of 75 /75
WDM DWDM, CWDM

DWDM, CWDM - ahambali.staff.telkomuniversity.ac.idahambali.staff.telkomuniversity.ac.id/wp-content/uploads/sites/85/... · DWDM (dense wave division multiplexing) is in use in the

Embed Size (px)

Text of DWDM, CWDM -...

  • WDM

    DWDM, CWDM

  • Spektrum Frekwensi

  • Mengapa WDM

    Tahun 1990 WDM mulai memainkan peranbesar dalam jaringan telekomunikasi.

    Permintaan kapasitas link yang besar danterbatasnya instalasi serat optik untuk lajusinyal optik yang cepat.

    Awalnya bekerja dengan baik pada laju bit mencapai 2,5 Gb/s (Optical Core 48). Kedepankecepatan level multiplexing berikutnyamencapai 10 Gb/s dengan OC 192.

  • 5

    Optical Network - Issues

    Capacity

    2.5 Gb/s 10 Gb/s 40 Gb/s Larger

    Control (switching) Electronics

    10 Gb/s (GaAs, InP) dapat memberikan orde rendahoptical cross connects (16 x 16)

    > 10 Gb/s ??(terutama disipasi daya)

    Optical

    Reconfiguration: Statis atau dinamis

  • Sejarah WDM

  • Teknologi WDM

    NTT tahun 2010 tanggal 25 Maret telah mampu mencapai

    transmisi 69,1 Tb/s dengan menggunakan WDM 432 kanal kapasitas171 Gb/s dan untuk long haul panjang serat optik singlemode 240 km.

  • Wavelength Division Multiplexing (WDM)

    .

    WDM = A Capacity Multiplier

    Perkembangan teknologi telah didorong oleh kebutuhan bandwidth

    Sumber pertumbuhan trafik adalah Internet

    Internet diperkirakan masih tumbuh pada 100%/tahun

    Jaringan harus tumbuh dalam kapasitas dengan 32x dalam 5 tahun!

  • Klasifikasi WDM

  • Point-to-Point Wavelength Multiplexing Systems

    Multiplexing sebanyak ~ 200 panjang gelombang pada serat ("Dense WDM", atau DWDM)

    Laju 2.5 and 10 Gb/s; sistem bekerja pada 40 Gb/s

    Penggelaran jaringan jarak jauh yang significant (largest aggregation of traffic, long distances)

    Products yang tersedia dari berbagai produsen (Ciena, Nortel, Lucent,...)

    Fundamental layer Optic menyediakan transport paket IP

  • 17

    Optical Switches

    Untuk menyediakan switching kecepatan tinggi Untuk menghindari kemacetan kecepatan

    elektronik

    Interface I / O dan switching fabric di optik

    Switching kontrol dan switching fabric di optik

    Switch bertindak sebagai router dan mengarahkan

    kembali sinyal optik dalam arah tertentu.

    Ini menggunakan switch 2x2 sederhana sebagai

    building blok

    Main feature: Switching time (msecs - to- sub nsecs)

  • 18

    Optical Switches - Types

    Waveguide

    Electro-optic effect- Semiconductor optical amplifier- LiNbO- InP

    Thermo-optic effect

    - SiO2 / Si- Polymer

    Free Space- Liquid crystal

    - Mechanical / fibre- Micro-optics (MEMs)

    - Fast- Complex- Maturing- Lossy

    - Slow- Maturity- Reliable

    - Slow- Low loss & crosstalk- Inherently scalable

  • 19

    Optical Switches - Thermo-Optic Effect

    Some materials have strong thermo-optics effect that could be used to guide light in a waveguide.

    The thermo-optic coefficient is:

    Silica glass dn/dt = 1 x 10-5 K-1

    Polymer dn/dt = -1 x 10-5 K-1

    Difference thermo-optic effect results in different switch design.

    + v

    Electrodes

  • 20

    Thermo-Optic Switch - Silica

    Directional coupler

    )2/(sin 21 iI

    I)/(cos 222

    iI

    I

    Input IiI1

    I2

    Outputs

    Mach Zehnder Configuration

    Heater

  • 21

    Thermo-Optic Switch - Polymer

    If PH1 = PH2 = 0, then I1 = I2 = Ii /2

    If PH1 = Pon & PH2 = 0, then I1 = 0, and I2 = Ii If PH1 = 0 & PH2 = Pon, then I1 = Ii, and I2 = 0

    Ii

    I1

    I2

    PH1

    PH2

    Y Junction Configuration

  • 22

    Thermo-Optic Switch - Characteristics

    155 4.50.6 0.005S/W power (W)

    ~4~3 1.52 1S/W time (ms)

    1318 1722 39Crosstalk

    184 102 0.6Insertion Loss (dB)

    25664 1121 1No. of S/W

    16 x 16Si

    8 x 8Si Poly.

    2 x 2Si Poly.

    Switch SizeParameters

  • 23

    Mechanical Switches

    1st Generation Mid. 1980s

    Loss Low (0.2 0.3 dB)

    Speed slow (msecs)

    Size Large

    Reliability Has moving part

    Applications: - Instrumentation

    - Telecom (a few)

    Size: 8 X 8Loss: 3 dBCrosstalk: 55 dBSwitching time: 10 msecs

  • 24

    Micro Electro Mechanical SwitchesIn

    put

    fibre

    s

    Output fibres

    Lens Flat mirror Raised mirror

    Made using micro-machining

    Free-space: polarisation independent

    Independent of:

    Bit-rate

    Wavelength

    Protocol

    Speed: 1 10 ms

    4 x 4 Cross pointswitch

    Combines optomechanical structures, microactuators, and micro-optical elements on the same substrate

  • 25

    Micro Electro Mechanical Switches

    This tiny electronically tiltable mirror

    is a building block in devices such

    as all-optical cross-connects and new types of

    computer data projectors.

    Lightwave

    I/O Fibers

    Imaging Lenses

    Reflector

    MEMS 2-axis Tilt Mirrors

  • 26

    Micro Electro Mechanical Switches

    Monolithic integration --> Compact, lightweight, scalableBatch fabrication --> Low cost

    Share the advantages of optomechanical switches without their adverse effects

    General Characteristics:+ Low insertion loss (~ 1 dB)+ Small crosstalk (< - 60 dB)+ Passive optical switch (independent of wavelength, bit rate, modulation

    format)

    + No standby power+ Rugged+ Scalable to large-scale optical crossconnect switches Moderate speed ( switch time from 100 nsec to 10 msec)

  • 27

    Large Optical Switches - Optical Cross Connects

    Switch sizes > 2 X 2 can be implemented by means of cascading small

    switches.

    Used in all network control

    Bit rate at which it functions depends on the applications.

    2.5 Gb/s are currently available

    Different sizes are available, but not up to thousands (at the moment)

    12

    N

    12

    NN X N Cross Connect

    Control

  • 28

    Optical Cross Connects

  • 29

    Optical SwitchesElectrical switching and optical cabling: inputs come from different clock domains resulting in a switch that is generally timing-transparent.

    Optical switching and optical cabling, clocking and synchronization are not significant issues because the streams are independent. Inputs come from different clock domains, so the switch is completely timing-transparent.

  • 30

    For a given switch size N, the number of 2x2 switches should be as small as

    possible. When the number is large it will result in: high cost

    large optical power loss and crosstalk.

    A switch with reduced number of crosspoints in each configured path, can have a large internal blocking probability

    In some switching architectures, the internal blocking probability can be reduced to zero by: using a good switching control

    or rearranging the current switch configuration

    Optical Switches - System Considerations

  • Optical Cross-Connects (OXCs)

    OXC switches signals on input {wavelengthi, fiberk} to output {wavelengthm, fibern}

    Input fiberswith WDMchannels

    OXC

    Output fiberswith WDMchannels

  • Optical Cross-Connects (OXCs)

    Opaque: o-e, e-o, electronic switch fabric

    Transparent: o-o-o, optical switch fabric

    Hybrid, (o-e-o): optical switch fabric, o-e-o

    Hybrid: both opaque and transparent fabrics

    Tunable lasers + passive waveguide grating

    Input fiberswith WDMchannels

    OXC

    Output fiberswith WDMchannels

  • Important optical layer capability: reconfigurability

    IPRouter

    IPRouter

    IPRouter

    OXC - AOXC - B

    OXC - C

    Crossconnects are reconfigurable: Can provide restoration capabilityProvide connectivity between any two routers

    IPRouter

    OXC - D

    IPRouter

  • Smaller routers combined with optical crossconnects

    Router interconnectivity through OXCs Only terminating traffic goes through routers Thru traffic carried on optical bypass Restoration can be done at the optical layer Network can handle other types of traffic as well

    But: network has more NEs, and is more complicated

    OXCOXC

    OXC

    OXC

  • 35

    Optical Gateway Cross-Connect

    Performs digital grooming, traditional multiplexing, and routing of lower-speed circuits in mesh or ring network configurations. Specifically, it brings in lower rate SONET/SDH layer OC-3/STM-1, OC-12/STM-4 and OC-48/STM-16 rates and electrical DS-3, STS-1 and STM-1e rates and grooms them into higher rate optical signals. Alcatel. 2001

  • 36

    40 G mod

    40 G mod

    40 G mod

    40 G mod

    T-Tx

    T-Tx

    T-Tx

    T-Tx

    40G Rx

    40G Rx

    40G Rx

    40G Rx

    Clock

    Buffer

    Sche-

    duler

    From Input Port

    retiming

    Output

    IP-router with Tb/s throughput can be built with

    fast tunable lasers & NxN optical mux

    Yamada et al., 1998

    40 G mod

    40 G mod

    40 G mod

    40 G mod

    40 G mod

    40 G mod

    40 G mod

    40 G mod

  • 37

    Router & Optical Switch

    CHIARO- OptIPuter Optical Switch Workshop

  • 38

    The Optical Future- Tomorrow's Architecture

    Services are consolidated onto a single access line at the user site and fed into a Sonet multi-service provisioning platform at the carriers POP (point of presence). Several POPs feed traffic into a terabit switch capable of handling all trafficincluding IP, ATM and TDM. The terabit switches sit at the edge of a three-tier network of optical switcheslocal, regional and long distance-each of which has a mesh topology. DWDM is used throughout the network and access lines. Where fiber is scarce, FDM (frequency division multiplexing) is used to pack as much traffic as possible into wavelengths. Light signals no longer need regeneration on long distance routes.

  • 39

    Separate access networks carry telephony and data into the carriers point of presence. Voice traffic runs over a TDM (time division multiplexer) network running over a Sonet (synchronous optical network) backbone. IP traffic is shunted onto an ATM backbone running over other Sonet channels. The Sonet backbone comprises three tiers of rings at the local, regional and national level, interconnected by add-drop multiplexers and cross-connects. DWDM (dense wave division multiplexing) is in use in the regional and national rings, but not the local rings. Light signals need regenerating on long distance routes.

  • Pengertian DWDM

  • Definisi

  • Teknologi DWDM

  • Perkembangan DWDM

  • Perangkat DWDM

  • Perangkat DWDM

  • Alternatif Pemenuhan Kapasitas

  • Pemilihan DWDM

  • Keunggulan DWDM

  • DWDM 40 Kanal