24
EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th , 2001, Rennes

EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

Embed Size (px)

Citation preview

Page 1: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

EDF R&D

Energetic aspectsof urban waste treatmentsClaire Lecointe, Charlotte Barbut

2nd AWAST WorkshopNovember 28-30th, 2001, Rennes

Page 2: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

SUMMARY

Introduction Thermal treatments

* Incineration

* Thermolysis

Biological treatments* Methanisation

* Landfill

* Composting

Exergy

Conclusion

Page 3: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Introduction

waste treatments => energy production (steam or gas)

steam or gas => electricity or heat gas => fuel for buses or injection in natural gas

networks

but different outputs and how to compare ?

Page 4: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

EDF R&D

Thermal treatments

Page 5: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Incineration

LHV W

se = cg

C (T’ ; P1)

Q (T ; P2)

c

thermal treatment with oxygen (even air excess) ; 900 to 1000°C

Waste delivery

Combustion

Heat recovery(boiler)

Slags treatment

Smokes treatment

Dust removal Smokes cleaning Ventilator

Steam

Electricity

Steam

Steam sold Electricity sold

SelfconsumptionSelfconsumption

turbine alternator

Page 6: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Outputs

combustion output : c = C / LHVwaste

electric output : e = W / LHVwaste

heat output : s = Q / LHVwaste

co-generation output : cg = e + s

Rough estimates

=> 75 to 90%

=> 4 to 10% with counter-pressure

=> 60 to 70%

Page 7: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

TIRUIvry-sur-Seine

TIRUIssy-les-

Moulineaux

TIRUSaint-Ouen

Strasbourg

2MWe

Strasbourg22MWe

waste (t/year) 707000 546134 667099 244116 178610(9 months)

LHV (MJ/t) 8371 8371 8371 8600 8600

steam from boiler(MJth/t)

7060 6640 7356 6747 6890

c 0,843 0,793 0,879 0,785 0,801heat consumption(MJth/t)

831 831

steam from turbine(MJth/t)

5396 5152 5696

sold steam (MJth/t) 3921 4523 5564 2108 2286

electricity (MJe/t) 822 533 339 191 612

bought electricity(MJe/t)

32 22

electricityconsumption (MJe/t)

211 259

sold electricity (MJe/t) 581 254 127 13 374

e 0,098 0,064 0,040 0,022 0,071cg 0,743 0,679 0,721

Results for 5 french installations

Page 8: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

191 MJe/t

Electricity consumption : Strasbourg 2MWe

5 MJe/t

78 MJe/t

2,7 MJe/t

50 MJe/t 36 MJe/t4 MJe/t

90 MJe/t

211 MJe/t

Waste delivery

Combustion

Heat recovery

Slags treatment

Smokes treatment

Dust removal Smokes cleaning Ventilator

Steam/electricity conversion

Steam

Electricity Steam

Steam soldElectricity sold

Selfconsumption Selfconsumption

80% consumption

Page 9: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Thermolysis

Ash cooling

Pyrolysis

Drying

Heating

Waste

Residues (liquid, solid)

Pyrolysis gas (H2, CO2, CO, CH4…)

thermal treatment without oxygen ; 400 to 600°C or 600 to 1000°C

Page 10: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Development stage

No industrial installation in France

=> no data

=> Do we keep this process in the project ?

Page 11: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

EDF R&D

Biological treatments

Page 12: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Methanisationbiological treatment without oxygen ; 35°C or 55°C

Waste delivery Reactor Press

biogas CH4, CO2

solid residuesMaturation

Centrifugation

pressing juice solid residues

sludgewater excess

compost

CO2, H2O

Energy recovery

heating

electricity

fuel

injection in natural gas network

heating

Page 13: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Landfill

Waste deliveryDeposing andcompaction

biogas

leachate

Energy recovery

heating

electricity

fuel

injection in natural gas network

natural biological decomposition

Page 14: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

urban wastelandfill (80%)

natural production,without extraction

urban wastelandfill (80%)

forced production,with extraction

urban and industrialwaste landfill(50%-50%)

forced production, withextraction

urban wastesorted in

methanisation

CH4 (% vol.) 50-58 30-55 25-45 50-60CO2 (% vol.) 25-34 22-33 14-29 38-34N2 (% vol.) 18-2 26-6 49-17 5-0O2 (% vol.) 1-0 8-2 8-5 1-0H2O (% vol.) 4 (30°C) 4 (30°C) 4 (30°C) 6 (40°C)H2S (mg/m3) 20-50 5-20 100-900 100-900aromatic (mg/m3) 2 1 0-200 0-200organo-chlorinated orfluoridated (mg/m3)

0-200 0-100 100-800 100-800

Biogaz composition

Page 15: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Biogas : energy recovery

use heatingelectricity and co-generation

fuelinjection in

network

purificationdehydration ;

desulphuration

dehydration ; desulphuration ; organo-halogen

elimination

decarbonatation ; dehydration ;

desulphuration ; organo-halogen

elimination ; heavy metals elimination

decarbonatation ; dehydration ;

desulphuration ; organo-halogen

elimination ; mercury elimination

recovery period all year along winter all year along all year along

development stage industrial stage industrial stage

industrial stage in Sweden ;

demonstration stage in France

industrial stage in Netherlands ; demonstration

stage in France

Page 16: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

VALORGAAmiens

VALORGATilburg

VALORGAFreiburg

DRANCOAarberg

collection of mixed waste (t/year) 85000

separate waste collection of organic waste (t/year) 40000 36000 11000

sorting residues before methanisation (t/year) 12460 2000 144

methanised waste (t/year) 72540 38000 35856

methanised waste LHV (MJ/t) 8360 3751 3751 3751

biogas volume (m3/t methanised waste) 145 85 120 130

methane proportion 0,55 0,55 0,55 0,60

methane volume (m3/t methanised waste) 80 46 66 78

methane LHV 0°C 1atm (kJ/m3) 35784 35784 35784

methane (MJth/t methanised waste) 2862 1663 2360 2791

electricity production (MJe/t methanised waste) 733 958

electric output towards methane 0,311 0,343

electric output towards methanised waste (LHV) 0,195 0,255

electricity sold (MJe/t methanised waste) 770

heat production (MJth/t methanised waste) 1238

heat consumption (MJth/t methanised waste) 284

co-generation output towards methane 0,787

co-generation output towards methanised waste(LHV)

0,585

Results for methanisation

Page 17: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Results for landfill

Methanisation : biogas

1663 to 2862 MJLHV/t methanised waste

Page 18: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Landfill : energy consumptionfor 1t waste

TransportWaste delivery

Deposing andcompaction

leachate

heating

electricity

fuel

injection in natural gas network

Energy recovery

Biogas extraction :

4,9 MJe

1,3 L fuel

Farm building : 0,54 MJe

Heating : 0,045 L fuel

Page 19: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Landfill : problem of time limits

10 100 1000year

lan

dfi

ll e

mis

sio

ns

inte

nsi

ty

leachate

biogas landfill

methane stage

controlling stage

acceptable concentrations

Page 20: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Composting

This process doesn’t product any energy but uses it.

It allows material recovery by transforming organic waste in compost which can be used in farming.

Not yet studied because of lack of data.

biological treatment with oxygen

Page 21: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

EDF R&D

Exergy

Page 22: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Definition

Exergy is the maximum part of energy in a system which can be changed in mecanic energy.

mecanic and electric energy = pure exergy

heat energy = exergy + loss

Wtheat machine

(T)

Q

Ambient environment (Ta)

Carnot engine

Wc

Qa = Q * Ta / T

Wg = -Ex

(by agreement)

Page 23: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Exergetic assessment

Carnot factor : c = 1 - Ta / T

exergetic output : ex = e + c s

Rough estimates

Paris heating network : 0,432(T = 240°C and Ta = 20°C)

Incineration : 33 to 38% towards waste LHV 38 to 45% towards boiler steam

Methanisation : 39,8% towards waste LHV 53,5% towards methane

Page 24: EDF R&D Energetic aspects of urban waste treatments Claire Lecointe, Charlotte Barbut 2 nd AWAST Workshop November 28-30 th, 2001, Rennes

DEPARTEMENT SYSTEMES ENERGETIQUES

Conclusion

delicate comparison because of :* different value for burnt and methanised waste

* different value for steam and electricity

exergy = solution ?

similar quality measure for waste ?