81
ect of Microstructure on Thermal-Transp Properties of UO 2 Simon Phillpot Department of Materials Science and Engineering University of Florida Gainesville FL 32611 [email protected] 1

Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

  • Upload
    moesha

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot Department of Materials Science and Engineering University of Florida Gainesville FL 32611 [email protected]. 1. Taku Watanabe Aleksandr Chernatynskiy Susan Sinnott - PowerPoint PPT Presentation

Citation preview

Page 1: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Effect of Microstructure on Thermal-TransportProperties of UO2

Simon PhillpotDepartment of Materials Science and Engineering

University of FloridaGainesville FL 32611

[email protected]

1

Page 2: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Taku WatanabeAleksandr ChernatynskiySusan SinnottDepartment of Materials Science and Engineering, University of Florida

Daniel VegaJames TulenkoDepartment of Nuclear and Radiological Engineering, University of Florida

Robin GrimesDepartment of Materials, Imperial College London

Patrick SchellingDepartment of Physics and AMPAC, University of Central Florida

Srinivasan SrivilliputhurDepartment of Materials, U. North Texas

2

Page 3: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

http://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.html

Pressurized-Water Reactor

4

Page 4: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

http://coto2.files.wordpress.com/2011/03/2-fuel-pellet-assembly.jpghttp://www.kntc.re.kr/openlec/nuc/NPRT/module2/module2_2/module2_2_2/2_2_2.htm

5

Page 5: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Radial Fuel Temperature Profile: BOL, axial node 4/12

0

200

400

600

800

1000

1200

1400

1600

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Radius [cm]

Tem

per

atu

re [

K]

FRAPCON Model

FRAPCON: Unirradiated Fuel Pellet

http://www.peakoil.org.au/news/does_nuclear_energy_produce_no_co2.htm

6

Page 6: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

• Maximize thermodynamic efficiency

= 1 – Tcold/Thot

Highest possible fuel temperature

• There is a maximum temperature at which the fuel can be used in normal performance

Carefully control heat flow

Must understand heat transport in UO2 fuel

Motivation

7

Page 7: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Outline

• Phenomenology of Thermal Transport in Solids

• Phonon Mediated Thermal Transport

• Effects of Microstructure on Thermal Transport in UO2

• Phonon-phonon interactions• Phonon-point defect interactions• Phonon-dislocation interactions• Phonon-grain boundary interactions

• Bringing It All Together

8

Page 8: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Part 1Phenomenology of Thermal

Transport in Solids

9

Page 9: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Heat Transfer Mechanisms

• Convection

• Conduction

• Radiation

Convection is a mass movement of fluids (liquid or gas) rather than a real heat transfer mechanism (heat transfer is with convection rather than by convection)

Radiative heat transfer is important at high temperatures

Conduction is heat transfer by molecular or atomic motionHeat conduction dominates in solids

Three fundamental mechanisms of heat transfer:

10

Page 10: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conduction

Transfer of heat through a material not involving mass transfer or emission of

electromagnetic radiation

11

Page 11: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conduction

12

Page 12: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conduction

Why does his tongue stick to a metal pole?

Would it stick to a wooden pole?

Dumb and Dumber

13

Page 13: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Phenomenology of Thermal Conductivity

heatsource

T

x

J = - dT/dx

Fourier’s Law

Heat current Thermal conductivity

14

Page 14: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Units

J = Heat Flux (Density)

= Heat per unit time per unit area

[J] = J s-1 m-2 = Wm-2

[dT/dx] = K m-1

Fourier’s Law

J = - dT/dx

[] = Wm-2 / K m-1 = Wm-1K-1

Also:

[] = BTU-inch/hour-square foot-°F

1 BTU-inch/hour-square foot-°F = 0.14Wm-1K-1

15

Page 15: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conductivity of Solids

•Log – log plot•Only 6 order of magnitude range•Some increase with power-law dependence and then decay•Amorphous materials increase slowly

16

Page 16: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Water 0.6Ethylene Glycol 0.25PTFE 0.2Wood 0.2 – 0.4Engine Oil 0.15Fiberglass 0.04Air 0.03Snow 0.05 – 0.25 (T < 0C)Silica Aerogel 0.003

Solids vs. Liquids

Low materials W/mK

Liquid Na - 72 W/mK

17

Page 17: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Heat Carriers

•Electrons – metals only

•Lattice vibrations / phonons – all systems

18

Page 18: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Part 2: Phonon-mediated Thermal Transport

19

Page 19: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

1

YSZ

Isotropic polymersAmorphous materials

Thermal conductivity(W/mK)

Phonons/vibrations

10 100

AluminaOriented polymers

phonons

Diamond

phonons

1000

Copper

electrons

Mechanisms of Thermal Conductivity

Electrical conductivity

(Cu ) ~ 5 105 (W cm)-1

(diamond) ~ 10-16 (W cm)-1

20

Page 20: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

1

YSZ

Isotropic polymersAmorphous materials

Thermal conductivity(W/mK)

Phonons/vibrations

10 100

AluminaOriented polymers

phonons

Diamond

phonons

1000

Copper

electrons

Mechanisms of Thermal Conductivity

21

Page 21: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conductivity of Oxides

Courtesy of D. R. Clarke

22

Page 22: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

UO2 for Nuclear Fuel

• Advantages – high melting point

(~3000K)– radiation stability– chemical compatibility

• Disadvantages– difficulty of fabrication– low thermal conductivity – low fuel density

Figure from “Lecture notes on crystal structure”, ASU Intro to materials

23

Page 23: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Crystalline Materials: From Solids to Springs

Heat transport from atomic vibrations

Vibration of spring system similar to vibrations in solids

24

Page 24: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Long Wavelength Longitudinal Acoustic Phonon

25

Page 25: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Short Wavelength Longitudinal Acoustic Phonon

26

Page 26: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Longitudinal Optical Phonon

27

Page 27: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Acoustic vs. Optical

Which has lower energy?Why?

Lower EnergyLess Compression of Springs

28

Page 28: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Transverse Phonons

29

Page 29: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Longitudinal vs. Transverse Phonons

Which has lower energy?Why?

Lower EnergyLess Compression of Springs

30

Page 30: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Schematic dispersion curves for diamond

http://physics.ucsc.edu/groups/condensed/moseley/simulations

Phonons

Eigenmodes of harmonic potential

31

Page 31: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Phonon-defectPhonon-phonon Phonon-electron

Macroscale ***** *** *

Phonon-boundary

Phonon Scattering Mechanisms

32

Page 32: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Water Waves

http://learn.uci.edu/media/OC08/11004/OC0811004_Difraction.jpg

Water scattering from island defect Water waves scattering from each other

33

Page 33: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

~ 1/3 Cv v

Thermal Conductivity

Thermal conductivity

Specific heat Velocity of sound

Phonon mean free path

34

Page 34: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Temperature Dependence

~ 1/3 cv v

Low T

Quantum Solid

Cv ~ T3

~ T3

High T:

Phonon-phonon

scattering

~ T-

~ TSurface Scattering

L=1mm

L=7mm

LiF

35

Page 35: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

How Large is the Mean Free Path?

= 1/3 Cv v

~ 30 W/m.K v ~5000 m/sCv ~ 3kB = 1.9 106 J/m3K

~ 10nm

36

Page 36: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Part 3Effect of Microstructure on Thermal

Transport in UO2

37

Page 37: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Phonon-defectPhonon-phonon Phonon-electronPhonon-boundary

Phonon Scattering Mechanisms

38

Page 38: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal conductivity from BTE

Thermal transport in UO2

Triple axis spectrometer HB-3 at HFIRPhonon dispersions

And line widths

Simulations Experiment (ORNL)

Fundamentaltheory test

Line width is affected by the microstructure

Different levels of theory

40

Page 39: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Phonon dispersion:

Arima et at., J. Alloys Compounds, 400 43 (2005)

Simulations: Experiment

(ORNL)

4

32

1

LA

TA

UO2: Phonon Dispersion and Lifetimes

Phonons lifetimes

Acoustic modes

Optical modes

41

Page 40: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000

T [K]

κ [

W/m

K]

ExperimentBuskerYamada

Thermal Conductivity of UO2

q

q

q

qqqP

qq

q

qqqP

42

Page 41: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Temperature Scaling

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.4 2.6 2.8 3.0 3.2 3.4

log(T )

log(

κ)

ExperimentBuskerYamada k ~ T-

Expt = 0.79Busker = 1.30Yamada = 1.14

43

Page 42: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Atomistic Simulations of Thermal Conductivity

40% is coming from optical modes (at 1000K)!

Detailed information about contribution to thermal conductivity from different phonons

44

Page 43: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Application to UO2

Force constants: Classical potentials - more than 20 is available (Govers, et al. 2007).

Experimental Data: R.L. Gibby, J. Nucl. Mater. 166, 223 (1989).Potentials: Arima1, Busker, Grimes, Morelon and Walker (Nomenclature is from Govers, et al (2007)).

45

Page 44: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal conductivity from different potentials: Good thermal conductivity <> good phonons and vice-versa: Very sensitive

UO2: Potentials Sensitivity

46

Page 45: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Phonon/Point Defect Scattering

Four steps:• structure creation• initial phonon wave

packet generation– well-defined

longitudinal acoustic phonon

• MD simulation• energy analysis

doped region

48

Page 46: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Point Defect Scattering

• Incident phonon frequency: 2.96THz

• 1.56% dopants in doped region

•Δz = 200 unit cell

doped region

49

Page 47: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

3000

t=0

t=26.3 ps

t=60.1 ps

t=201.3 ps

-3000 -100 100

z [a]

Snapshots

Energy trapped in the defect region becomes negligible by ~200 ps

Defects decrease efficiency of heat transport

50

Page 48: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

1.003

-0.05 0.00 0.05 0.10 0.15 0.20 0.25

x

a(x

)/a

(0)

0

1

2

3

4

5

6

7

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

x

κ (

W/m

K)

800 K

1600 K

Effects of Off-stoichiometry

UO2+x -0.05 < x < 0.25

Lattice Expansion Thermal Conductivity

Prototype for point defects of various types

51

Page 49: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conductivity of UO2+x

• κ falls rapidly with increasing defect concentration

• Reaches plateau by x=0.10

• 800K and 1600K the same for x>0.10

0

1

2

3

4

5

6

7

0.00 0.05 0.10 0.15 0.20 0.25 0.30

x

κ (

W/m

K)

MD (800 K)

MD (1600 K)

Lucuta (773 K)

Lucuta (1673K)

Very similar to yttria-stabilized zirconia

52

Page 50: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

0.00

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30

f (THz)

DO

S (

Arb

. U

nit)

0.00

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30

f (THz)

DO

S (

Arb

. Uni

t)

What do Vibrational Modes Look Like?

x=0 (x< 0.1)

• Debye DOS at low f• Highly structured DOS• wavevectors, define polarization phononscrystalline

• Non-Debye DOS at low f• Weakly structured DOS• no wave vectors, no polarization diffuse vibrational modes• similar to amorphous phase

x=0.125 (x > 0.1)

53

Page 51: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conductivity of Irradiated UO2

• 10x10x20 (2 of 10x10x10)

• 250 eV PKA at 800 K

• Defect concentration: 0.75 defects/nm3 (analogous to x=0.035 in UO2+x, 6% UI and VU)

• J=3.66x10-5 eV/nm2·fs

Heat source

Heat sink

740

760

780

800

820

840

860

0 2 4 6 8 10

z (nm)

T (

K)

55

Page 52: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal Conductivity of Irradiated UO2

• For irradiated material

κ=2.15 W/mK

• For x=0.035, k~ 3W/mK

• Radiation damage greater effect than off stoichiometry– U defects– Clustered structure

0

1

2

3

4

5

6

7

0.00 0.05 0.10 0.15 0.20 0.25 0.30

x

κ (

W/m

K)

MD (800 K)

MD (1600 K)

Lucuta (773 K)

Lucuta (1673K)

56

Page 53: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

{110}<110> {100}<110>

Dislocations in UO2

Sawbridge and Sykes, JNM, 35 122(1970)

Nogita and Une, JNM  226 302 (1995) 

58

Page 54: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Thermal transport theory of dislocations

59

Page 55: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

• T=1600K, edge dislocation

60

Colored by coordination number of U atoms (FCC)green=10Violet=11

Structure Evolution

(110)

(110)

(001)

60

Page 56: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

• T=800K, screw dislocation

61Structure Evolution

(110)

(110)

(001)

61

Page 57: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

• T=1600K, screw dislocation

62Structure Evolution

(110)

(110)

(001)

62

Page 58: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

•Decrease in conductivity temperature independent, as predicted by Klemens-Callaway

•Magnitude of reduction less than predicted

MD Results 63

perfect edge

800K 5.75 5.09(-11.5%)

1000K 4.82 4.26(-11.5%)

1600K 3.39 2.99(-11.8%)

63

Page 59: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

•Thermal conductivity for screw dislocations appears to decrease with increasing temperature.

MD Results 64

perfect edge screw

800K 5.75 5.09(-11.5%)

4.98(-13.4%)

1000K 4.82 4.26(-11.5%)

4.35(-9.8%)

1600K 3.39 2.99(-11.8%)

3.15(-6.8%)

64

Page 60: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

65

Edge Dislocations

700 800 900 1000 1100 1200 1300 1400 1500 1600 17004

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Temperature K

The

rmal

con

duct

ivity

Wm

-1K

-1

no dislocation

1X dislocation

2X dislocation

• Effect of dislocations independent of temperature• Effect proportional to dislocation density

65

Page 61: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

MD vs. Classical Theory

1012

1013

1014

1015

1016

1017

0.75

0.8

0.85

0.9

0.95

1

Dislocation density (m-2)

Rel

ativ

e co

nduc

tivity

dislocation density in our model

6~44 GWd/t burnup regionin the previous model

Burnup region

Dislocation density in MD

MD results Klemens model

66

Page 62: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Interfacial (Kapitza) Thermal Resistance in Si

distance

dTgb

To

J = GK T

Interfacial (Kapitza) resistance temperature discontinuities at interfaces

Gk – Interfacial conductance (Wm-2K-1)Rk = 1/Gk - Interfacial resistance (m2KW-1)

68

Page 63: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Interface Conductance

D. G. Cahill et al., JAP 2003

69

Page 64: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Interface Scattering

Acoustic mismatch model

Diffuse mismatch model

c

B

cBZ = c

tAB = 4ZAZB/ (ZA + ZB)2

D DtAB() = DB()/ (DA()+DB())

-densityc -speed of sound

D() – phonon density of states

70

Page 65: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Long TA phonon – Si Grain Boundary

71

Page 66: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Short LA phonon – Si Grain Boundary

72

Page 67: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

(100) =43° 29

LA

kz =0.35

High-Frequency LA mode

Diffuse scatteringAcoustic scattering

73

Page 68: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

74

Page 69: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Effects of Interfaces: Polycrystalline UO2

* Experimental data from J.K. Fink J. Nucl. Mater. 279 (2000) 1

• d = 3.8 – 6.5 nm• (001) texture pure tilt GBs (misorientations > 15°)

75

Page 70: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Polycrystal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000 1500 2000

T [K]

κ [

W/m

K]

Busker

Yamada

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000

T [K]

κ [

W/m

K]

ExperimentBuskerYamada

Single Crystal d=3.8nm

76

Page 71: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Grain Size Dependence

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 500 1000 1500 2000

T [K]

GK

[G

W/m

2K]

Busker

Yamada

• Interfacial conductance increases with temperature

• Increased anaharmonicity couples vibrational modes across the grain boundary → enhanced heat transfer

Gd1 0

0

77

Page 72: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Simple Model for Grain-Size Dependence

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

d [nm]

κ [W

/mK

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3.0 4.0 5.0 6.0 7.0

d [nm]0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

Grain size [nm]

k/k 0

Experiment: YSZ:480K

MD: MgO:300K

MD: MgO:573K

MD: NDZ:300K

MD: NDZ:573K

Gd1 0

0

78

Page 73: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Kapitza Length in UO2

• lκ >> d→ Grain boundaries dominate the thermal transport property

• Kapitza length approaches the nano grain size only above ~1500 K

econductanc linterfacia

tyconductivi thermal bulk

length Kapitza

G

G

l

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000

T [K]

lκ [

nm]

Busker

Yamada

79

Page 74: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Kapitza length lk = kSC/G thickness of perfect crystal offering same resistance to heat transport at the interface

Quantification of Interface Effect

1.50

1.70

1.90

2.10

2.30

2.50

0 500 1000 1500 2000

T [K]

G [

GW

/m2 K

]

0

5

10

15

20

25

30

35

0 500 1000 1500 2000

T [K]

l k (

nm

)

lk > grain size

80

Page 75: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

FRAPCON

81

Page 76: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Comparison of MD model in FRAPCON

MDFRAPCON

Input model for k FRAPCON prediction at BOL

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0 400 800 1200 1600Temperature (K)

Stra

in (

cm/c

m)

FRAPCON

AM/MDMDFRAPCON

82

Page 77: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Surface Displacement – worst case

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

0 500 1000 1500Time (days)

Su

rfac

e D

isp

lace

men

t (m

ils)

Base

Atomistic

83

Page 78: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

MD vs. FRAPCON Model

84

Page 79: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Temperature in Unirradiated Pellet

85

Page 80: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Bringing It All Together

86

Page 81: Effect of Microstructure on Thermal-Transport Properties of UO 2 Simon Phillpot

Microstructure and Thermal Properties of Nuclear Fuel Under Irradiation

Molecular Dynamics and Lattice Dynamics Simulations of Thermal

Transport, Phonon Dispersion, and Phonon Lifetimes at Temperature;

Effects of Microstructure

Materials Synthesis and Ion/Neutron Irradiation and Materials Microstructure

Characterization Using Atom-probe Microscopy, Electron Microscopy, 3D X-

ray Microscopy, and Photon Spectroscopies

87