67
EE141 1 Combinational Circu Chapter 6 (I) Chapter 6 (I) Designing Designing Combinational Combinational Logic Circuits Logic Circuits Static CMOS Static CMOS Pass Transistor Pass Transistor Logic Logic V1.0 4/25/2003 V1.1 5/2/2003 V2.0 5/4/2003

EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

Embed Size (px)

Citation preview

Page 1: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1411

Combinational Circuits

Chapter 6 (I)Chapter 6 (I)Designing Designing CombinationalCombinationalLogic CircuitsLogic Circuits

•Static CMOSStatic CMOS•Pass Transistor LogicPass Transistor Logic

V1.0 4/25/2003V1.1 5/2/2003V2.0 5/4/2003

Page 2: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1412

Combinational Circuits

Revision ChronicleRevision Chronicle

5/2: Add some NAND8 figures (to compare NAND8 circuits) from old Weste textbook to this slide.

5/4: Add 4 Pass-Transistor Logic Slides from Weste

textbook Split Chapter 6 into two parts: Part I focuses on

Static and Pass Transistor Logic. Part II focuses on Dynamic Logic

Page 3: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1413

Combinational Circuits

Combinational vs. Sequential LogicCombinational vs. Sequential Logic

Combinational Sequential

Output = f(In) Output = f(In, Previous In)

CombinationalLogicCircuit

OutInCombinational

LogicCircuit

OutIn

State

Page 4: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1414

Combinational Circuits

Static CMOS CircuitsStatic CMOS Circuits•At every point in time (except during the switching transients) each gate output is connected to either via a low-resistive path (PUN, PDN)

•The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring the transient effects during switching periods).

•This is in contrast to the dynamic CMOS circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

VDD or Vss

Page 5: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1415

Combinational Circuits

Static Complementary CMOSStatic Complementary CMOS

Pull-up Network (PUN) and Pull-down Network (PDN) are Dual Logic Networks

VDD

F(In1,In2,…InN)

In1In2

InN

In1In2

InN

PUN

PDN

PMOS only(good for transfer 1)

NMOS only (good for transfer 0)

……

Page 6: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1416

Combinational Circuits

Threshold Drops in NMOS and PMOSThreshold Drops in NMOS and PMOS-- Check Candidates for PUN and PDN-- Check Candidates for PUN and PDN

VDD

VDD 0PDN

0 VDD

CL

CL

PUN

VDD

0 VDD - VTn

CL

VDD

VDD

VDD |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS

G

G G

G

Page 7: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1417

Combinational Circuits

Complementary CMOS Logic StyleComplementary CMOS Logic Style

Page 8: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1418

Combinational Circuits

NMOS Transistors NMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1

Page 9: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE1419

Combinational Circuits

PMOS Transistors PMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low

Page 10: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14110

Combinational Circuits

Example 1: NAND2 GateExample 1: NAND2 Gate

(Use DeMorgan’s Law)

Page 11: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14111

Combinational Circuits

Example2: NOR2 GateExample2: NOR2 Gate

),3,2,1(),3,2,1(

Connnet to:PUN

GND Connect to:PDN

InInInFInInInG

VBABAF

BAG

DD

DDV

Page 12: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14112

Combinational Circuits

Design of Complex CMOS GateDesign of Complex CMOS Gate

D

A

B C

D

A

B

C

DDV

)( CBADF

Page 13: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14113

Combinational Circuits

Constructing a Complex GateConstructing a Complex Gate

C

(a) pull-down network

SN1 SN4

SN2

SN3D

FF

A

DB

C

D

F

A

B

C

(b) Deriving the pull-up networkhierarchically by identifyingsub-nets

D

A

A

B

C

VDD VDD

B

(c) complete gateSN1

SN1

SN2

SN2

Page 14: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14114

Combinational Circuits

Static CMOS PropertiesStatic CMOS Properties Full rail-to-rail swing: High noise margins Logic levels not dependent upon the relative device sizes:

Ratioless Always a path to Vdd or GND in steady state: Low output

impedance Extremely high input resistance; nearly zero steady-state

input current (input to CMOS gate) No steady-state direct path between power and ground:

No static power dissipation Propagation delay function of output load capacitance and

resistance of transistors

Page 15: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14115

Combinational Circuits

Switch Delay ModelSwitch Delay Model

A

Req

A

Rp

A

Rp

A

Rn CL

A

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NAND2 INVNOR2

Page 16: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14116

Combinational Circuits

Input Pattern Effects on DelayInput Pattern Effects on Delay Delay is dependent on the pattern of

input (Assume Rp = 2 Rn for same size of transistors)

Low-to-high transition: Both inputs go low

– Delay is 0.69 (Rp/2) CL One input goes low

– Delay is 0.69 (Rp) CL High-to-low transition:

Both inputs go high (required for NAND)

– Delay is 0.69 (2Rn)CL

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

Page 17: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14117

Combinational Circuits

Transistor SizingTransistor Sizing

CL

A

Rn

A

Rp

B

Rp

B

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

2

2

2 2

11

4

4

Assumes Rp = 2Rn at same W/L

NAND is preferred than NOR implementation!!

Page 18: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14118

Combinational Circuits

Delay Dependence on Input PatternsDelay Dependence on Input Patterns

-0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400

A=B=10

A=1, B=10

A=10, B=1

time [ps]

Vo

ltage

[V]

Input Data

Pattern

Delay

(psec)

A=B=01 69

A=1, B=01 62

A= 01, B=1 50

A=B=10 35

A=1, B=10 76

A= 10, B=1 57

NMOS = 0.5m/0.25 mPMOS = 0.75m/0.25 mCL = 100 fF

A=1, B=10 (for both Cint and CL)

A=1, B=01 (Consider Body effect)

NAND2 is trueOUT connects to GND

Page 19: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14119

Combinational Circuits

Transistor Sizing a Complex Transistor Sizing a Complex CMOS GateCMOS Gate

OUT = D + A • (B + C)

D

A

B C

D

A

B

C

1

2

2 2

4

4

8

8

2/NR

case) criticalfor oneonly (wide,2/NR

Page 20: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14120

Combinational Circuits

Fan-In ConsiderationsFan-In Considerations

4-input NAND Gate

Page 21: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14121

Combinational Circuits

Fan-In ConsiderationsFan-In Considerations

DCBA

D

C

B

A CL

C3

C2

C1

Distributed RC model (Elmore delay)

tpHL = 0.69(R1C1+(R1+R2)C2

+ (R1+R2+R3)C3

+ (R1+R2+R3+R4)CL

=0.69 Reqn(C1+2C2+3C3+4CL)

Propagation (H L) delay deteriorates rapidly as a function of fan-in no. : Quadratically in the worst case.

R4

R3

R2

R1

Page 22: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14122

Combinational Circuits

ttpp as a Function of Fan-In as a Function of Fan-In

tpLH

t p (

pse

c)

fan-in

0

250

500

750

1000

1250

2 4 6 8 10 12 14 16

tpHL

Quadratic (H->L)

tp

(L H)Linear Increase in Intrinsic Capacitance,Assume Only one PMOS is On for criticalcase

Page 23: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14123

Combinational Circuits

(tpHL, tpLH) as a Function of Fan-Out(tpHL, tpLH) as a Function of Fan-Out

Gates with a fan-in greater than or equal to 4 becomes excessively slow and should be avoided!

Page 24: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14124

Combinational Circuits

ttpp as a Function of Fan-In and Fan-Out as a Function of Fan-In and Fan-Out

Fan-in: quadratic due to increasing

resistance and capacitance

Fan-out: each additional fan-out gate

adds two gate capacitances to CL To the

preceding stage)

Page 25: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14125

Combinational Circuits

Fast Complex Gates: Design Technique 1Fast Complex Gates: Design Technique 1

Transistor sizing Increase Intrinsic parasitic cap and create CL of the

preceding stage

Progressive sizing

InN CL

C3

C2

C1In1

In2

In3

M1

M2

M3

MNDistributed RC line:

•M1 > M2 > M3 > … > MN (the FET closest to the output is the smallest)

•Not simple in Layout!

Page 26: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14126

Combinational Circuits

Fast Complex Gates: Design Technique 1Fast Complex Gates: Design Technique 1

Page 27: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14127

Combinational Circuits

Fast Complex Gates: Design Technique 2Fast Complex Gates: Design Technique 2

Input reordering: Put late arrival signal near the output node.

C2

C1In1

In2

In3

M1

M2

M3 CL

C2

C1In3

In2

In1

M1

M2

M3 CL

critical path critical path

charged1

01charged

charged1

Delay determined by time to discharge CL, C1 and C2

Delay determined by time to discharge CL

1

1

01 charged

discharged

discharged

Page 28: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14128

Combinational Circuits

Fast Complex Gates: Design Technique 3Fast Complex Gates: Design Technique 3

Logic Restructuring

In general, C > B > A in speed

(A)

(B)(C)

F =NAND8 Gate

Page 29: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14129

Combinational Circuits

Design Technique 3: Logic RestructuringDesign Technique 3: Logic Restructuring

(from Neil Weste, 2nd Ed, 93)

Tradeoff between Area and Speed (and Power?)

Page 30: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14130

Combinational Circuits

Fast Complex Gates: Design Technique 4Fast Complex Gates: Design Technique 4

Isolating fan-in from fan-out using buffer insertion

CLCL

Page 31: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14131

Combinational Circuits

Fast Complex Gates: Layout Technique Fast Complex Gates: Layout Technique

(A) (B)

(A): 4 internal cap 2 output diff cap(B): 4 internal cap 4 output diff cap

(A) Is better than (B)

Page 32: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14132

Combinational Circuits

Optimizing Performance in Combinational Optimizing Performance in Combinational NetworksNetworks

N

iiii fgpDelay

1

For given N: Ci+1/Ci = Ci/Ci-1

To find N: Ci+1/Ci ~ 4

How to generalize this to any combinational logic path? E.g., How do we size the ALU datapath to achieve maximum speed?

CL

InOut

1 2 N

(in units of inv)

Page 33: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14133

Combinational Circuits

Logical EffortLogical Effort

Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates

Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current

Logical effort increases with the gate complexity

Page 34: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14134

Combinational Circuits

Logical EffortLogical EffortLogical effort is the ratio of input capacitance of a gate to the inputcapacitance of an inverter with the same output current

g = 1 g = 4/3 g = 5/3

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

2

1 1

4

4

Inverter 2-input NAND 2-input NOR

Page 35: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14135

Combinational Circuits

Logical EffortLogical Effort

From Sutherland, Sproull

Page 36: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14136

Combinational Circuits

Estimated Intrinsic Delay FactorEstimated Intrinsic Delay Factor

Page 37: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14137

Combinational Circuits

Logical EffortLogical Effort

fgpt

C

CCRktDelay

p

in

Lunitunitp

0

1

p – intrinsic delay : gate parameter g – logical effort : gate parameter f – effective fanout

Normalize everything to an inverter:ginv =1, pinv = 1

Divide everything by inv

(everything is measured in unit delays inv)Assume = 1.

Page 38: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14138

Combinational Circuits

Delay in a Logic GatesDelay in a Logic Gates

Gate delay:

d = h + p

Effort delay Intrinsic delay

Effort delay:

h = g f

Logical Effort

Effective fanout = Cout/Cin

•Logical effort is a function of topology, independent of sizing•Effective fanout (electrical effort) is a function of load/gate size

Page 39: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14139

Combinational Circuits

Logical Effort of GatesLogical Effort of Gates

IntrinsicDelay

EffortDelay

1 2 3 4 5

Fanoutf

1

2

3

4

5

Inverter:

g = 1; p = 12-in

put NAND:g

= 4

/3;p

= 2

No

rmal

ized

Del

ay

Page 40: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14140

Combinational Circuits

Logical Effort of GatesLogical Effort of Gates

Fan-out (f)

Nor

mal

ized

del

ay (

d)

t

1 2 3 4 5 6 7

pINVt pNAND

F(Fan-in)

g = 1p = 1d = f+1

g = 4/3p = 2d = (4/3)f+2

Page 41: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14141

Combinational Circuits

Add Branching EffortAdd Branching Effort

Branching effort:

pathon

pathoffpathon

C

CCb

Page 42: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14142

Combinational Circuits

Multistage NetworksMultistage Networks

•Stage effort: hi = gifi

•Path electrical effort: F = Cout/Cin

•Path logical effort: G = g1g2…gN

•Branching effort: B = b1b2…bN

•Path effort: H = GFB

•Path delay D = di = pi + hi

N

iiii fgpDelay

1

Page 43: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14143

Combinational Circuits

Optimum Effort per StageOptimum Effort per Stage

HhN

When each stage bears the same effort:

N Hh

PHNpfgD Niii )(ˆ /1

Minimum path delay

Effective fanout of each stage: ii ghf

Stage efforts: g1f1 = g2f2 = … = gNfN

Page 44: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14144

Combinational Circuits

Optimal Number of StagesOptimal Number of Stages

For a given load, and given input capacitance of the first gateFind optimal number of stages and optimal sizing

invN NpNHD /1

0ln /1/1/1

invNNN pHHH

N

D

NHhˆ/1Substitute ‘best stage effort’

Page 45: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14145

Combinational Circuits

Example: Optimize PathExample: Optimize Path

1a

b c

5

g = 1f = a

g = 5/3f = b/a

g = 5/3f = c/b

g = 1f = 5/c

Effective fanout, F = 5G = 25/9H = GF=125/9 = 13.9h = 1.93 (optimal stage effort) = a = 1.93b = ha/g2 = 2.23c = hb/g3 = 5g4/f = 2.59

4 H

Page 46: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14146

Combinational Circuits

Example – 8-input ANDExample – 8-input AND

Page 47: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14147

Combinational Circuits

Method of Logical EffortMethod of Logical Effort

Compute the path effort: F = GBH Find the best number of stages N ~ log4F Compute the stage effort f = F1/N

Sketch the path with this number of stages Work either from either end, find sizes:

Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.

Page 48: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14148

Combinational Circuits

SummarySummary

Sutherland,SproullHarris

Page 49: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14149

Combinational Circuits

Pass-TransistorPass-TransistorLogicLogic

Page 50: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14150

Combinational Circuits

Pass-Transistor LogicPass-Transistor LogicIn

puts

Switch

Network

OutOut

A

B

B

B

• N transistors

• No static consumption

Page 51: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14151

Combinational Circuits

Pass Transistor Logic BasicsPass Transistor Logic Basics

ImpedanceHigh :

,,,1,0 Signals Pass

Signals Control

Z

ZXXV

P

iii

i

)()()( 2211 nn

iii

VPVPVP

VPF

Logic Function:

B

B

A

F = AB

0

Example: AND GateExample: AND Gate

A, B: A is Input signal, B is the Control Signal

Page 52: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14152

Combinational Circuits

Example: Design of XNOR2Example: Design of XNOR2

(b) Pass-network Karnaugh map

A as the control signals B as the passed signals

(a) Truth table

)()( BABAF

(c) Logic function

Page 53: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14153

Combinational Circuits

Example: Implementation of XNOR2Example: Implementation of XNOR2

 (a) Transmission Gate (b)NMOS (c)Cross-couple

Page 54: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14154

Combinational Circuits

Example2: Construct Boolean FunctionsExample2: Construct Boolean Functions

•Implement:

•Truth Table:

Page 55: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14155

Combinational Circuits

NMOS-Only LogicNMOS-Only Logic

VDD

In

Outx

0.5m/0.25m0.5m/0.25m

1.5m/0.25m

0 0.5 1 1.5 20.0

1.0

2.0

3.0

Time [ns]

Vo

ltage

[V]

xOut

In

Suffer from •Vt degradation•Body effect (Vsb has value)

Page 56: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14156

Combinational Circuits

NMOS-only SwitchNMOS-only Switch

A = 2.5 V

B

C = 2.5 V

CL

A = 2.5 V

C = 2.5 V

BM2

M1

Mn

Threshold voltage loss causesstatic power consumption

VB does not pull up to 2.5V, but 2.5V - VTN

NMOS has higher threshold than PMOS (body effect)

Page 57: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14157

Combinational Circuits

NMOS Only Logic: NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

•Advantage: Full Swing•Restorer adds capacitance, takes away pull down current at X•Ratio problem among (Mr and Mn)

Page 58: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14158

Combinational Circuits

Restorer SizingRestorer Sizing

0 100 200 300 400 5000.0

1.0

2.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25

W/Lr =1.50/0.25

W/Lr =1.75/0.25

Vol

tage

[V]

Time [ps]

3.0

•Upper limit on restorer size•Pass-transistor pull-down can have several transistors in stack

Page 59: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14159

Combinational Circuits

Solution 2: Single Transistor Pass Gate with Solution 2: Single Transistor Pass Gate with VVTT=0=0

Out

VDD

VDD

2.5V

VDD

0V 2.5V

0V

WATCH OUT FOR LEAKAGE CURRENTS

Page 60: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14160

Combinational Circuits

Complementary/Differential Pass Transistor Complementary/Differential Pass Transistor Logic (CPL/DPL)Logic (CPL/DPL)

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=AÝ

F=AÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-Transistor

Network

Pass-TransistorNetwork

AABB

AABB

Inverse

(a)

(b)

Page 61: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14161

Combinational Circuits

Solution 3: Use of Transmission GateSolution 3: Use of Transmission Gate

A B

C

C

A B

C

C

B

CL

C = 0 V

A = 2.5 V

C = 2.5 V

Page 62: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14162

Combinational Circuits

Resistance of Transmission GateResistance of Transmission Gate

Vout

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce

, oh

ms

Rn

Rp

Rn || Rp

Page 63: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14163

Combinational Circuits

Application1: Inverting 2-to-1 MultiplexerApplication1: Inverting 2-to-1 Multiplexer

AM2

M1

B

S

S

S F

VDD

)( BSASF GND

VDD

A BS S

S S

F

Page 64: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14164

Combinational Circuits

Application2: 6-T(ransistor) XOR GateApplication2: 6-T(ransistor) XOR Gate

B A F

0 0 0

0 1 1

1 0 1

1 1 0

A

A

A

A

Truth Table

A

B

F

B

A

B

BM1

M2

M3/M4

B=0: Pass A Signal

B=1: Inverting A Signal

Page 65: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14165

Combinational Circuits

Application3: Transmission Gate Full AdderApplication3: Transmission Gate Full Adder

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Similar delays for Sum and Carry

Page 66: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14166

Combinational Circuits

Delay in Transmission Gate NetworksDelay in Transmission Gate Networks

V1 Vi-1

C

2.5 2.5

0 0

Vi Vi+1

CC

2.5

0

Vn-1 Vn

CC

2.5

0

In

V1 Vi Vi+1

C

Vn-1 Vn

CC

In

ReqReq Req Req

CC

(a)

(b)

C

Req Req

C C

Req

C C

Req Req

C C

Req

C

In

m

(c)

Page 67: EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Static CMOSStatic CMOS Pass Transistor LogicPass Transistor Logic V1.0

EE14167

Combinational Circuits

Delay OptimizationDelay Optimization