les plus importantes sont ainsi vid6s selon une cin~tique fix(e par l'op6rateur, ceci quelle que soit leur position dans l'bpaisseur de l'6chantillon. CEMHYD3 D g6n~re ainsi des r&ultats pr&entant une bonne corr61ati on avec les observations exp&imen tales, en terme de pro- ills de s6chage et de cin~tiques d'kydratation, r&lis&s sur des pates de ciment de aible ~paisseur. 1. INTRODUCTION To achieve optimal performance from cement-based materials in the field, proper curing conditions must be maintained throughout the first few weeks of their life [1, 2]. Unfortunately, due to a lack of quality control in the field, concretes and mortars often experience con- siderable drying before the cement paste matrix has undergone "complete" hydration. For some materials, such as the thin cement/polymer composite mortars used as rendering materials, later addition of liquid water to the dried composite is not able to "reinitiate" the cem ent hydration process [3]. For others, this re-initia- tion of hydration causes significant internal damage to 1359-5997/01 9 ILILEM 557

Drying-Hydration in Cement Pastes During Curing

  • Upload
    lalejan

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 1/9

Mater ia ls and S t ructures /Mat6r iaux e t C onst ructions ,Vol . 34 , November 001, pp 557-565

D r y i n g / h y d r a t io n in c e m e n t p a s t e s d u r i n g c u r in g

D . P . B e n t z 1 , K . K . H a n s e n 2, H . D . M a d s e n 2 , F . V a i l & 3 a n d E . J . G r i e s e l 4

(1) B uilding and Fire Research Laboratory, 100 B ureau Drive Sto p 86 21, Na tiona l Institute of Standards and Technology, Gaithersburg,

M D 2 08 9 9- 8 62 1 U S A

(2) Technical University of Denm ark, Lyng by, D enm ark

(3) Centre Scientifique et Technique du Bdtimen t, Ma rne-la-Vall&, France

(4) University of Cape To wn, South Africa

Pap er received:August 21 , 2000; Paperaccepted:March 23 , 2001

A B S T R A C T R I~ S U M I~

As concre te cures in the f i e ld , the re i s a cons tant co m -

pe t i t i on f o r t he mi x i ng w a t e r be t w e e n e va po r a t i on a nd

hydr a t i on p r oc e ss es . U n de r s t a nd i ng t he me c ha n i s ms o fw a t e r m ove m e n t i n t he d r y i ng / hyd r a ti ng c e me n t pa st e is

cri t ical for des igning curing sys tems and special ized ren-

der in g m ate r ia l s , a s we l l a s for s e lec t ing repa i r mate r i a ls

a nd me t hodo l og i e s . I n t h is w or k , X - r a y a bs o rp t ion m e a -

suremen ts indica te tha t f resh cem ent pas te dr i es uni form ly

t h r oughou t i t s t h i c kne s s , a s oppos e d t o e xh i b i t i ng t he

s ha r p d r y i ng f r on t obs e r ve d f o r mos t po r ous ma t e r i a l s .

F u r t h e r m or e , i n l a ye r e d c om pos i t e c e me n t pas te s pe c i-

mens , wa te r a lways f lows f rom the coarse r -pore l ayer to

t he f i ne r one , bo t h w h e n c oa r se r po r e s a re p r oduc e d by

us i ng a n i nc r ea s e d w a t e r - t o - c e m e n t r a t io ( w /c ) a nd w he n

they a re present due to us ing a cem ent wi th a coarser pa r -

t ic le s ize dis t r ibut ion at a constant w / c . Converse ly , no

c l e a r d i f f e r e n t i a l w a t e r move me n t i s obs e r ve d be t w e e n

l aye rs o f c e me n t pas te a n d m or t a r o f t he s a me nom i na l

w/c . Based on th e resul ts of these exper iments , dry in g has

b e e n i n tr o d u ce d in to t he N I S T C E M H Y D 3 D c e m e n t

h y d r a t i o n a n d m i c r o s t r u c t u r e d e v e l o p m e n t m o d e l , b y

e mpt y i ng t he l a r ge s t w a t e r - f i l l e d po r e s p r e s e n t a t a ny

depth in the mode l spec imen a t a use>spec i f i ed (dry ing)

r at e. W i t h th is a dd i ti on , t he C E M H Y D 3D mo de l p r o -

duces result s in goo d agreem ent wi th exper im enta l obser -

v a t io n s o f b o t h t h e d r y i n g p r o f i le s a n d t h e h y d r a t i o n

kine t i cs of th in ce m ent pas te specimens.

Lors de la cure du ciment s ur chantier, la r&ction d 'hydrata-

tion est en constante cornp6tition avec I evaporatzon. La compre-

hension des m& anismes de mouvements d 'eau au se in de la p a t een cours de se 'chage/kydratation est essentie lle non seulemen t en

vue de d& erminer des m(thodes de cure adapt~es et de d6velopper

des mor tiers spe 'c iaux, rnais ~galernent en rue de s&ctionner les

bons produits e t les bonnes rn~tkodologies de r(paration. D an s ce

travail, les mesu res d 'absorption des rayons X mettent en & i-

dence que la pa te de c imen t s& he de a fon un i forme sur rou te son

6pa isseur, et non se lon un fron t marqu6 comme on peu t courarn-

me nt l 'observer dans le s ma t& iaux poreux . D e p lus , c lans le cas

de pa te de c imen t b i -coucke , le s mouvements d 'eau se on t tou-

jours de la couche contenant les pores de taiUe la plu s impor tante

vers celle contenant les pores les plus. fins, que les pores grossiers

soient d us a un rapport e /c 6.1ev6ou a une granu lorn&ie grossi&e

des part icu les de dm ent . A l ' inverse , aucun mo uvem ent d 'eau

n'est observ~ entre couches de p a t e de c imen t e t de mort ie r a rap-

port e /c constant. S ur la base de ces r&ultats, le s&hage a (t~

introduit dans le mo dule d 'kydratation et de d&eloppern ent de la

m i cr os tr uc tu re d u c i m e n t C E M H Y D 3 D d & e l op p d p a r l e

N IS T . Les pores sa tur6s d 'eau de ta i l le s le s p lus importan tes

son t a insi v id6s se lon un e c in~t ique f i x ( e par l 'op6ra teur , cec i

quelle que soit leur position dans l 'bpaisseur de l'6chantillon.

C E M H Y D 3 D g 6 n~ r e a in s i de s r & u lt at s p r & en ta n t u n e b o n n e

corr61ation avec les observations exp&imen tales, en terme de pro-

ills de s6chage et de cin~tiques d 'kydratation, r& lis&s sur des

pates de ciment de aible ~paisseur.

1 . I N T R O D U C T I O N

T o a c h i e ve op t i ma l pe r f o r ma nc e f r om c e me n t - ba s e d

ma t e r ia l s i n t he f i e l d , p r ope r c u r i ng c ond i t i ons m us t be

ma i n t a i ne d t h r o ugh ou t t he f i r s t f e w w e e ks o f t he i r li fe

[1 , 2] . Un for tuna te ly , du e to a lack of qua l i ty cont ro l in

t he f i e l d , c onc r e t e s a nd mor t a r s o f t e n e xpe r i e nc e c o n -

s i d e ra b l e d r y i n g b e f o r e t h e c e m e n t p a s t e m a t r i x h a s

un de r g on e " c ompl e te " hyd r a t i on . F o r som e ma t e r i a ls ,

s u c h a s t h e t h i n c e m e n t / p o l y m e r c o m p o s i t e m o r t a r s

u s e d a s r e nd e r i ng m a t e ri a ls , l a te r a dd i t i on o f l i qu i d w a t e r

t o t he d r i e d c ompos i t e i s no t a b l e t o " r e i n i t i a t e " t he

cem en t hyd ra t ion process [ 3] . For o thers , th i s re - in i t i a -

t i on o f hyd r a t i on c a use s s i gn i f ic a n t i n t e r na l da m a ge t o

1359-5997/01 9 ILILEM 5 5 7

Page 2: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 2/9

M a t e r i a l s a n d S t r u c t u r e s / M a t 6 r i a u x e t C o n s tr u c t io n s , Vol. 34 , November2001

t he m i c r os t r uc t u r e a nd a l os s o f me c ha n i c a l p r ope r t ie s

[ 4 ]. B a si c unde r s t a nd i ngs o f w a t e r mo ve m e n t a nd t he

k i n e ti c s o f b o t h h y d r a t io n a n d d r y i n g i n c e m e n t - b a s e d

ma t e r ia l s ar e t hus ne e d e d t o p r od uc e s y st ems w i t h a de -

qua te pe r form ance . Thi s appli es to f reshly cast cem ent i -

t ious s y st ems , c u r i ng c o mp oun ds , a nd r e pa i r ma t e r ia l s.

I n t h i s p a p e r , e x p e r i m e n t a l a n d c o m p u t e r m o d e l i n gstudies are appl ied to e l u c i d a t i n g a n u n d e r s ta n d i n g o f t h e

b a si c m e c h a n i s m s o f w a t e r m o v e m e n t i n f r e sh c e m e n t

pas tes and m or ta rs .

F o r t he e xpe r i m e n t a l s tud ie s, u s e w a s ma de o f an X -

r a y e nv i r onm e n t a l c ha mbe r t ha t ha s r e c e n t ly be e n c on -

s t r u c te d a t t h e T e c h n i c a l U n i v e r s i t y o f D e n m a r k t o

e x a m i n e b u i l d i n g m a t er ia l s e x p o s e d t o v a r i o u s d r y i n g

e nv i r onme n t s [ 5 ] . B o t h r e l a t i ve humi d i t y a nd a i r t e m-

p e r a t u re c a n b e c o n t r o l le d w i t h i n t h e c h a m b e r , w h i c h

a l so s e r ves as a s h i e ld f r om t he X - r a y s ou r c e . I n t h i s

s t u d y , t h e X - r a y e n v i r o n m e n t a l c h a m b e r w a s u s e d t o

m o n i t o r w a t e r m o v e m e n t d u r i n g t h e d r y i n g o f sm a l l

c e m e n t pas te a nd mo r t a r s pe c i me ns . B e c a us e t he X - r a yabsorpt ion i s prop or t iona l to the d ens i ty of the m ate r ia l s

t h r oug h w h i c h t he X - r a ys a re pa ss ing , a h i gh w a t e r - t o -

ce m en t rat io (w/c) less den se pas te w il l absorb less X- rays

tha n a low er w/c pas te . Similarly, a pas te that has drie d

ou t wi l l absorb l es s X-rays than the same paste un de r i ts

i n i ti a l s a tu r a t e d c o n d i t i o n s , a l l o w i n g a r a p i d n o n -

de s t r uc t i ve qua n t i f i c a t i on o f t he m o i s t u r e d i s t r i bu t i on

w i t h i n t he d r y i ng / hyd r a t i ng s amp l e.

I n a dd i t i on t o t he e xpe r i me n t a l s t ud i e s , t he N I S T

t h r e e -d i m e n s i o n a l c e m e n t h y d r a t io n a n d m i c r o s t ru c t u r e

d e v e l o p m e n t c o m p u t e r m o d e l [6 , 7 ], C E M H Y D 3 D , h as

be e n e x t e nde d t o d i r e c tl y c ons i de r d r y i ng a nd t he c ons e -que nc e s o f e mp t y ( as oppos e d t o w a t e r - fi l le d ) po r os i t y

on mi c r os t r uc t u r e de ve l opme n t a nd hyd r a t i on k i ne t i c s .

B a s e d o n t h e e x p e r i m e n t a l o b s e r v a t i o n s , a p p r o p r i a t e

a l go r it hms w e r e de ve l ope d f o r s imu l a t i ng the d r y i ng o f

f re sh c e m e n t pa st e a nd t he e x t e n de d c ode w a s a pp l i ed t o

s i mu l a t ing s e ver al o f t he s y st ems o n w h i c h e x pe r i me n t a l

me a s u r e m e n t s w e r e m a de [ 8 , 9 ].

2 . E X P E R I M E N T A L P R O C E D U R E

D e t a il s o f t he X - r a y e nv i r onm e n t a l c ha mbe r a r e p r o -vided in Refs . [5] and [8] . The X-ray sys tem cons i s t s of

a n X - r a y s ou r c e , a de t e c t o r , a nd a pos i t i on i ng t a b l e t o

move t he s ou r c e a nd de t e c t o r r e l a t i ve t o t he s pe c i me n

be i ng e va l ua te d . T h e d e t e c t o r u s es a n N a I c r y s ta l a nd

m e a s u r e s t h e p h o t o n c o u n t f o r e a ch o f 2 56 d i s cr e t e

e n e r g y c h an n e l s. T h e e n t i re s y s te m is c o m p u t e r c o n -

t r o ll e d , s o t ha t t he u s e r m a y s e t up a g r i d o f s pe c i me n

point s to be eva lua ted a t pe r iodic in te rval s.

For th i s s tudy, three d i f fe rent cements were used: 1)

a n A S T M T yp e I / I I o r d i na r y po r tl a nd c e m e n t , i ss ued a s

C e m e n t 1 3 3 i n J u n e 1 9 99 b y th e C e m e n t a n d C o n c r e t e

R e f e r e nc e L a bo r a t o r y a t N I S T [ 10 ] , 2 ) a c oar se l ow C 3A

c o n t e n t c e m e n t g r o u n d t o a f in e n e ss o f 2 5 4 m 2 / k g(med ian par t ic l e d iam ete r of about 25 ~ tm) [11] , and 3) an

u l t r a - f i n e c e m e n t g r o u n d t o a f i n e n e ss o f 6 5 4 m 2 / k g

( me d i a n pa rt ic l e d ia me t e r o f 5 b tm) . C e m e n t 133 has a

po t e n t i al B og ue c o mpo s i t ion o f 58 .6% C 3S , 14 .8% C 2 8 ,

10 . 6% C 3A , a nd 7 . 5% C 4A F ba s e d on ox i de a na l y s i s ,

w i t h a B l a ine f ine ne s s o f a bou t 350 m 2 / kg [ 10 ] . T he l ow

C 3 A c e m e n t h a s a B o g u e c o m p o s i t i o n o f 5 9 .0 % C 3 S,

25 . 9% C 2S , 0 . 6% C 3A , a nd 14 .2% C 4A F , as de t e r m i ne d

by qua n t i t at ive m i c ros c opy , w i t h h e mi hy d r a t e a dde d a t a

ma s s f r a c t i on o f 0 . 05 . F o r t he u l t r a - f i ne c e me n t , t he

B o g u e c o m p o s i t i o n ( vi a q u a n t i t a ti v e m i c r o s c o p y ) is

73 . 5% C 3S , 16 .5% C 28 , 7 . 1% C 3A , a nd 2 . 5% C 4A F ,onc e a ga i n w i t h a 5 . 0% by ma s s he mi hyd r a t e a dd i t i on .

Smal l (50 g to 100 g) s amples of cem en t pas tes and m or-

t ar s w e r e p r e pa r e d i n g l a s s be a ke r s a nd m i xe d by h a nd

us i ng a s pa t u la fo r tw o t o t h r e e m i nu t e s . I n ge ne r a l ,

c e m e n t pas te s a nd mor t a r s o f w / c -- 0 . 3 a nd 0 . 45 w e r e

prepared .T h e f l e sh c e m e n t pa st es w e r e p l a c e d i n e i t he r s ma ll

i nve r t e d L e go 1 b l oc ks ( a c om m on c h i ld r e n 's t oy b u i l d i ng

b l o c k ) o r l a r g e r p a r a l l e l e p i p e d c u v e t t e s , w h i c h w e r e

e i the r l e f t op en o r s ea led w i th a cap . Th e L ego b locks

a nd p l e x ig la ss c uve t t e s w e r e c hos e n a s s amp l e ho l de r sdue t o : 1 ) t he i r l ow a bs o r p t i on o f X - r a ys [ 9 ] , 2 ) t he i r

inh eren t s t ackabil ity (a llows repea table p lacem ent o f the

b l oc k w i t h i n t he X - r a y c ha mbe r ) , 3 ) t he e as e w i t h w h i c h

they can be sea led by adding a cap , and 4) the ease wi th

w h i c h t h e y c a n be f i ll e d w i t h a le ve l vo l um e o f the v i s -

c o u s c e m e n t p a st e . T h e c u v e t t e s h a v e th e a d d i t io n a l

a dva n t a ge o f be ing t r a ns pa r en t , s o t ha t t he d r y i ng be ha v -

i o r m a y be d i r e c tl y in f e r r e d f r om c ha nge s in t he " b r igh t -

nes s" of the sample. Th e bas ic exp er im enta l s e tup , i llus -

t r a t e d f o r t h e c o m p o s i t e ( l a y e re d ) c e m e n t p a s te

s p e c i m e n s t o b e d e s c r i b e d b e l o w i n t h e R e s u l t s a n d

Discuss ion sec t ion , i s show n in F ig . 1 .E a c h b l oc k w a s l a be l e d a n d w e i gh e d ( t o -+ 0 .01 g )

be f o r e t he c e me n t pa st e w a s a dde d . T h e m a ss es o f t he

c e m e n t pa s t e - f il l ed b l oc ks w e r e d e t e r m i ne d i n it ia l ly a nd

p e r i o d ic a l ly th r o u g h o u t t h e e x p o s u r e p e r io d . T h e

b l oc ks w e r e l oc a t e d s e que n t i a ll y on a ho l de r ( a n i nve r t e d

Detector 1

1 .0 mmd i a m e t e rp i n h o l e

# 1 # 2 # 3 # 4

TI X - ra y

source

A i r - 230(2Cap Cap

5 0 % R H

l ' ' , i , .! i 9

/ ~ t w , ~ - ~ .. 4 . 3 w / c ~ . 4 5 w , o = 0 .3

# 1 # 2 # 3 # 4

L e g o b locks

F i g. 1 - E x p e r i m e n t a l se tup for th e f ir s t l aye r e d c e m e nt pas te s

e x p e r i m e n t . I m a g e o n t h e l e f t s h o w s a h o r i z o n t a l v i e w o f t h e

s e t u p w i t h s a m p l e s n u m b e r e d f r o m 1 t o 4 a n d i m a g e o n t h e r i g h t

i s a v e r t i c a l v i e w [ 8 ] .

(1 ) Cer ta in comm erc ia l equ ip me nt i s iden t i fied in th i s pap er to spec i fy the

exper imenta l procedure . I n no case does such iden t i f ica t ion imp ly endorsem ent

by the Nat io na l Ins t i tu te o f S tandards an d T echnology , nor does i t ind ica te

tha t the produc ts are nece ssar i ly the b e s t ava i lab le or the purpose .

5 5 8

Page 3: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 3/9

B e n t z , H a n s e n , M a d s e n , V a l iS e , G r i e s e l

8

r

3 0 0 0

2 0 0 0

1 0 0 0

~ o l i d - w / c : : = 0 . 3~ d a s h e d w ~ c = 0 , 4 5

0 6 4 1 2 8 1 9 2 2 5 6

C h a n n e l n u m b e r

F i g . 2 - M e a s u r e d s p e c t r a f o r f r e s h c e m e n t p a s t e s [8 ] . E a c h c h a n -

n e l n u m b e r c o r re s p on d s t o a d i s c r e t e e n e r g y l e v e l .

L e go ba s e e l e me n t ) p l a c e d a t a f ixe d l oc a t i on w i t h i n t heX-r ay chambe r . Af te r spec if ic pe r iods of exposu re , the

X - r a y s y s t e m w a s u s e d t o s c a n ve r t i c a l l y ( i n 0 . 2 mm

i nc r e me n t s ) a d i st a nc e o f e i t he r 8 m m ( L egos) o r 20 m m

(cuvet tes ) a long the cent ra l y-axi s of each b lock . A f ive

s e c ond c ou n t t i me w a s u s e d at e a c h l oc a t i on t o i mpr ove

the s igna l to noi se ra t io . Assu min g a Poi s son proces s ,

t h e r e l at iv e s t a n d a r d u n c e r t a i n t y i n t h e s u m o f th e

c oun t s ob t a i ne d f o r c ha nne l s 50 t o 150 s hou l d be on t he

o r d e r o f 3 0 0 c o u n t s o r 0 . 4 % ( f or a s u m o f 7 0 , 0 0 0

coun t s , a typica l va lue for the cem en t pas te spec imens ) .

E xa m pl e s o f s pe c tr a me a s u r e d f o r t w o o f t he f r e s h

cem ent pastes a re provided in F ig . 2 . Th e smal l peak a tc ha nne l 200 i s f r om a n i n t e r na l C oba l t s ou r c e u s e d f o r

sys tem ca l ibra tion . Th e den ser w/c = 0 .3 cem ent paste is

s e e n t o a bs o r b m or e o f t he X - r a ys a s i nd i c a t e d b y i ts

lower count va lues a t a l l channe l s up to 150. Based on

t h e p a t t e r n o b s e r v e d i n F i g. 2 , t h e s u m o f c o u n t s

be t w e e n c ha nne l s 50 a nd 150 w a s s el e c te d as the de pe n -

de n t va r i a b l e t o be a na l yz e d a s be i ng r e p r e s e n t a t i ve o f

t h e d e n s i t y ( a n d w a t e r c o n t e n t ) o f th e c e m e n t p a s te .

T h i s va l ue w a s no r ma l i z e d by d i v i d i ng i t by t he r a ti o o f

t he c o un t s a c h i e ve d i n f r ee a i r a t e a c h me a s u r i ng t i me t o

t he c oun t s a c h i e ve d i n f r e e a i r f o r t he f i r s t me a s u r i ng

t i m e ( to a c c o u n t f o r i n h e r e n t v a r i a b i li ty i n t h e X - r a ys ou r c e ) . I n the g r a phs tha t fo l l ow , t he s e no r m a l i z e d

c o u n t s h a v e b e e n d i v i d e d b y o n e t h o u s a n d p r o d u c i n g

va l ue s ge ne r a l ly be t w e e n 70 a nd 140 . I n s om e c a s es , d i f -

fe rent i a l dens i ty (count s ) prof i l es have been produced by

subtract ing the 3 h absorpt ion values at each spat ial loca-

t ion f ro m a l l subseq uent readings a t the s am e loca t ion , to

h i g h l i g h t t h e c h a n g e s o c c u r r i n g a f t e r t h e i n i t i a l

s e t t ing/ se t tl ing of the c em en t pas te i s com ple te .

3 . C O M P U T E R M O D E L I N G - C E M H Y D 3 D

T o a da pt t he N I S T C E M H Y D 3 D c e m e n t h y d r at io na n d m i c r o s t r u c t u r e d e v e l o p m e n t c o m p u t e r m o d e l t o

e xa m i n i ng d r y i ng / hyd r a t i on i n f r es h c e m e n t pa st es , s e v -

e r al e n h a n c e m e n t s t o t h e m o s t r e c e n t d o c u m e n t e d v e r -

s i on o f th e c o d e [7 ] w e r e r e q u i r e d . T h e s e i n c l u d e d a

m o d i f i c a t i o n o f t h e m o d e l b o u n d a r y c o n d i t i o n s , a n

e x t e n s i o n o f t h e m o d e l p h y s ic a l d i m e n s i o n s , a n d t h e

a dd i t i on o f s ub r ou t i ne s t o i m p l e m e n t t he a c t ual c r e a ti on

o f e mp t y po r os i t y due t o t he d r y i ng .

T h e p r e vi o u s v er si o ns o f C E M H Y D 3 D t yp ic a ll y

s imula te the hy dra t ion o f a 100 p ixe l x 100 p ixe l x 100

p i xe l c ub i c vo l ume w i t h pe r i od i c bounda r i e s a l ong a l l

f a ce s o f t h e v o l u m e [ 7] . T o e x a m i n e d r y i n g i n t h i n

c e me n t pa s t e s , t he pe r i od i c bounda r y c ond i t i ons a t t he

t o p a n d b o t t o m s ur fa ce s a re r e m o v e d a n d m o v e m e n t o f

m od e l d i f fus ing spec ies ac ros s these faces is prohib i t ed .

F u r t h e r m o r e , w h e n g e n e r a t i n g t h e s t a rt in g 3 - D

mi c r os t r uc t u r e , du r i ng pa r t i c l e p l a c e me n t , no pa r t i c l e s

a r e a l l o w e d t o p r o t r u d e a c ro s s th e t o p a n d b o t t o m

hydr a t i on vo l um e s ur fa c es . T o s i mu l a t e a pp r ox i ma t e l y

t he c om pl e t e t h i c kne ss o f t he s pe c i me ns s t ud ie d e xpe r i -

me n t a l l y , t he mode l d i me ns i ons a r e e x t e nde d t o s t udy

micros t ruc tures e i the r 1000 p ixe l s or 4000 p ixe l s th ick .

W i t h e a c h p i xe l 1 t i m i n d i me ns i on , t he s e mode l s s y s -t e ms ar e t hus e i the r i m m o r 4 m m t h i c k .

O r i g i na ll y , i t h a d be e n p l a nne d t o s i mu l a t e the d r y -

ing proces s of a hydra t ing c em ent pas te b y " in truding" a

d r y i ng f r on t f r om t he t op e xpos e d s u rf ac e a t a u s e > s pe c -

i f i ed ra te . Ho we ver , the in i ti a l X-r ay absorpt ion result s

( to be p r e s e n t e d be l ow ) i nd i c a t e d t ha t , i n s te a d o f p r o -

c e e d i ng a s a s ha r p i n t r ud i ng f r on t , t he d r y i ng a c t ua l l y

o c c u r s re l a ti v e ly u n i f o r m l y t h r o u g h o u t t h e s p e c i m e n

thickness . I t appears tha t the l a rgest pores every wh ere

e m p t y f i rs t , f o l lo w e d b y t h e n e x t l a r g e st , et c . T h i s

be ha v i o r c a n be c onve n i e n t l y m ode l e d i n t he s a me w a y

tha t s e l f -des icca t ion due to chemica l shr inkage had pre -v io u sl y b e e n im p l e m e n t e d in t h e C E M H Y D 3 D m o d e l

[6 , 12 , 1 3] . To as ses s the s ize of the "pores" in the 3-D

micros t ruc ture , a d ig i t i zed spher ica l t empla te (d iamete r

= 13 p ixe l s ) i s cente red a t each p ixe l , and the number of

und er ly ing p ixe ls as s igned to b e wate r - f i l l ed poros i ty o r

p r e v i ous l y e mp t i e d po r os i ty is de t e r mi ne d . T he s e va l ue s

a re then sor t ed f rom la rges t to smal les t and the l a rges t

po r e s e mp t i e d f i r s t a t a r a t e de t e r mi ne d by a u s e r - s up -

pl i ed dry in g ( ra te) da taf il e. W hi le th i s a lgor i thm i s re l a -

t i ve l y s l ow i n i mp l e me n t a t i on f o r a 100 x 100 x 4000

mic ros t ruc tu re , i t cou ld eas ily be para l l e l ized to obta in a

f as te r tu r na r oun d t i me on a mu l t i - p r oc e s s o r c ompu t e r .

4 . R ES UL TS A N D D I S C U S S I O N

I n t he f ir s t e xpe r i me n t , c e m e n t pas te s o f w / c = 0 . 3

a nd 0 . 45 w e r e p r e pa r e d a nd i m me d i a t e l y p l a c e d in t he i r

b l oc k mo l ds . W hi l e t he s e b loc ks w e r e e xpos e d t o a va r i -

e t y o f d r y i ng c o nd i t i ons [ 8 ], he r e w e s hal l f oc us on t he

s et o f b loc ks t ha t w a s i mme d i a t e l y e xpos e d t o t he c ha m -

b e r e n v i r o n m e n t o f 5 0 % R H a n d 2 3 ~ F o r t h es e s p e c-

i m e n s , X - r a y m e a s u r e m e n t s w e r e p e r f o r m e d o v e r a

p e r i o d o f 7 d .

Af te r th e in i t i a l s e t tl ing ( set ting) o f the c em en t paste ,surpr is ingly , the d ry ing prof i l es a re observed to ch ange

i n a r e la t ive l y un i f o r m m a nn e r t h r o ugh ou t t he t h i c kne ss

(depth) of the spec imen , as sho wn in F ig . 3. Thi s i s in

5 5 9

Page 4: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 4/9

Ma ter ials and Structures/Matdr iaux e t Constructions, o l. 34, November2 0 0 1

.~ ~ C .3! . . . .

| ::

t t ~ ] - i . . . .

0 :Z :

~ i . i .

D - 4 . 6 7 h ~ ' - 8 . 6 7 h O - 1 2 . 6 7 h

A - 2 4 . 6 7 h

, / a 4

. I . i . , : . . , i

P o s i t i o n ( r a m ) P o s i t i o n ( m m )

1 0 0

Fig. 3 - N o r m a l i z e d d e n s i t y p ro f i le s f o r o p e n b l o c k c e m e n t p a s t e

s p e c i m e n s . B o t t o m o f c e m e n t p a s t e s p e c i m e n i s a t p o s i t i o n 28 .5

m m ( i n s y s t e m c o o r d i n a t e s ) a n d t o p e x p o s e d s u r f a c e is a t p o s i t i o n

3 3 m m t o 3 4 m m .

I 1 I i , J , i , ! i , , ! ,

0 8 . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . i . . . . . .

" [ ~ i :: d - 0. i5 o vi r 0 .3 :: open: : :: ::o 0 . 6 . . . . . ~ , \ . . . . . . . ! . . . . . . . ~ = 0 . 3 i / ~ e r ~ 0 . 4 5 ! / : / i S e h l . . . . . . . . i . . . . . . . . : " . . . . . . .

~\ :: C j - 0.4~5 ov er 0 .3 :: capp ~ed :: ::

-~ ~ . ~ v e r i 0.45i appled I ::

0 4- . . .. . .. . . . . .. . . ! S . . . . . . . .

~ 0 . 2 -

00 10 20 30 40 50 60 70 80 90 100

T i m e ( h )

F i g . 5 - R e l a t i v e w a t e r c o n t e n t v s . t i m e f o r e x p o s e d l a y e r e d

c e m e n t p a s t e s p e c i m e n s .

m

"o

oo

e !

l o ' ' , I , , ' ! ' ! ' /

. . . . . 9 = ? . . ~ . [ . i L8 . . . . . . 0 - 7 h i . . . . . . . . . i . . . . . l

v , ~ d ~ % : ' o o" ~ , , " ~ ~ ,

4

2

0

- 2

. . . . . . . . o ' - i . . . . . . . . . . ~ . . . . . . . . . i % . . . .

- ~ I . H B . . H " . . f i B . I

di

:: , , / ~ : O . 4 s

I I2 8 2 9 3 0 3 1

' 7 ' 0 i

,: , , / ~ = 0 . 3 iI I I

3 2 3 3 3 4 3 5 3 6

D i s t a n c e ( m m )

F i g . 4 - D i f f e r e n t i a l d e n s i t y p r o f il e s ( r e l a t iv e t o 3 h ) f o r l a y e r e d

c e m e n t p a s te ( 0.3 o v e r 0 . 4 5) o p e n t o t h e c h a m b e r e n v i r o n m e n t .

E x p o s e d t o p s u r f a c e i s a t p o s i t i o n 3 5. 5 m m .

6

4

o 2

v

20

oo

~-~ - 2

~. -4

- 6

J i i , ,

D - T h

................. D = i 8 i i ; ..........................................................0 - 3 4 h :: i ,

~=..4-~..~i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ~ - ~ . ~ v~ ' ~ . " ~ , ~ . ~ - i r ' : ~ ~

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . i ~ . " . . . . . . ! ) . . . . . . . . . . . : . . . .. .

. t " : : / '

. . . . . . . . . . . . . . i . . . . . ' .' . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . .. . . . . ~ . . . . . . . . . . . . . . . . . . . .. . . .

| I I2 8 2 9 3 0 3 1 3 2 3 3 3 4

D i s t a n c e ( r a m )

Fig . 6 - D if fe ren t ia l dens i ty p rof i les ( re la t ive to 3 h ) fo r layere d

cem en t pas te (0.45 over 0 .3) sea led w i th a cap .

c o n t r a s t t o t h e i n w a r d p r o g r e s s i o n o f a r e la t i v e ly s h a r p

d r y i n g f r o n t o f t e n o b s e r v e d i n p o r o u s m a t e r i a ls . W h i l e

t h e s e c e m e n t p as t e sp e c i m e n s a re o n l y 4 m m t o 5 m m

t h i c k , s i m i l a r r e s u l t s h a v e r e c e n t l y b e e n o b t a i n e d f o r

c e m e n t - b a s e d s y st e m s 50 m m t h i c k u s in g m a g n e t i c r e so -n a n c e i m a g i n g [ 1 4 ] . F o r h a r d e n e d c o n c r e t e , S e l i h e t a l .

[ 1 5 ] h a v e o b s e r v e d r e l a t i v e l y u n i f o r m d r y i n g f o r a f e w

d a ys , f o ll o w e d b y t h e d e v e l o p m e n t o f a s ig n i f i c a n t m o i s -

t u r e g r a d i e n t o r i g i n a t i n g a t t h e d r y i n g su r f ac e . I n t h e

f r e s h c e m e n t p a s t e , t h e c o m b i n a t i o n o f a r e la t i ve l y w i d e

p o r e s i z e d i s t r i b u t i o n a n d a h i g h p e r m e a b i l i t y a l l o w s a

r a p i d r e a r r a n g e m e n t o f i n t e r n a l w a t e r d u e t o c a p i l la r y

f o rc e s , so t h a t t h e l a rg e s t p o r e s t h r o u g h o u t t h e s p e c i m e n

t h i c k n e s s e m p t y f ir s t . T h i s r e su l t s i n a f a i rl y u n i f o r m

d r y i n g t h r o u g h o u t t h e s p e c i m e n t h i c k n es s . T h e s ca le

o v e r w h i c h t h i s m e c h a n i s m o p e r a t e s i n f r e s h c o n c r e t e i s

y e t t o b e d e t e r m i n e d , b u t t h e r e s u lt s o f C o u s s o t [ 14 ]

su g g es t th a t i t i s a t l eas t 5 0 r am, s imi la r to th e d ep th o f

t h e s t e e l r e i n f o r c e m e n t i n e x p o s e d c o n c r e t e m e m b e r s .

I n F i g . 3 , i t c a n a ls o b e n o t e d t h a t w h i l e t h e r e i s a 1 m m

d i a m e t e r p i n h o l e ( c o l l im a t o r ) i n f r o n t o f t h e X - r a y

d e t e c t o r , t h e s pa ti al r e s o l u t i o n o f t h e s y s t e m i n p r a c t i c e i s

s i g n i fi c a n t ly h i g h e r t h a n t h i s a s t h e s h a r p i n t e r fa c e s p r e -

s e n t a t t h e t o p s a n d b o t t o m s o f t h e s p e c i m e n s s e e m t o b e

r e s ol v a b le t o t h e 0 . 2 m m s p a c i n g u s e d i n s a m p l i n g .

E v e n m o r e i n t e r e s t i n g a r e t h e r e s u l t s f o r l a y e r e d

c o m p o s i t e s p e c i m e n s . F o r e x a m p l e , F i g .4 s h o w s t h e d i f -

f e r en t ia l d en s i ty p roEf les fo r a lay ered co m p o s i te co n s is t -

i n g o f a l a y e r o f w / c = 0 . 3 c e m e n t p a s t e o v e r a l a y er o f

w / c = 0 . 4 5 c e m e n t p a s te . E v e n t h o u g h i t is t h e 0 . 3

c e m e n t p a s te t h a t i s e x p o s e d t o t h e d r y i n g e n v i r o n m e n t ,

t h e 0 . 4 5 p a s t e " d r i e s o u t " f i r s t ( b e t w e e n 3 h a n d 7 h ) .

O n l y a t l a t e r t i m e s , a f t e r t h e 0 . 4 5 p a s t e h a s n e a r l y

r e a c h e d c o m p l e t e d r y i n g , d o e s t h e 0 . 3 p a s t e e x p e r i e n c e

s ig n i f ican t wa te r lo ss . T h e cap i l la ry fo r ces p r ese n t in th e

f r e s h c e m e n t p a s t e ar e e a s il y a b l e t o r e d i s t r i b u t e t h e

w a t e r f r o m t h e l o w e r 0 . 4 5 p a s t e l a y e r t o t h e 0 . 3 p a s t e

lay er r es t in g o n to p o f i t . T h e r esu l t s in F ig . 4 a r e co n s is -

t e n t w i t h t h e m a s s lo ss m e a s u r e m e n t s s h o w n i n F i g . 5 ,w i t h a la r ge a m o u n t o f w a t e r l os s o c c u r r i n g d u r i n g t h e

f i r s t 1 0 h to 2 0 h o f ex p o su re , an d v e ry l i t tl e th e r eaf te r .

T h i s r e a r r a n g e m e n t o f c a p i ll a ry w a t e r is e v e n

5 6 0

Page 5: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 5/9

B e n t ] ., H a n s e n , M a d s e n , V a l l 6 e , G r ie s e l

r~

o

v

r~

or

r~

o

~ 0 - ' ! , ! , ! , !

D - 5 i h : i :

O- 7 1 h

- , - ~i9 h i i ::t, _ 6i0 h i ! !........... ~.... ~ .... !--- ~

.....~ !...,,:..~gi~

;'i'~', J~" ',i,~ .~ i

0 . . . . .

5 i / zm

3 3 3 4 3 5 a 6 3 7

, ! , ! , ! ,

! o i

i: 3 6 / * m i

' I ' I ' I '3 8 3 9 4 0 4 1

D i s t a n c e ( m m )

F i g . 7 - D i f f e r e n t i a l d e n s i t y p r o f i l e s ( r e l a t iv e t o 3 h ) f o r l a y e r e d

w / c = 0 . 45 c e m e n t p a s t e (2 5 g m o v e r 5 Ix m ) o p e n t o t h e c h a m b e r

e n v i r o n m e n t . I n t h i s ca s e , t h e 2 5 ~ tm c e m e n t p a s t e i s d i r e c t l y

e x p o s e d t o t h e e n v i r o n m e n t , w i t h i ts t o p s u r fa c e a t p o s i t io n 4 1 m m .

11 0 | , ! , ! ' ! , ! , ! , ! , ! , |

i " : ' , i i , /~,' i'~ ~ . . . . ~ . ,

~ / . . . . . - /

; : ' . ' . : : ; I [

3 3 3 4 3 5 3 6 : 37 3 8 3 9 4 0 4 1

D i s t a n c e ( m m )

F i g . 8 - D i f f e r e n t i a l d e n s i t y p r o f i l e s ( r e l a ti v e t o 3 h ) f o r l a y e r e d

w / c = 0 .4 5 c e m e n t p a s t e ( 5 p m o v e r 2 5 p .m ) o p e n t o t h e c h a m b e r

e n v i r o n m e n t . I n t h is c a s e, t h e 5 b t m c e m e n t p a s t e i s d i r e c t l y e x p o s e d

t o t h e e n v i r o n m e n t , w i t h i ts t o p s u r fa c e a t p o s i t io n 4 1 m m .

o b s e r v e d i n a c a p p e d s p e c i m e n w h i c h l o s e s v e r y l i t t l e

c a p i ll a ry w a t e r ( o n l y a b o u t 1 0 % o v e r t h e c o u r s e o f 8 0 h

- - - s ee F ig . 5 ) , a s sh o wn in F ig . 6. He re , th e m o re d e n se

p a s te a t t h e b o t t o m o f t h e s p e c i m e n i s se e n t o f u r t h e ri n c r e a s e i n d e n s i t y ( n e g a t i v e v a l u e s o n t h e d i f f e r e n t i a l

d e n s i t y p l ot ) a t t h e e x p e n s e o f t h e l es s d e n s e p a s te i n t h e

t o p h a l f o f t h e s p e c i m e n . I n t h i s c a s e , a s u b s t a n t i a l

m o v e m e n t o f w a t e r i s o b s e r v e d to o c c u r b e t w e e n 3 4 h

a n d 4 6 h a s t h e f i n e r p o r e s t r u c t u r e o f t h e w / c = 0 .3 p as te

i m b i b e s w a t e r f r o m t h e w / c = 0 . 4 5 p a s t e t o r e p l a c e t h a t

" lo st " d u e t o c h e m i c a l s h r i n k a g e / h y d r a t i o n .

D i f f e r e n c e s i n t h e i n i ti a l p o r e s iz e d i s t r i b u t i o n o f t h e

f r e s h c e m e n t p a s t e c a n a l s o b e p r o d u c e d a t a c o n s t a n t

w / c b y u s i n g c e m e n t s g r o u n d t o d i f f e r e n t f i n e n e s s e s

( P S D s ) . I n g e n e r a l , c oa r s e r c e m e n t p a r ti c l e s i m p l y

c o a r s e r " p o re s " b e t w e e n t h e m [ 1 1 ] . F i gs . 7 a n d 8 s h o w

t h e r e s u l ts o b t a i n e d f o r b o t h c o n f i g u r a t i o n s o f w / c = 0 . 4 5

l a y e r ed c o m p o s i t e s o f t h e " 5 B m " a n d " 25 b t m " c e m e n t s .

R e g a r d l e ss o f w h i c h p a st e is e x p o s e d t o t h e c h a m b e r

e n v i r o n m e n t , t h e 2 5 } . tm c e m e n t p a s t e i s a lw a y s s e e n t o

8 -

va

7

6

5r~

4

o

0

, ! , p , ! , ! ! , ! , ! , ! , ! ,

. . . . . . . . } ! a A - - m

-,% *-4-~--~ --- #} ~6 ~ ~v. . . . . . . . ! . . . . . . . i

A - i6 0 h i :: :: ! ~ :: i i ::

i i i i i i i i ii :: p a s t e : i :: m o t { a t

, ~ , ~ i , ~ i I ~ , 1 I2 9 3 0 3 1 3 2 3 a 3 4 3 5 3 6 3 ? 3 8 3

D i s t a n c e ( m m )

F i g . 9 - D i f f e r e n t i a l d e n s i t y p r o f i l e s ( r e l a t i v e t o 3 h ) f o r l a y e r e d

w / c = 0 .4 5 m o r t a r o v e r c e m e n t p a s t e o p e n t o t h e c h a m b e r e n v i -

r o n m e n t . I n th i s c a s e, t h e m o r t a r i s d i r e c t l y e x p o s e d t o t h e e n v i -

r o n m e n t , w i t h i ts to p s u r f a c e at p o s i ti o n 3 8 .5 m m .

d r y o u t f i r s t (3 h t o 7 h ) , w h i l e t h e d i f fe r e n t ia l c o u n t s f o r

t h e 5 l x m c e m e n t p a s t e r e m a i n n e a r z e r o ( i n d i c a t i n g n o

lo ss o f wate r ) . O n c e ag a in , th e cap i l la ry fo r ces d r aw th e

w a t e r f r o m t h e c o a r s e r p o r e s to t h e f i n e r o n e s . W i t h i n

each lay er , h o wev er , th e d ry in g i s s t i l l o b serv ed to o ccu r

u n i f o r m l y , w i t h n o i n d i c a t i o n o f a s h a rp d r y i n g f r o n t.

S i m i l a r e x p e r i m e n t a l o b s e r v a t i o n s u s i n g m a g n e t i c r e s o -

n a n c e i m a g i n g h av e b e e n m a d e b y C o u s s o t et al. [1 6 ] fo r

c o m p o s i t e s c o n s i s t i n g o f la y er s o f p a c k e d g l as s b e a d s o f

d i f f e r e n t s iz e s, o n c e a g a i n w i t h e q u i v a l e n t p o r o s i t i e s i n

eac h layer.

C o m p o s i t e s p e c i m e n s c o n s i s t in g o f a la y e r o f c e m e n t

p a s te o v e r a l a y e r o f m o r t a r a n d v i c e v e rs a ( a t a c o n s t a n tw/c) wer e al so in v es t ig a ted . I n th ese cases , th e d ry i n g

w a s r e la t i v e ly u n i f o r m t h r o u g h o u t b o t h l a ye rs s i m u l t a -

n e o u s l y w i t h n o c l e a r i n d i c a t i o n o f d i f f e r e n ti a l w a t e r

m o v e m e n t b e t w e e n t h e l ay e rs , as s h o w n i n F i g . 9 f o r a

w / c = 0 .4 5 c o m p o s i t e . I n t h i s ca s e, t h e c o a r s e r p o re s t h a t

m o s t l i k e l y e xi s t i n t h e i n t e rf a c i a l t r a n s i ti o n z o n e s ( I T Z s )

s u r r o u n d i n g t h e s a n d p a rt i c le s i n t h e m o r t a r a r e b a l a n c e d

b y t h e f i n e r p o r e s t r u c t u re o f th e b u l k c e m e n t p a s te i n

t h e m o r t a r [ 17 ]. I f t h e w / c i s i n c r e a s e d i n t h e I T Z s i n

t h e m o r t a r , i t m u s t a l s o b e d e c r e a s e d i n t h e b u l k p a s t e

r e l a ti v e t o t h e n o m i n a l w / c [ 1 7 ]. T h u s , m o s t l i k el y ,

w a t e r m o v e s lo c a l ly f r o m t h e I T Z t o t h e b u l k p a s ter e g io n s w i t h i n t h e m o r t a r ( w h i c h w o u l d n o t b e

d e t e c t a b l e u s i n g t h e X - r a y a b s o r p t i o n m e a s u r e m e n t s ) ,

w i t h l it tl e d e te c ta b le b u l k m o v e m e n t f r o m t h e c e m e n t

p a s t e t o t h e m o r t a r o r v i c e v e r sa . I t s h o u l d b e n o t e d ,

h o w e v e r , t h a t t h e o b s e r v e d X - r a y a b s o r p t i o n r e s u lt s

w o u l d a ls o be c o n s i st e n t w i t h t h e m o r t a r b e i n g a s i m p l e

t w o - p h a s e ( p as te a n d s a n d) c o m p o s i t e w i t h n o d i s t i n -

g u i s h a b le I T Z r e g i o ns . I n t h is c as e , t h e c e m e n t p a s te

w o u l d b e n o m i n a l l y id e n t i c a l i n t h e p a s te a n d m o r t a r

s p e c i m e n s a n d n o d i f f e re n t ia l w a t e r m o v e m e n t d u e t o

c a p i ll a ry f o r ce s w o u l d b e e x p e c t e d .

Sev era l o f th e sy stems s tu d ied ex p er imen ta l ly we re a l so

s i m u l a te d u si n g t h e n e w v e r s io n o f t h e C E M H Y D 3 D

m o d el . Fo r th ese s imu la t io n s , th e d ry in g r a tes we re ch o -

s e n t o a p p r o x i m a t e l y m a t c h t h o s e o b s e r v e d e x p e r i m e n t a l l y

(F ig . 5 ). Af te r each t im e o f h y d ra t io n , th e r esu lt s were sp a-

5 6 1

Page 6: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 6/9

Mater ials and Structures/Mat6r iaux e t Constructions, Vo l . 3 4 , N o v e m b e r 2001

0 .6

0 .5o

o

0 .4

0.3

~ 0 .2

V, o. 1

o

, I , ! , ! ,

0 - 2 . 9 h : 0 - i i . 8 : h A - 2 6 : 6 1 h

[ 3- 6 . 6 h : 4 - 6 9 : 7 h

~ / o ~ o . 4 5

0 1000

. . . . . . . . . . . . . /c ~ '0. 3 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . .

2 0 0 0 3 0 0 0 4000

P o s i t i o n ( ~ m )

Fig. 10 - S i m u l a t i o n r e s u l t s f o r " d r ie d" p o r o s i t y f r a c t i o n v s . d e p t h

f o r l a y e r e d c o m p o s i t e s p e c i m e n . P o s i t i o n s 0 t o 2 00 0 c o r r e s p o n d

t o t h e w / c = 0 .4 5 c e m e n t p a s t e l a y e r w h i l e p o s i t i o n s 2 0 00 t o 4 0 00

a r e t h e w / c = 0. 3 p a s te l a y e r t h a t i s d i r e c t l y e x p o s e d t o t h e d r y i n g

e n v i r o n m e n t .

~o

e "

" 6

r

0 . 5

0 . 4

0 . 3

0 . 2

0 . 1

, , 1 I i

. . .. . .. . .. . . l ~ # . o . a . . . .. . . .. . . .

. . . . . . . . . . . . . . . . . . . . . . ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .

w/c=o 45

I0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

P o s i t i o n ( ~ m )

Fig. 12 - S i m u l a t i o n r e s u l ts f o r d e g r e e o f h y d r a t i o n v s . d e p t h f o r

l a y e r e d c o m p o s i t e s p e c i m e n a f t er 7 0 h o f c u r i n g . P o s i t i o n s 0 t o

2 0 00 c o r r e s p o n d t o t h e w / c = 0. 45 c e m e n t p a s t e l a y e r w h i l e p o s i -

t ions 2000 to 4000 a re the w /c = 0 .3 pas te layer tha t i s d i rec t ly

e x p o se d t o t h e d r y i n g e n v i r o n m e n t .

o

0 .7

0 .6

0 .5

0 .4

0 .3

0 .2

O. 1

0

. . . . . . . . . i . . . . ,,i

A - W a t e r i - f i l l e d }',

...rl=...Se l f.=.~l_e ic c a.t.e.d::.!~. ... .... ... ... ... ... .... ... ... ... ...

0 - D r i e d i i ' 0 " ~ 0 " 6 I 0 - - ~ - - 0 " 0 " 0

... 0 ..l lli .t .a]. ..~ .t .r. :l d ........................................

. . . .. . . .. . . . .. . . .. 5 < ~ . - - . o . 4 5 . . . .. . . . . ~/.o.~.o.3. . . . . . . . . . . . .

1 0 0 0 2000 3000 4 0 0 0

P o s i t i o n ( ~ m )

F i g . 1 1 - S i m u l a t i o n r e s u lt s f o r p o r o s i t y f r a c t i o n s v s . d e p t h f o r

l a y e r e d c o m p o s i t e s p e c i m e n a f te r 70 h o f c u r i n g . P o s i t i o n s 0 t o

2 0 00 c o r r e s p o n d t o t h e w / c = 0 .4 5 c e m e n t p a s t e l a y e r w h i l e p o s i -

t ions 2000 to 4000 a re the w /c = 0 .3 pas te layer tha t i s d i rec t ly

e x p o s e d t o t h e d r y i n g e n v i r o n m e n t . " I n i t ia l w a t e r - f il l e d " i n d i -

c a t e s t h e i n i t i a l d i s t r i b u t i o n o f c a p i l l a r y p o r o s i t y i n t h e f r e s h ( 0 h )

c e m e n t p a s t e . " W a t e r - f i ll e d " i n d i c a t e s t h e r e m a i n i n g w a t e r -f i U e d

p o r o s i t y ( a f t e r70

h o f c u r i n g ) . " D ri ed " i n d i c a te s e m p t y p o r o s i t ycrea ted du e to d ry ing , wh i le "Se l f-des icca ted" ind ica tes em pty

p o r o s i t y c r e a t e d d u e t o s e l f - d e s i c c a t io n a n d c h e m i c a l s h r i n k a g e

d u r i n g h y d r a t i o n .

d a l ly av erag ed o v er each co n se cu t iv e 2 0 0 -p ix e l th ick lay er

to o b ta in d a ta w i th a sp a t ia l r eso lu t io n th e same as th a t o f

th e ex p er im en ta l d a ta, n am ely 0 .2 r am. F ig s. 10 an d 1 1

s h o w s i m u l a t i o n r es u lt s f o r p o r o s i t y w i t h i n a 4 m m t h i c k

c o m p o s i t e s p e c i m e n c o n s i s t i n g o f a 2 n a n : t h i c k l ay e r o f

w/c = 0 . 4 5 c e m e n t p a st e c o v e r e d b y a 2 m m t h i c k la y er o f

w/c = 0 .3 cem en t p as te. Th e s im i la r ity b e tw een th e r esul ts

i n F i g . 1 0 a n d t h e i r e x p e r i m e n t a l c o u n t e r p a r t s h o w n i n

F ig . 4 can b e c lea rly o b serv ed . Becau se th e f r esh cem en t

p as te h as a h ig h p erm eab i l i ty an d th e cap il la ry fo r ces a r e

r e l a ti v e ly l a rg e ( l e a d i n g t o a r a p i d r e a r r a n g e m e n t o f t h e

wate r ) , we can su ccess fu l ly mo d e l th e d ry in g p ro cess b y

s i m p l y e m p t y i n g t h e l a r g e s t p o r e s i n t h e m i c r o s t r u c t u r e

f i rs t w i t h o u t d i r e ct c o n s i d e r a t i o n o f t h e k i n e t ic s o f t h e

w a t e r m o v e m e n t .

F o r t h e s i m u l a t e d s y s t e m , l it t le d r y i n g i s o b s e r v e d t o

o c c u r w i t h i n t h e w / c = 0 . 3 c e m e n t p a s t e l a y e r f o r t h e

f i rs t 7 h o f e x p o s u r e , as in s t e a d , w a t e r i s d r a w n f r o m t h e

w / c = 0 . 4 5 c e m e n t p a s te la y e r u n d e r n e a t h i t . A f t e r 7 0 h ,

a s s h o w n i n F i g . 1 1 , w h i l e m u c h m o r e w a t e r h a s d r i e d

o u t f r o m t h e w / c = 0 . 4 5 p a s t e l ay e r, t h e e m p t y p o r o s i t y

d u e t o s e l f - d e s i c c a t i o n i s m u c h l e s s a n d q u i t e s i m i l a rw i t h i n t h e t w o la ye rs . W i t h t h e C E M H Y D 3 D m o d e l ,

i n f o r m a t i o n o n t h e d e g r e e o f h y d ra t i o n o f th e c e m e n t

p as te i s a l so r ead i ly av a ilable . F ig . 1 2 sh o ws th e d e g ree o f

h y d r a t i o n o b t a i n e d a f t e r 7 2 h o f h y d r a t i o n a s a f u n c t i o n

o f d e p t h . B e c a u s e i t r e t a in s w a t e r - f i l l e d p o r o s i t y f o r a

l o n g e r t i m e p e r i o d , t h e w / c = 0 . 3 c e m e n t p a s t e l a y e r i s

o b s e r v e d t o a c h i e v e a s u b s t a n t i a l l y h i g h e r d e g r e e o f

h y d r a t i o n t h a n t h e w / c = 0 . 4 5 c e m e n t p as t e. R e s u l t s f o r

e a r li e r h y d r a t i o n t i m e s s u c h a s 3 h ( n o t s h o w n ) i n d i c a t e a

m u c h m o r e u n i f o r m d e g r e e o f h y d r a t i o n w i t h d e p t h , as

t h e i n i t i a l d r y i n g a n d e m p t y i n g o f th e l a rg e s t p o r e s h a s

m i n i m a l e f fe c t s o n t h e i n i t i a l h y d r a t i o n r a t e [ 12 , 1 3 ] .T h e c o m p u t e r s im u l a t i o n s w e r e a l so a p p l ie d t o s i m u -

l a t in g t h e d r y i n g / h y d r a t i o n b e h a v i o r o f t h e s y st em s w i t h

d i f f e r en t PSD s . Re su l t s f o r d ry in g p ro f i les a r e p ro v id ed in

F i g s . 1 3 a n d 1 4 , w h i l e t h o s e f o r s i m u l a t e d d e g r e e o f

h y d r a t i o n a re g i v e n i n F i g . 1 5. T h e s i m u l a t e d d r y i n g p r o -

f il es c l o s e ly m i m i c t h e i r e x p e r i m e n t a l c o u n t e r p a r t s h o w n

in F ig . 8 . O n c e ag a in , wa te r i s s een to b e r em o v e d p re f e r -

e n t ia l ly d u r i n g d r y i n g f r o m t h e c o a rs e r p o r e s iz e d i s t r ib u -

t io n m icro s t ru c tu r e [ I n th i s case , th e d i f f e r en ces in d eg ree

o f h y d r a t i o n b e t w e e n t h e t w o l a ye rs ( F i g . 1 5 ) a r e e v e n

m o r e s t r i k i n g a s t h e 5 g m c e m e n t a c hi ev e s a m u c h h i g h e r

d e g re e o f h y d r a t io n t h a n t h e 2 5 ~ m c e m e n t , d u e t o b o t h

i t s a b i l i t y t o r e t a i n w a t e r a n d t o i t s i n h e r e n t l y h i g h e r

h y d ra t io n r a te (b ecau se o f i ts smal ler s ize cem en t p ar tic les

a n d h i g h e r c o n t e n ts o f C 3S a n d C 3 A .

W h i l e t h e m o d e l a n d e x p e r i m e n t a l r e s u l t s c o m p a r e

5 6 2

Page 7: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 7/9

B e n t z , H a n s e n , M a d s e n , V a l l d e , G r i e s e l

0. ~

' ~ 0 . 5o

'~ 0.4

.'~ 0.3

~ 0.~

E o , ir

o

, ! , ! , I ,

O - 2 . 9 h i 0 l i i . 8 : : h z x - 1 8 : : 5 h

1 3 - 6 . 6 h l r 6 0 i 2 h

t , ^ ^ L ^ .

I . . . . I . . . .

1 0 0 0 3 0 0 0 4 0 0 00 0 0

P o s i t i o n ( / z m )

Fig. 13 - S i m u l a t i o n r e s u l t s f o r " d ri ed " p o r o s i t y f r a c t i o n v s . d e p t h

f o r l a y e r e d c o m p o s i t e s p e c i m e n . P o s i t i o n s 0 t o 2 0 00 c o r r e s p o n d

t o t h e c o a r s e r 2 5 t i m c e m e n t p a s t e l a y e r w h i l e p o s i t i o n s 20 0 0 t o

4 0 00 a r e t h e f i n e r 5 p m p a s t e l ay e r t h a t i s d i r e c t l y e x p o s e d t o t h e

d r y i n g e n v i r o n m e n t .

0 , 6 i

0 .5o

-~a

0 .4

a= 0.3o

0 .2

' - ' 0 .1

o

. . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . < r . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .

25 Izm 5 /~m

. .. . .. .. .. .. .. . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . .. .. .. .. .. . .. .. .. ..

~ / ~

1 0 0 0 2 0 0 0 3 0 0 0

P o s i t i o n ( ~ m )

4 0 0 0

F i g . 1 5 - S i m u l a t i o n r e s u lt s f o r d e g r e e o f h y d r a t i o n v s . d e p t h f o r

l a y e r e d c o m p o s i t e s p e c i m e n a f t e r 60 .2 h o f cur ing . Po s i t ions 0 to

2 0 00 c o r r e s p o n d t o t h e w / c = 0. 45 c e m e n t p a s t e l a y e r w h i l e p o s i -

t ions 2000 to 4000 a r e t h e w/c = 0 .3 p a s t e l a y e r t h a t i s d i r e c t l y

e x p o s e d t o t h e d r y i n g e n v i r o n m e n t .

0 . 6 4 , ! , I , ! ,

o . 5 6 - - ~ - - % ~ .; ~ : : 0 - I n i t . w a t e r - f i l l e d

i i O - S e l f - d b s i c c a t e d0 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ! ~ 1 " ] ) r i e d . . . . . . . . . . . . . . . . . . . . . . . .

T .- a O . 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " ': . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . .

0 .24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

o . t 6 . . . . . . . . . . . . . . . . . . . ~ - / i - , i i . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - ~ i i i i - i . . . . . . . . . . . . . . . . . . . . . . .

0 . 0 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 , ~ ^ ~ ^ ^ : , ^ ^ ; ^ ~ i

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

P o s i t i o n ( m m )

Fig. 14 - S i m u l a t i o n r e s u l ts f o r p o r o s i t y f r a c t i o n s v s . d e p t h f o r

l a y e r e d c o m p o s i t e s p e c i m e n s a f t e r 6 0 .2 h o f c u r i n g . P o s i t i o n s 0

t o 2 0 00 c o r r e s p o n d t o t h e w / c = 0. 45 c e m e n t p a s t e l a y e r w h i l e

pos i t ion s 2000 to 4000 a re the w /c = 0 .3 pas te layer tha t i s d i rec t ly

e x p o s ed t o t h e d r y i n g e n v i r o n m e n t . S y m b o l l ab e ls a re t h e s a m e

a s t h o s e d e f i n e d i n t h e c a p t i o n o f F i g. 1 1 .

f av o ra b ly , t w o p h e n o m e n a t h a t a re n o t i n c l u d e d i n t h e

m o d e l r e su lt s s h o w n a b o v e a r e t h e s e t t li n g o f th e c e m e n tpa r t i c le s (b l eed ing) p r io r t o t he se t t i ng o f the pas t e and

c a r b o n a t i o n r e a c t i o n s b e t w e e n t h e c a l c i u m h y d r o x i d e

p r o d u c e d d u r i n g c e m e n t h y d r a t i o n a n d C O 2 p r e s e n t in

t h e e n v i r o n m e n t . T h e s e r e a c t io n s p r o c e e d r a p i d ly a t

i n t e r m e d i a t e r e la t iv e h u m i d i t i e s [1 8 ]. P r e l i m i n a r y

e f for t s t o i nc lude these two e f fec t s i n t he mode l d ry ing

c o d e s a p p e ar p r o m i s i n g . F o r e x a m p l e , s i m u l a ti o n s o f a

1 .2 m m th i ck cem ent pas te ( in i ti a l w/c = 0 . 6 ) u n d e r g o -

i n g e v a p o r a t i o n / s e t t l i n g / c a r b o n a t i o n

h a v e b e e n c o n d u c t e d t o c o m p a r e t o

ava il able expe r im enta l da t a [3 , 4 ] . I t

h a s b e e n a s s u m e d t h a t a f t e r

s e t t l i n g / e v a p o r a t i o n , t h e f i n a l t h i c k -n e s s o f t h e p a st e i s 1 .0 m m . D r y i n g

a n d c a r b o n a t i o n r a te s w e r e t a k e n f r o m

ava il able exp e r im enta l da t a [3 , 4 ] , and % P o r o s i t y

% A n h y d r o u s So l id s

i t was a ssum ed tha t a l l ca rbo na t ion re su lt s i n t h e fo rm a-

t i o n o f t h e c a l c it e f o r m o f c a l c iu m c a r b o n a t e . S i n c e t h e

mo la r vo lum e of ca lc i t e (36 .93 cm3/m ol ) is g rea t e r t han

t h a t o f c a l c iu m h y d r o x i d e ( 3 3 .0 8 c m 3 / m o l ) a n d t h e r e a c -

t ion occu rs on a 1 :1 mo la r bas i s, ex t ra ca l c ium ca rbo na te

pixels are (probabi l ist ica l ly, p = 0.1164) generated a t the

r e a c t i o n s i t e s t o m a i n t a i n t h e a p p r o p r i a t e v o l u m e s t o i -

c h i o m e t r y fo r t h e c a r b o n a t i o n r e a c t io n . A l s o , t h e w a t e r

r e le a s e d f r o m t h e c a l c i u m h y d r o x i d e d u r i n g c a r b o n a t i o n

i s m a d e a v ai la b le f o r f u r t h e r h y d r a t i o n o f th e c e m e n t .A c o m p a r i s o n o f th e e x p e r i m e n t a l s c a n n i n g e le c t r o n

m icros cop y/ im age analysis (SEM/IA) resul ts for capi l lary

p o r o s i t y a n d t h e r a t io o f a n h y d r o u s c e m e n t t o s o l i d

m a t e r i a l ( a n h y d r o u s c e m e n t + h y d r a t i o n p r o d u c ts ) [ 4] t o

t h o s e b a s e d o n t h e s i m u l a ti o n s o f v a r y i n g c o m p l e x i t y a r e

prov ided in Tab le 1. I t i s obse rv ed tha t t he bes t quan t i -

t at iv e a g r e e m e n t is o b s e r v e d w h e n b o t h s e t tl in g a n d c a r -

b o n a t i o n a re i n c l u d e d i n t h e m o d e l h y d r a t i o n / d r y i n g

c o d e s . T h u s , t h e d e v e l o p m e n t a n d e v a l u a ti o n o f t h e s e

e n h a n c e d c o d e s w i l l b e t h e s u b j e c t o f f u tu r e r es e ar ch .

F i n a ll y , F ig s . 1 6 a n d 1 7 p r o v i d e t h r e e - d i m e n s i o n a l

m i c r o s t r u c t u r e s f r o m t h e t o p s u r f a c e a n d a n i n t e r i o r

100 p ixe l x 100 p ixe l x 100 p ixe l sec t ion of a s imula t ed

I m m t h i c k w / c = 0 . 6 m i c r o s t r u c t u r e ( n o s e t tl in g o r c a r -

b o n a t i o n ) . I n t h e s e f i g u re s , e m p t y p o r o s i t y is w h i t e ,

w a t e r - f i l l e d p o r o s i t y i s d a r k g r e y , a n d t h e u n h y d r a t e d

c e m e n t p a r ti c le s a re l i g h t g r e y . I n c o m p a r i n g t h e t w o

i m a g e s , o n e c a n d e f i n i t e l y o b s e rv e t h e p r e f e re n t i al d r y -

ing a t t he immedia t e t op sur face (due to the l a rge r pores

p r e s e n t t h e r e ) a n d a m o r e " u n i fo r m " d r y i n g w i t h i n t h e

T a b l e 1 - H y d r a t i o n m o d e l s o f v a r y i n g c o m p l e x i t y

Ex p e r im e n t a l

( S E M / I A )

H y d r a t io n +

Evaporat ion

H y d r a t io n +

Evaporat ion+ Set t l ing

H y d r a t io n +

Ev a p o r a t io n +Se t t l in g /C a r b o n a t io n

4 0 . 3 8 . 4 8 . 4 3 .

4 0 . 5 0 . 4 4 . 4 6 .

5 6 3

Page 8: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 8/9

Materials and Structures/Mat6riaux et Constructions,Vol. 34 , November2001

Fig. 16 - Th ree -di me nsi ona l image (100 pixels x 100 pixels x 100

pixels) of top surface of cement paste (w/c - 0.60) microstruc ture

after 2.9 h of hydra t ion/dry ing. Dried (emp ty) porosi ty is white,

water-f i l led porosi ty is dark grey, and unhy drate d cemen t part i -

cles are ligh t grey.

Fig. 17 - Th ree -dim ens ion al image (100 pixels x 100 pixels x 100

pixels) of middle sect ion of cement paste (w/c - 0.60) microstruc-

ture after 2.9 h of hydra t ion/dry ing. Dried (emp ty) porosi ty is

white, water-f i l led porosi ty is dark grey, and un hydra ted cem ent

particles are light grey.

interior of the specimen, as the larger pores at all thick-

nesses are the first to empty during the evaporation

process. The emp tying of these pores at the top surfaceis not observable using the current X -ray equ ipment due

to limitations in spatial resolution, 0.1 mm experimen-

tally vs. about 0.015 mm in Fig. 16.

The practical implications of these experimental and

computer modeling studies are potentially quite signifi-

cant. Tw o areas wher e correct understandings of water

mo vem ent are crit ical are the cu ring of high perfor-

mance concrete and the application of repair materials

[8]. Care must be taken wh en applying a curing me m-

brane (or compound) to concrete to ensure that the

pores in the curing layer are coarser than those in the

fresh concrete . If this is not the case, the so-caUed cur-ing layer will remain saturated to the casual observer

while it is continuously drawing water from the c oncrete

und erne ath it. Obviously, this will result in concrete

that does not achieve its potential hydration, strength

development, or durability even though "the surface

appears to remain saturated." These same principles of

differential water movement due to capillary forces also

apply to the use of saturated lightweight fine aggregates

to supply internal curing water for high performance

concrete s [19, 20]. In the area of repair materials, the

differential water mo ve me nt betwe en the substrate and

the repair material are critical to both the proper hydra-

tion o f the repair material and the development o f anadequate bond betwee n the two layers.

C O N C L U S I O N S

Experimental and computer simulation studies havebeen applied to examining the drying/hydration behavior

of thin cement paste and mortar specimens at sub-mil-

lime ter resolution. In general, the studies indicat e that:

1) thin c em en t pas te samples of "uniform"

microstructure dry out relatively uniformly throughout

their thicknesses as opposed to exhibitin g the sharp d ry-

ing front encoun tered in o ther porous materials,

2) in composite layered specimens, movement of

water from "coarser" pore layers to the "finer" ones is

observed regardless o f wh eth er the coarser pores are due

to a locally highe r w/c or to the use o f a coarser cem ent,

3) no clear differential mov eme nt of water could beobserved betwe en c emen t paste and mortar layers of the

same nominal w/c,

4) the NIST CEMHYD3D cement hydration model

can be been extended to include drying (and carbona-

tion) as well as hydration and in general the a greement

between experimental and computer model results is

quite good, and

5) the computer simulations particularly indicate that

both m ois ture conte nt and degree of hydrat ion are

affected by drying and large differences in achieved

degree of hydration were observed between the layers in

the tw o-layer composites exam ined in this study.

These results have numerous implications for designand performance of cem ent-based m aterials, particularly

the curing of high-performance concrete and the appli-

cation o f repair materials to existing structures.

5 6 4

Page 9: Drying-Hydration in Cement Pastes During Curing

8/2/2019 Drying-Hydration in Cement Pastes During Curing

http://slidepdf.com/reader/full/drying-hydration-in-cement-pastes-during-curing 9/9

B e n t z , H a n s e n , M a d s e n , V a l iS e , G r ie s e l

ACKNOWLEDGEMENTS

Some o f the measurements presented here w ere per-formed during the summ er of 1999, whe n D. P . Bentzwas a visiting professor at the De par tme nt o f StructuralEngineering and M ateria ls , DTU, funded by the K nud

Hojgaard Foundation. Th e authors wo uld like to thankDr. Claus-Jochen Haecker of Dyckerho ff Ze m ent for

supplying the cements ground to the two extremes offineness. D. P. Ben tz would also l ike to acknowledgefruitful discussions with Dr. Daniel Q uenard of C entreS c i e n t if i q u e e t T e c h n i q u e d u B ~ t i m e n t , G r e n o b l e ,

France and to thank his wife, Jane t Carey-Ben tz, for theidea of using the Lego blocks as sample holders. Partialfunding for th is research was provided by the NISTPartnership for High Performance Conc rete Technology(PHPCT) program.

REFERENCES

[1] Meeks , K. W. and Car ino , N . J . , 'Cur in g o f High-Per fo rman ceC o n c r e t e : R e p o r t o f t he S t a t e -o f - t h e -a r t ', N I S T I R 6 2 95 , U . S.D e p a r t m e n t o f C o m m e r c e , M a r c h 1 9 9 9 .

[2] Griesel, E. J . , 'T he influence o f controlled environmental cond i-t i o n s o n t h e p o t e n t i a l d u r a b i l i t y o f c o n c r e t e ' , M . S . T h e s i s ,

University o f Stellenbosch, South A frica, April 1999.[3] Vail&, F. , Lejeune, C. and Co pe, R. , ' Investigation o f the evo lu-

tion o f a thin layer cem ent paste microstructure during climaticexposures ' , submitted to Cem. Concr . Res . , 2000.

[4] Vall&, F. , 'Durabili td des com posites polym~res/ciment: Application

au cas des endu i ts minces su r i so lan ts ' , Ph .D. thes is , In s t i tu tNational Polytechnique de Grenoble, France, Oc tober 1999.

[5] Hansen, K. K. , Jensen, S. K. , Gerw ard, L. and Singh, K. , 'Du al-energy X-ra y absorptiometry for the simultaneous determination

of density and m oisture co ntent in p orous structural materials ' , in'P roc . o f the 5 th Sympos ium on Bu i ld ing Phys ics in the N ord ic

Coun tr ie s ' , (Chalmers Un ivers i ty o f Techno logy , Go thenbu rg ,Sweden, 1999) 281-288.

[6] Ben tz , D. P . , 'Three -d im ens iona l com pute r s imulat ion o f cem en t

hydration and microstructure development ' ,J . Amer. Ceram. Soc.

80 (1) (1997) 3-21.

[ 7] B e n t z , D . P . , ' C E M H Y D 3 D : A t h re e - d i m e n s i o n a l c e m e n thydra t ion and mic ros t ruc tu re deve lopment mode l l ing package .

V e r si on 2 . 0 ' , N I S T I R 6 4 8 5, U . S . D e p a r t m e n t o f C o m m e r c e ,

April 2000, available at http://ciks.cbt.nist .gov/monograph.[8 ] Ben tz , D . P . and Han sen , K. K. , 'P re l im inary obse rva tions o f

w a t e r m o v e m e n t i n c e m e n t p a s t e s d u r i n g c u r i n g u s i n g X - r a yabsorption', Cem. Concr . Res . 30 (2000) 1157-1168.

[9 ] Madsen , H. M. , 'Hydra t ion and d ry ing in cemen t pas tes mea-s u r e d w i t h X - r a y ' , M . S . T h e s i s , T e c h n i c a l U n i v e r s i t y o f

Den mark , Lyngby , Den mark , February 2000 ( in Dan ish ).[10 ] Cem ent and Concre te Refe rence Labora tory P ro f ic iency Sample

Program : F ina l P , epor t Po r t land C em ent P ro f ic iency SamplesN u m b e r 1 3 3 a n d N u m b e r 1 3 4 , C e m e n t a n d C o n c r e t eReference Laboratory, September, 1999.

[11] Bentz, D. P. ,Jensen, O. M., Hansen, K. K. , Olesen, J . F . , Stang,H. and Haecker, C.J . , ' Influence of ceme nt particle size distr ibu-

tion o n early age autogenous strains and stresses in cem ent-ba sedmaterials',J. Amer. Ceram. Soc . 84 (1) (2001) 129-135.

[ 1 2 ] B e n t z , D . P . , S n y d e r , K . A . a n d S t u t z m a n , P . E . ,'Microstructural modelling of self-desiccation during hydration ' ,

i n ' S e l f - D e s i c c a t i o n a n d I t s I m p o r t a n c e i n C o n c r e t e

Tec hnolo gy' , Ed. B. Persson and G. Fagerlund (Lund Insti tute o fTechnology, Lund, Sweden, 1997) 132-140.

[13] Ben tz , D. P . , 'E f fects o f cem en t PSD on po ros i ty perco la t ionan d se l f -des iccat ion' , in 'Self-Desiccation and Its Imp ortanc e in

C o n c r e t e T e c h n o l o g y I I ' , E d . B . P e r s s o n a n d G . F a g e r l u n d(Lund Institute of Tec hnolo gy, Lun d, Sweden, 1999) 127-135.

[14] Coussot, P . , private comm unication, 1999.

[15] Selih , J . , Sousa, A. C. M . and Brem ner, T. W ., 'M oistur e trans-por t in in i t ia l ly sa tu ra ted concre te du r ing d ry ing ' , Transport in

Porous Media 24 (1996) 81-106.[16] Coussot, P . , Gauthier, C. , N adji , D. , Borgotti , J . -C . , Vie, P. and

Ber t rand , F . , 'Mouvements cap i l la i res du ran t le s&hage d 'unep~te granulaire ' , C.R. A c a d . Sci. (Paris), t. 327, Serie l ib (1999)

1101-1106.[17] Ben tz , D. P . and Garbocz i , E . J . , 'Com pute r mode l l ing o f in te r -

f a c ia l t r a n s i t i o n z o n e m i c r o s t r u c t u r e s a n d p r o p e r t i e s ' , i n' E n g i n e e r i n g a n d T r a n s p o r t P r o p e r t i e s o f t h e I n t e rf a c i a lT r a n s i t i o n Z o n e i n C e m e n t i t i o u s C o m p o s i t e s ' , E d . M . G .

Alexander, G. Arliguie, G. BalliW, A. Ben tu r and J . M archand

(RIL EM , Paris , France, 1999) 349-385.[ 1 8 ] T a y l o r , H . F . W . , ' C e m e n t C h e m i s t r y ' ( T h o m a s T e l f o r d ,

London 1997) .[19] W eber, S . and R.einhardt, H. W ., 'Manipulating the wate r con -

t e n t a n d m i c r o s t r u c t u r e o f h i g h p e r f o r m a n c e c o n c r e t e u s i n gau togenous cu r ing ' , in 'Modern Concre te Mate r ia ls : B inders ,

Add i t ions , and Adm ix tu res ' , Ed . P , . K. Dh ir and T . D. D yer(Thom as Te l fo rd , London , 1999) 567-577 .

[20] Bentz, D . P. and Snyder, K. A. , 'Protected paste volu me in co n-c re te : ex tens ion to in te rna l cu r ing us ing sa tu ra ted l igh twe igh t

fine aggregate', Cem. Concr . Res . 29 (11) (1999) 1863-1867.

|

5 65