42
EE5311- Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai October 28, 2017 Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 1/41

EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

  • Upload
    ngodang

  • View
    234

  • Download
    6

Embed Size (px)

Citation preview

Page 1: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

EE5311- Digital IC DesignModule 1 - The Transistor

Janakiraman V

Assistant ProfessorDepartment of Electrical EngineeringIndian Institute of Technology Madras

Chennai

October 28, 2017

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 1/41

Page 2: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Learning Objectives

◮ Explain short channel effects(SCE) like Drain InducedBarrier Lowering, Gate Induced Drain Leakage,Sub-threshold leakage, Channel length modulation

◮ Derive the equation for ON current of a CMOS transistorwith first order SC

◮ Estimate various capacitance values for a transistor

◮ Estimate the equivalent ON resistance of a transistor

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 2/41

Page 3: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Outline

◮ Silicon and Doping

◮ P-N Junction

◮ CMOS Transistor◮ Threshold Voltage◮ ON Current (ION)◮ Channel length modulation◮ Velocity saturation◮ Sub-threshold leakage◮ Drain Induced Barrier Leakage◮ Gate Induced Drain leakage◮ (Reverse) Short Channel Effect◮ Other leakage mechanisms◮ Capacitance◮ Resistance

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 3/41

Page 4: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Silicon and Doping

Missing Electron

Si Si

Si

Si

Si

Si

Si

Si Si

Si

Si

Si

P

Si

B

N−Type − Donor P−Type − Acceptor

Unbound Electron

◮ ni - Intrinsic electron/ hole concentration

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 4/41

Page 5: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Device Physics Abstraction

1. Law of Mass Action - Product of concentrations remainsconstant

np = n2i

Where◮ n/p = Electron/ hole concentration after doping◮ ni = Intrinsic electron/ hole concentration

2. Maxwell Boltzmann Equation -

n1

n2= e

Ψ12kT/q

Where◮ kT/q - Thermal voltage = 26mV @ 300K◮ n1, n2 - Charge concentration across a potential ψ12

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 5/41

Page 6: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

PN Junction

Wp

N+ P

Wn

Figure: PN Junction Diode

WnND = WpNA

◮ Conservation of charge

◮ Note: ND ≫ NA =⇒ Wp ≫ Wn

◮ Current is due to diffusion of minority carriers

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 6/41

Page 7: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

NMOS Transistor

N+

Le

WTox

VSVG

VD

VB

N+

P

Figure: NMOS transistor

◮ VGS < 0 - Accumulation (Surface becomes more P typethan bulk)

◮ 0 ≤ VGS < VTH - Depletion (Surface is less P type thanbulk)

◮ VGS ≥ VTH - Inversion (Surface is more N than the bulkis P)

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 7/41

Page 8: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Threshold VoltageS G DB

P

nSurfacee = NA

N+

ΨS

nBulke =

n2

i

NA

N+

Figure: Inversion

@VG = VTH - Channel is as N-type as the body is P-type

ΨS = 2kT

qln(

NA

ni)

VGB = ψOX + ψS

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 8/41

Page 9: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Threshold Voltage

WD = Depletion width and QD = Depletion charge per unitarea

WD =

2ǫsi |ψs |

qNA

QD = −qNAWD = −√

2qNA|ψs |

ψOX =−(QD + QI )

Cox

Cox =ǫoxtox

VTH = ψS −QD

Cox

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 9/41

Page 10: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Threshold Voltage

◮ VB 6= 0

◮ Body effect alters depletion region charge

QD =√

2qNAǫSi |ΨS + VSB |

VTH = VTH0 + γ(√

|ΨS + VSB | −√

|(ΨS)|)

Technolopgy parameters

◮ VTH0 - Threshold voltage without body effect

◮ γ - Body effect coefficient

◮ ΨS - Positive (Negative) for NMOS (PMOS) transistors

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 10/41

Page 11: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

NMOS Transistor

SB

P

xL

VGS VDS

N+ N+

ID

Vx

Figure: NMOS Transistor

◮ VGS ≤ 0 - OFF

◮ VGS > VTH and VDS < VGS − VTH - Linear

◮ VGS > VTH and VDS > VGS − VTH - Saturation

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 11/41

Page 12: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

NMOS - ON Current - Linear RegionSB

P

xL

VGS VDS

N+ N+

ID

Vx

Figure: NMOS Transistor

Qi(x) = −COX [VGS − Vx − VTH ]

COX =ǫOX

tOX

ID = −vnQi(x)W

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 12/41

Page 13: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

NMOS - ON Current - Linear Region

vn = −µnE (x)

vn = µn

dVx

dx

Substituting we get

ID = COX [VGS − Vx − VTH ]Wµn

dVx

dx∫ L

0

IDdx =

∫ VDS

0

COX [VGS − Vx − VTH ]WµndVx

ID = k′

n

W

L[(VGS − VTH)VDS −

V 2DS

2]

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 13/41

Page 14: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

NMOS - ON Current - Saturation

SB

P

xL

VGS VDS

N+ N+

ID

VP

Figure: NMOS Transistor under pinch off voltage (VP) condition

ID =kn

2

W

L[(VGS − VTH)

2]

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 14/41

Page 15: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Short Channel Effects

SB

P

VGS VDS

ID

N+N+

VDS << VDD

VDS = VDD

∆L

L

VDS = 0

Figure: NMOS Transistor with Short Channel Effects

◮ Drain is very close to the source (L is very small)

◮ The depletion regions in the drain and source arecomparable to the channel length

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 15/41

Page 16: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Channel Length ModulationSB

P

VGS VDS

ID

N+N+

VDS << VDD

VDS = VDD

∆L

L

VDS = 0

Figure: NMOS Transistor with Short Channel Effects

ID =kn

2

W

L−∆L[(VGS − VTH)

2]

ID =kn

2

W

L[(VGS − VTH)

2](1 +∆L

L)

ID =kn

2

W

L[(VGS − VTH)

2](1 + λVDS)

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 16/41

Page 17: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Velocity Saturation

vn = µnELat

◮ Not entirely correct - Velocity does not linearly increasewith lateral field for ever

◮ It saturates beyond a critical field ECrit

◮ Electrons encounter more collisions and hence don’t pickup speed

◮ Maximum velocity of electrons/ holes = 105m/s

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 17/41

Page 18: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Velocity Saturation

0 1 2 3 4 50

0.2

0.4

0.6

0.8

E (V /µm)

v(m/s)(×10

5)

v =

µE

1+ EEC

if E ≤ EC

vsat if E > EC

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 18/41

Page 19: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Velocity Saturation- Simplified

Velocity:

v =

{

µE if E ≤ EC

vsat = µEC if E > EC

VDS Saturation :

VDS−SAT = L ∗ EC =LvSAT

µ

Velocity Saturated Drain Current:

IDS−SAT = IDS(VDS = VDS−SAT )

IDS−SAT = µnCOX

W

L

(

(VGS − VTH)VDS−SAT −V 2DS−SAT

2

)

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 19/41

Page 20: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Unified Current Model

◮ Useful to combine all effects into one equation

◮ Voltage values determine the governing equations

IDS =

{

0 |VGS | < |VTH |

k ′WL

(

(VGS − VTH)Vmin −V 2min

2)(1 + λVDS

)

|VGS | > |VTH |

Where

Vmin = min(VDS , (VGS − VTH),VDS−SAT ) . . .NMOS

Vmin = max(VDS , (VGS − VTH),VDS−SAT ) . . .PMOS

VTH = VTH0 + γ(√

|VSB +ΨS | −√

ΨS)

(VTH0, k′,VDSAT , γ, λ) - Technology parameters

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 20/41

Page 21: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Sub-threshold LeakageSB

P

CollectorEmitter

Thin Base

VGS = 0 VDS

IOFF

N+N+

Figure: NMOS Transistor Sub-Threshold Leakage

◮ In a short channel transistor, the thin channel acts like athin base of a BJT.

◮ Diffusion current flows even when VGS = 0.◮ Exponential dependence on VGS

IOFF = ISeVGS−VTH

nkT/q

(

1− e−

VDSkT/q

)

(1 + λVDS)

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 21/41

Page 22: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Sub-threshold Slope

Log

Linear

GIDL

IOFF

IDS

VGS

mA

nA

S =1

d(log10(IOFF ))dVGS

S = nkT

qln(10)

◮ Ideal transistor n = 1, Smin = 60mV /decade

◮ Actual transistors n ≈ 1.5 and hence S = 90mV /decade

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 22/41

Page 23: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Gate Induced Drain Leakage (GIDL)SB

P

VGS << 0 VDS = VDD

N+N+ P+

IGIDL

Figure: NMOS Transistor with Halo Implant

◮ Negative VGS exponentially reduces sub-threshold leakage

◮ But beyond a point GIDL kicks in

◮ Surface is in deep accumulation causing a deeperdepletion in the diffusion

◮ Tunneling current from drain to substrate

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 23/41

Page 24: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Drain Induced Barrier Lowering (DIBL)

SB

P

VGS VDS

ID

N+N+

VDS << VDD

VDS = VDD

L

VDS = 0

Figure: NMOS Transistor DIBL

◮ Drain controls amount of depletion in the channel

◮ Easier for the gate to invert with higher VDS

◮ Gate effectively has lesser control

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 24/41

Page 25: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Drain Induced Barrier Lowering (DIBL)SB

P

VGS VDS

ID

N+N+ L

P+ P+

Figure: NMOS Transistor with Halo Implant

◮ P+ halo added near diffusion

◮ Depletion layer now goes deeper into the diffusion ratherthan channel

◮ Gate has better control now

◮ DIBL =VTH(VDS=VH

DD)−VTH(VDS=V L

DD)

VHDD

−V LDD

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 25/41

Page 26: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Reverse Short Channel Effect

SCE

RSCE

L

VTH

Halo implant makes it harder to invert the channel

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 26/41

Page 27: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Substrate Leakage

SB

P

VDS

N+N+

ISUB−LEAK

VGS

Reverse biased P − N+ junction leakage

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 27/41

Page 28: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Gate Leakage

SB

P

SB

P

Sca

ling

VDS

N+N+

VGS

tOX = 4nm

N+

N+

tOX = 1nm

IGATE

◮ Quantum mechanical tunneling across the gate oxide

◮ Use of HfO2 - HiK dielectric since 45nm technology

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 28/41

Page 29: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Capacitance

S

BG

D

Csb

CdbCgd

Cgs

Cgb

Figure: Capacitance Model

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 29/41

Page 30: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Gate Capacitance

Accumulation InversionDep

letio

n

B

VGB

C

C0

G

Figure: Capacitance Model

C0 =ǫWL

tox

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 30/41

Page 31: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Gate Capacitance

Parameter Cutoff Linear SaturationCgb C0 0 0Cgs 0 C0/2 (2/3)C0

Cgd 0 C0/2 0Cg = Cgb + Cgs + Cgd C0 C0 (2/3)C0

C0 =ǫoxWL

tox

For all practical purposes Cg ≈ C0

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 31/41

Page 32: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Overlap Capacitance

Top View

Cross Section

N+ N+

xd

Ld

W

L

Figure: Overlap Capacitance

Cov =ǫoxWxd

toxCG = C0 + 2Cov

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 32/41

Page 33: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Diffusion Capacitance

NA

N+

D N+

D

LS

xj

W

Figure: Diffusion Capacitance

◮ Bottom plate capacitance

◮ Sidewall capacitance

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 33/41

Page 34: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Diffusion Capacitance

Side Wall

Side Wall

Side Wall

Channel

Bottom

Source

Substrate NA

xj

W

LS

ND

Figure: Diffusion Capacitance

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 34/41

Page 35: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Bottom Plate Diffusion Capacitance

NA

N+

D N+

D

LS

xj

W

CBottom = CjWLS

Cj =Cj0

(1 + VSB/φ0)m

Cj0 =

(ǫsiq

2

NAND

NA + ND

)φ−10

φ0 =kT

qln(

NAND

n2i)

m ≈ 0.5

Cj is charge per unit area. Similar expressions hold for thedrain side (VSB → VDB) as well.

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 35/41

Page 36: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Side wall Diffusion Capacitance

NA

N+

D N+

D

LS

xj

W

Figure: Diffusion Capacitance

CSide−wall = C′

jswxj(W + 2LS)

Cjsw = C′

jswxj

Cdiff = Cbottom + Csw = CjLSW + Cjsw (W + 2LS)

Cjsw is capacitance per unit length.

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 36/41

Page 37: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Capacitance Summary

S

BG

D

Csb

CdbCgd

Cgs

Cgb

Figure: NMOS Capacitance

CG = CGS + CGD + CGB + 2Cov = COXWL+ 2Cov

CDB = CjLSW + Cjsw (W + 2LS)

CSB = CjLSW + Cjsw (W + 2LS)

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 37/41

Page 38: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Resistance

ID

VDD

VDS(VDD − VDD/2)

Figure: NMOS Equivalent Resistance

Req =1

VDD/2− VDD

∫ VDD/2

VDD

R(V )dV

Req =1

−VDD/2

∫ VDD/2

VDD

V

IDSAT (1 + λV )dV

Req ≈3VDD

4IDSAT

(

1−7

9λVDD

)

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 38/41

Page 39: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Resistance

Req ≈3VDD

4IDSAT

(

1−7

9λVDD

)

IDSAT = k ′W

L((VDD − VTH)VDSAT −

V 2DSAT

2)

◮ Resistance Req ∝ 1W /L

- Doubling W =⇒ Req halves

◮ If VDD >> VTH + VDSAT/2, Req is independent of VDD .Minor dependence due to CLM (λ)

◮ As VDD → VTH , resistance goes up significantly

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 39/41

Page 40: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

BSIM SPICE Level 1 Model

VTH0 γ(V 0.5) VDSAT (V ) k ′(µA/V 2) λ(V−1)NMOS 0.43 0.4 0.63 115 0.06PMOS -0.4 -0.4 -1 -30 -0.1

Table: Parameters of a 0.25µm CMOS process for a minimum

length device

◮ Calculate the drain current of a PMOS transistor in0.25µm technology whose W /L = 0.5µ/0.25µ whenbiased at VGS = −0.6V , VDS = −0.3V and VSB = 0V

◮ Repeat the above calculation this time withVDS = −1.1V and VGS = −2V

◮ Calculate the threshold voltage of a NMOS device whenthe body is biased at VSB = 0.11V . Assume thatψS = 0.25V

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 40/41

Page 41: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

Capacitance Model

COX Cov Cj mj φb Cjsw mjsw φbsw

(fF/µm2) (fF/µm) (fF/µm2) (V fF/µm) (V )NMOS 6 0.31 2 0.5 0.9 0.28 0.44 0.9PMOS 6 0.27 1.9 0.48 0.9 0.22 0.32 0.9

Table: Capacitance parameters of a 0.25µm CMOS process

◮ Calculate variaous capacitances of an NMOS transistorwith W /L = 0.36µm/0.24µm in a 0.25µm technologywhere LD = LS = 0.625µm under zero-bias condition

◮ Calculate the equivalent resistance of an NMOS transistorwith a W /L = 1 when connected to a VDD = 1.5V

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 41/41

Page 42: EE5311- Digital IC Design - Indian Institute of … Digital IC Design Module 1 - The Transistor Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute

References

The material presented here is based on the following books/lecture notes

1. Digital Integrated Circuits Jan M. Rabaey, AnanthaChandrakasan and Borivoje Nikolic 2nd Edition, PrenticeHall India

Janakiraman, IITM EE5311- Digital IC Design, Module 1 - The Transistor 42/41