49
Electronic Supporting Information for “Understanding the effects of ionic liquids on a unimolecular substitution process: correlating solvent parameters with reaction outcome” Alyssa Gilbert, Ronald S. Haines and Jason B. Harper School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia. Synthesis of bromodiphenylmethane 1 and ionic liquid precursors 2 Synthesis of ionic liquids 5-8 3 1 H NMR spectra of synthesised compounds 5 Experimental details for kinetic analyses 9 Mole fraction dependence plot for the bimolecular pathway 11 Eyring plots for the unimolecular and bimolecular pathways 12 Activation parameters for the bimolecular pathway 13 Selectivity plot for ionic liquids 5-8 14 Activation parameters vs Kamlet–Taft parameters plots 15 Natural logarithm of k1 vs individual Kamlet–Taft solvent parameters plots 16 Kamlet–Taft multiparameter fitting plots 20 Rate data for the mole fraction dependence studies 24 Rate data for temperature dependence studies 36 Rate data for competition experiments 48 References 49 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information for “Understanding the effects … · 2018-12-14 · Electronic Supporting Information for “Understanding the effects of ionic liquids on a unimolecular

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Electronic Supporting Information for

“Understanding the effects of ionic liquids on a unimolecular substitution

process: correlating solvent parameters with reaction outcome”

Alyssa Gilbert, Ronald S. Haines and Jason B. Harper

School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.

Synthesis of bromodiphenylmethane 1 and ionic liquid precursors 2 

Synthesis of ionic liquids 5-8 3 1H NMR spectra of synthesised compounds 5 

Experimental details for kinetic analyses 9 

Mole fraction dependence plot for the bimolecular pathway 11 

Eyring plots for the unimolecular and bimolecular pathways 12 

Activation parameters for the bimolecular pathway 13 

Selectivity plot for ionic liquids 5-8 14 

Activation parameters vs Kamlet–Taft parameters plots 15 

Natural logarithm of k1 vs individual Kamlet–Taft solvent parameters plots 16 

Kamlet–Taft multiparameter fitting plots 20 

Rate data for the mole fraction dependence studies 24 

Rate data for temperature dependence studies 36 

Rate data for competition experiments 48 

References 49 

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2018

S2

Synthesis of bromodiphenylmethane 1 and ionic liquid precursors

Bromodiphenylmethane 11

Diphenylmethanol (0.480 g, 2.61 mmol) was dissolved in dichloromethane (5 mL) and

cooled to 0 °C. Phosphorus tribromide (0.370 mL, 3.90 mmol) was added to the solution

dropwise over one minute. The reaction mixture was stirred at room temperature for 16 hours

with a drying tube containing calcium chloride attached. Water (10 mL) was added to quench

the reaction. The aqueous layer was extracted with dichloromethane (3 x 20 mL). The

combined organic extracts were washed with water (3 x 40 mL) and saturated aqueous

sodium bicarbonate (3 x 40 mL) then dried with magnesium sulphate. The solution was

filtered and the solvent removed under reduced pressure to give a colourless oil. This oil was

stored at -20 °C for 1 hour to assist with crystallisation, which afforded a white solid (0.550

g, 2.23 mmol, 86%). m.p. 36-38 °C (lit.1 37-39 °C). 1H NMR (400 MHz, acetone-d6) 6.55

(s, 1H, BrCH), 7.27-7.55 (m, 10H, ArH).

1-Butyl-1-methylpyrrolidinium bromide ([bmpyr]Br)3

1-Methylpyrrolidine (24.0 g, 0.282 mol) and 1-bromobutane (54.6 g, 0.400 mol) were

combined and stirred under a nitrogen atmosphere for 48 hours. During this time a white

solid formed. Ethyl acetate (100 mL) was added to the mixture and the solid was crushed in

order to allow any remaining starting material to dissolve. The ethyl acetate was decanted and

the residue washed with ethyl acetate (5 x 50 mL) and dried under reduced pressure to give

the bromide as a white solid (62.2 g, 0.280 mol, 99%). m.p. 215-218 °C (lit.2 216-217 °C). 1H

NMR (400 MHz, acetone-d6) 0.98 (t, J = 7.4 Hz, 3H, CH3CH2), 1.40-1.48 (m, 2H,

CH2CH3), 1.84-1.92 (m, 2H, CH2CH2CH3), 2.28-2.31 (m, 4H, NCH2CH2CH2), 3.31 (s, 3H,

NCH3), 3.68-3.72 (m, 2H, NCH2CH2), 3.82-3.86 (m, 4H, CH2NCH2).

1-Butyl-3-methylimidazolium chloride ([bmim]Cl)5

1-Methylimidazole (157 g, 1.91 mol) and 1-chlorobutane (269 g, 2.91 mol) were stirred at 80

°C under a nitrogen atmosphere for 9 days. During this time, two immiscible layers formed.

The top layer was decanted and the bottom layer was stored at -20 °C in ethyl acetate (200

mL) for 2 days to assist with crystallisation. During this time, a white solid formed. The ethyl

acetate was decanted, and ethyl acetate (200 mL) was again added, the solid was crushed up

and the ethyl acetate was decanted. This process was repeated 5 times to remove any residual

S3

starting materials. Ethyl acetate was removed and the product was dried under reduced

pressure to give the salt as a white solid (273 g, 1.56 mol, 82%). m.p. 66-68 °C (lit.4 65 °C).

1H NMR (400 MHz, acetone-d6) 0.94 (t, J = 7.4 Hz, 3H, CH2CH3), 1.33-1.43 (m, 2H,

CH2CH3), 1.88-1.96 (m, 2H, CH2CH2CH3), 4.03 (s, 3H, NCH3), 4.34 (t, J = 7.4 Hz, 2H,

NCH2CH2), 7.69-7.74 (m, 2H, NCHCHN), 8.98 (s, 1H, NCHN).

Synthesis of ionic liquids 5-8

1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpyr][N(SO2CF3)2], 5)6

1-Butyl-1-methylpyrrolidinium bromide (62.2 g, 0.280 mol) and lithium

bis(trifluoromethylsulfonyl)imide (89.0 g, 0.310 mol) were dissolved in water and the

mixture was stirred at room temperature for 16 hours, during which time two immiscible

layers formed. The aqueous layer was extracted with dichloromethane (3 x 50 mL) and the

combined organic layers were washed with water (10 x 50 mL). The solvent was removed

and the residue was dried under reduced pressure to give the salt as a pale yellow, viscous

liquid (108 g, 0.255 mol, 91%). 1H NMR (400 MHz, acetone-d6) 1.00 (t, J = 7.4 Hz, 3H,

CH3CH2), 1.41-1.50 (m, 2H, CH2CH3), 1.89-1.97 (m, 2H, CH2CH2CH3), 2.32-2.37 (m, 4H,

NCH2CH2CH2), 3.28 (s, 3H, NCH3), 3.54-3.59 (m, 2H, NCH2CH2), 3.71-3.79 (m, 4H,

CH2NCH2).

Methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([mtoa][N(SO2CF3)2], 6)7

Methyltrioctylammonium bromide (48.0 g, 0.107 mol) and lithium

bis(trifluoromethylsulfonyl)imide (35.1 g, 0.118 mol) were dissolved in 1:1 water/acetone

(250 mL) and the resulting mixture was stirred at room temperature for 48 hours. The acetone

was removed under reduced pressure and the remaining mixture was stirred at room

temperature for 16 hours; during this time two immiscible layers formed. The aqueous

mixture was extracted with dichloromethane (2 x 100 mL) and the combined organic layers

were washed with water (10 x 50 mL). The solvent was removed and the residue was dried

under reduced pressure to give the salt as a honey-coloured, viscous liquid (65.5 g, 0.101

mol, 95%). 1H NMR (400 MHz, acetone-d6) 0.87 (t, J = 7.4 Hz, 9H, CH3CH2), 1.25-1.45

(m, 30H, (CH2)5CH3), 1.85-1.93 (m, 6H, NCH2CH2), 3.25 (s, 3H, NCH3), 3.47-3.52 (m, 6H,

NCH2CH2).

S4

1-Butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4], 7)6

1-Butyl-3-methylimidazolium chloride (146 g, 0.834 mol) and sodium tetrafluoroborate (102

g, 0.925 mol) were combined with acetone (250 mL) and stirred at room temperature for 16

hours. The white precipitate that formed during this time was filtered off and discarded. The

acetone was removed from the filtrate in vacuo and the remaining liquid dissolved in

dichloromethane (200 mL). The solution was stored at -20 °C overnight to assist with

precipitation of any residual sodium chloride in the mixture. Sodium chloride was filtered off

and discarded, and the solvent removed in vacuo. Dichloromethane (200 mL) was again

added and the process was repeated 8 times to ensure removal of sodium chloride. The

dichloromethane was removed and the resultant liquid dried under reduced pressure to give

the salt as a pale yellow, viscous liquid (150 g, 0.664 mol, 80%). 1H NMR (400 MHz,

acetone-d6) 0.95 (t, J = 7.4 Hz, 3H, CH2CH3), 1.34-1.42 (m, 2H, CH2CH3), 1.89-1.96 (m,

2H, CH2CH2CH3), 4.04 (s, 3H, NCH3), 4.35 (t, J = 7.4 Hz, 2H, NCH2CH2), 7.70-7.76 (m,

2H, NCHCHN), 8.98 (s, 1H, NCHN).

1-Butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6], 8)5

1-Butyl-3-methylimidazolium chloride (68.1 g, 0.390 mol) in water (100 mL) and potassium

hexafluorophosphate (80.3 g, 0.436 mol) in water (300 mL) were combined and the resulting

mixture was stirred at room temperature for 18 hours. During this time, two immiscible

layers formed. The aqueous layer was extracted with dichloromethane (2 x 150 mL) and the

combined organic layers were washed with water (10 x 100 mL). The dichloromethane was

removed and the resultant colourless liquid was dried under reduced pressure to give the salt

as a colourless, viscous liquid (86.7 g 0.305 moles, 78%). 1H NMR (400 MHz, acetone-d6)

0.94 (t, J = 7.4 Hz, 3H, CH2CH3), 1.35-1.41 (m, 2H, CH2CH3), 1.88-1.96 (m, 2H,

CH2CH2CH3), 4.03 (s, 3H, NCH3), 4.34 (t, J = 7.4 Hz, 2H, NCH2CH2), 7.67-7.73 (m, 2H,

NCHCHN), 8.93 (s, 1H, NCHN).

S5

11 10 9 8 7 6 5 4 3 2 1 ppm

6.

55

0

7.

29

97

.3

55

7.

37

57

.3

93

7.

53

47

.5

53

7.

55

7

1.00

10.44

1H NMR spectra of synthesised compounds

Bromodiphenylmethane 1

N.B. Residual solvent signal at 2.84

1-Butyl-1-methylpyrrolidinium bromide

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

0.

96

30

.9

82

1.

00

01

.3

86

1.

40

51

.4

23

1.

44

21

.4

61

1.

47

91

.8

44

1.

85

71

.8

64

1.

87

41

.8

85

1.

89

51

.9

05

1.

92

42

.2

80

2.

29

52

.3

04

3.

30

83

.6

77

3.

69

83

.7

19

3.

81

23

.8

16

3.

82

13

.8

28

3.

83

83

.8

45

2.95

2.04

1.99

3.85

3.00

2.03

3.87

S6

1-Butyl-3-methylimidazolium chloride

1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide 5

N.B. Residual solvent signal at 2.84

11 10 9 8 7 6 5 4 3 2 1 ppm

0.

95

91

.3

35

1.

35

31

.3

72

1.

37

71

.3

91

1.

39

61

.4

09

1.

42

81

.8

80

1.

89

41

.8

99

1.

90

41

.9

12

1.

91

81

.9

23

1.

93

11

.9

36

1.

95

5

4.

03

24

.3

25

4.

34

34

.3

61

7.

68

77

.7

41

8.

98

0

3.28

2.21

2.22

3.24

2.22

2.00

1.00

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

0.

96

00

.9

78

0.

99

71

.3

89

1.

40

71

.4

26

1.

44

41

.4

63

1.

48

21

.8

73

1.

88

61

.8

93

1.

90

31

.9

13

1.

92

31

.9

33

1.

93

41

.9

53

2.

31

02

.3

13

2.

31

72

.3

21

2.

32

42

.3

32

2.

33

62

.3

37

3.

26

23

.5

26

3.

54

63

.5

68

3.

72

13

.7

32

3.02

1.92

1.91

3.97

3.05

2.03

3.99

S7

Methyltrioctylammonium bis(trifluoromethylsulfonyl)imide 6

N.B. Residual solvent signal at 2.84

1-Butyl-3-methylimidazolium tetrafluoroborate 7

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

0.

85

30

.8

70

0.

88

71

.2

79

1.

28

41

.2

91

1.

38

91

.3

97

1.

87

31

.8

91

1.

89

51

.9

12

3.

25

23

.4

73

3.

49

53

.5

16

9.12

29.83

5.76

3.00

5.75

10 9 8 7 6 5 4 3 2 1 ppm

0.

95

11

.3

25

1.

34

31

.3

62

1.

36

71

.3

81

1.

38

61

.4

00

1.

41

81

.8

71

1.

88

51

.8

89

1.

89

41

.9

02

1.

90

81

.9

13

1.

92

11

.9

27

1.

94

5

4.

02

34

.3

16

4.

33

44

.3

53

7.

68

27

.7

38

8.

96

5

3.07

2.03

2.03

3.06

2.05

1.99

1.00

S8

1-Butyl-3-methylimidazolium hexafluorophosphate 8

N.B. Residual solvent signal at 2.84

11 10 9 8 7 6 5 4 3 2 1 ppm

0.

91

40

.9

33

0.

95

11

.3

26

1.

34

41

.3

63

1.

38

21

.4

01

1.

42

01

.8

75

1.

89

41

.9

07

1.

91

31

.9

17

1.

92

61

.9

31

1.

95

0

4.

02

84

.3

18

4.

33

64

.3

54

7.

66

57

.7

20

8.

92

4

3.00

2.00

2.00

3.00

2.01

1.99

0.89

S9

Experimental details for kinetic analyses

Kinetic analyses were carried out in solutions containing the electrophile 1 (ca. 0.01 mol L-1)

and varying concentrations of the nucleophile 2 (see Tables S2-S11 for exact amounts) in the

desired solvent mixture containing acetonitrile and one of the ionic liquids 5-8. An aliquot

(ca. 0.5 mL) from each stock solution was placed in an NMR tube. For all kinetic analyses,

there was at least a 10-fold excess of the nucleophile 2 to ensure reactions occurred under

pseudo first order conditions.

Reactions were monitored using 1H NMR spectroscopy in situ until 95% of the electrophile 1

was consumed, as determined by the signal at ca. 6.5 ppm, with the spectrometer set to the

desired temperature (47.5 °C for mole fraction dependence studies, and in the range 19.8-63.9

°C for temperature dependence studies) for the duration of the reaction. All kinetic analyses

were performed in triplicate. Competition experiments also monitored the depletion of the

signal representing the benzylic protons of electrophile 9 at ca. 4.5 ppm.

NMR spectra used for kinetic analyses were processed using MestReNova 10.1 software. For

each case, the pseudo first order rate constant (kobs) was calculated by integrating the signal at

6.5 ppm and fitting the natural logarithm of the integrations to a linear function using

Microsoft Excel 16.16.1 LINEST function.

For the reaction between bromodiphenylmethane 1 and the nucleophile 2, the reaction was

carried out across at least four concentrations of the nucleophile 2 and nucleophile

dependence plots (example shown in Figure S1) were used in order to obtain both the

unimolecular and bimolecular rate constants from the pseudo first order rate constant

according to equation 1.

kobs = k1 + k2[2] (1)

S10

Figure S1. A representative example of a nucleophile dependence plot for the reaction between

bromodiphenylmethane 1 and 3-chloropyridine 2 where k1 can be obtained from the y-intercept and k2 can be

obtained from the slope of the plot.

Where applicable, the activation enthalpy and entropy for both pathways were calculated

using the unimolecular and bimolecular Eyring equations (equations 2 and 3).8

ln ‡ ‡

(2)

ln ∆ ‡ ∆ ‡ (3)

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

0 0.1 0.2 0.3 0.4 0.5

ko

bs/

s-1

[3-chloropyridine 2] / mol L-1

S11

Mole fraction dependence plot for the bimolecular pathway

Figure S2. The dependence of the bimolecular rate constant (k2) of the reaction between

bromodiphenylmethane 1 and 3-chloropyridine 2 on the mole fraction of either [bmim][N(SO2CF3)2] 4 (),

[bmpyr][N(SO2CF3)2] 5 (), [mtoa][N(SO2CF3)2] 6 (), [bmim][BF4] 7 () or [bmim][PF6] 8 () in

acetonitrile. The data for the salt 4 is reproduced from Keaveney et al.9 Uncertainties were obtained from the

linear regression from which k2 was determined.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

0 0.2 0.4 0.6 0.8 1

k2

/ L

mo

l-1 s

-1

Mole fraction of ionic liquid

S12

Eyring plots for the unimolecular and bimolecular pathways

Figure S3. The Eyring plot from which the activation parameters were determined for the unimolecular

substitution pathway for the reaction between 1 and 2 in either acetonitrile (), [bmim][N(SO2CF3)2] 4 (),

[bmpyr][N(SO2CF3)2] 5 (), [bmim][BF4] 7 () or [bmim][PF6] 8 (), where the dotted lines represent =

0.2 and the solid lines represent the highest mole fraction possible. The data for acetonitrile and the salt 4 is

reproduced from Keaveney et al.9

Figure S4. The Eyring plot from which the activation parameters were determined for the bimolecular

substitution pathway for the reaction between 1 and 2 in either acetonitrile (), [bmpyr][N(SO2CF3)2] 5 (),

[bmim][BF4] 7 () or [bmim][PF6] 8 (), where the dotted lines represent = 0.2 and the solid lines represent

the highest mole fraction possible. The data for acetonitrile and the salt 4 is reproduced from Keaveney et al.9

-42

-41

-40

-39

-38

-37

-36

0.0029 0.003 0.0031 0.0032 0.0033 0.0034 0.0035

ln(k

1h

/k

BT

)

T-1 / K-1

-47

-46.5

-46

-45.5

-45

-44.5

-44

-43.5

-43

-42.5

0.0029 0.003 0.0031 0.0032 0.0033 0.0034 0.0035

ln(k

2h

/k

BR

T2)

T-1 / K-1

S13

Activation parameters for the bimolecular pathway

Table S1. The activation parameters determined from the Eyring plot in Figure S4 for the bimolecular

substitution pathway for the reaction between 1 and 2 in either acetonitrile or mixtures of acetonitrile and one of

the ionic liquids 5, 7 and 8 at the mole fraction specified. Uncertainties are calculated from the fit of the linear

regression. The data for the acetonitrile case is reproduced from Keaveney et al.9

Solvent H ‡ / kJ mol-1 S‡ / J K-1 mol-1

CH3CN 60.8 ± 1.6 -195 ± 5

[bmpyr][N(SO2CF3)2] 5, = 0.20 70.7 ± 5.1 -151 ± 16

[bmim][BF4] 7, = 0.20 82.4 ± 10.4 -107 ± 33

[bmim][PF6] 8, = 0.21 67.8 ± 5.1 -153 ± 16

[bmpyr][N(SO2CF3)2] 5, = 0.87 71.4 ± 0.7 -148 ± 2

[bmim][BF4] 7, = 0.79 81.5 ± 4.4 -111 ± 14

[bmim][PF6] 8, = 0.80 60.4 ± 2.6 -177 ± 8

S14

Selectivity plot for ionic liquids 5-8

Figure S5. The ratio between k1 and k2[Nu] for the reaction between 1 and 2 across various mole fractions of

either [bmim][N(SO2CF3)2] 4 (), [bmpyr][N(SO2CF3)2] 5 (), [mtoa][N(SO2CF3)2] 6 (), [bmim][BF4] 7

() or [bmim][PF6] 8 () in acetonitrile. The concentration of the nucleophile 2 was arbitrarily set to 0.127

mol L-1 so that the data can be easily interpreted (as the ratio = 1 in acetonitrile). The data for salt 4 is

reproduced from Keaveney et al.9 Uncertainties are calculated from the linear regression and compounded from

the division.

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

k1/

k2[N

u]

Mole fraction of ionic liquid

S15

Activation parameters vs Kamlet–Taft parameters plots

Figure S6. A representative example of the lack of correlation between the entropy of activation and a

combination of the Kamlet–Taft and * parameters for the reaction between bromodiphenylmethane 1 and 3-

chloropyridine 2 in each of the ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7

and [bmim][PF6] 8 at the highest mole fraction. Uncertainties are calculated from the linear regression.

Figure S7. A representative example of the lack of correlation between the entropy of activation and the

Kamlet–Taft * parameter for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in each of

the ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 at the

highest mole fraction. Uncertainties are calculated from the linear regression.

R² = 0.43

0

20

40

60

80

100

120

5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2

H

‡/

kJ

mo

l-1

0.77 + 5.37*

R² = 0.32

-250

-200

-150

-100

-50

0

50

0.94 0.96 0.98 1 1.02 1.04 1.06

S

‡/

J K

-1m

ol-1

*

S16

Natural logarithm of k1 vs individual Kamlet–Taft solvent parameters plots

Figure S8. A representative example of the lack of correlation between the natural logarithm of k1 and the

Kamlet–Taft parameter for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures

of each of the ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8

in acetonitrile at = 0.20. Uncertainties are calculated from the linear regression and transformed on calculating

the natural logarithm.

Figure S9. A representative example of the lack of correlation between the natural logarithm of k1 and the

Kamlet–Taft parameter for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures

of each of the ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8

in acetonitrile at = 0.20. Uncertainties are calculated from the linear regression and transformed on calculating

the natural logarithm.

R² = 0.67

-9.5

-9

-8.5

-8

-7.5

-7

0.2 0.3 0.4 0.5 0.6 0.7

ln(k

1)

R² = 0.17

-9.5

-9

-8.5

-8

-7.5

-7

0.1 0.15 0.2 0.25 0.3 0.35 0.4

ln(k

1)

S17

Figure S10. The relationship between the natural logarithm of k1 and the Kamlet–Taft * parameter for the

reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the ionic liquids

[bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile at = 0.05.

Uncertainties are calculated from the linear regression and transformed on calculating the natural logarithm.

Figure S11. The relationship between the natural logarithm of k1 and the Kamlet–Taft * parameter for the

reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the ionic liquids

[bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile at = 0.10.

Uncertainties are calculated from the linear regression and transformed on calculating the natural logarithm.

R² = 0.99

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

0.94 0.96 0.98 1 1.02 1.04 1.06

ln(k

1)

*

R² = 0.95

-9

-8.6

-8.2

-7.8

-7.4

0.94 0.96 0.98 1 1.02 1.04 1.06

ln(k

1)

*

S18

Figure S12. The relationship between the natural logarithm of k1 and the Kamlet–Taft * parameter for the

reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the ionic liquids

[bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile at = 0.20.

Uncertainties are calculated from the linear regression and transformed on calculating the natural logarithm.

Figure S13. The relationship between the natural logarithm of k1 and the Kamlet–Taft * parameter for the

reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in each of the ionic liquids

[bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile at = 0.50.

Uncertainties are calculated from the linear regression and transformed on calculating the natural logarithm.

R² = 0.99

-9.5

-9

-8.5

-8

-7.5

-7

0.94 0.96 0.98 1 1.02 1.04 1.06

ln(k

1)

*

R² = 0.99

-9.5

-9

-8.5

-8

-7.5

-7

0.94 0.96 0.98 1 1.02 1.04 1.06

ln(k

1)

*

S19

Figure S14. The relationship between the natural logarithm of k1 and the Kamlet–Taft * parameter for the

reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the ionic liquids

[bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile at = 0.70.

Uncertainties are calculated from the linear regression and transformed on calculating the natural logarithm.

R² = 0.97

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

0.94 0.96 0.98 1 1.02 1.04 1.06

ln(k

1)

*

S20

Kamlet–Taft multiparameter fitting plots

Figure S15. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile

at = 0.05. Uncertainties are calculated from the linear regression and transformed on calculating the natural

logarithm.

Figure S16. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile

at = 0.10. Uncertainties are calculated from the linear regression and transformed on calculating the natural

logarithm.

R² = 1.00

-9

-8.6

-8.2

-7.8

0.7 0.72 0.74 0.76 0.78 0.8 0.82

ln(k

1)

0.06 + 0.74*

R² = 0.95

-8.8

-8.4

-8

-7.6

-7.2

7.4 7.6 7.8 8 8.2 8.4 8.6

ln(k

1)

0.12 + 5.52*

S21

Figure S17. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile

at = 0.20. Uncertainties are calculated from the linear regression and transformed on calculating the natural

logarithm.

Figure S18. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile

at = 0.30. Uncertainties are calculated from the linear regression and transformed on calculating the natural

logarithm.

R² = 0.99

-10

-9

-8

-7

-6

8.8 9 9.2 9.4 9.6 9.8 10 10.2

ln(k

1)

0.37 + 9.31*

R² = 0.99

-10

-9

-8

-7

-6

9.8 10 10.2 10.4 10.6 10.8 11 11.2

ln(k

1)

0.14 + 10.4*

S22

Figure S19. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [bmim][BF4] 7 and [bmim][PF6] 8 in acetonitrile

at = 0.70. Uncertainties are calculated from the linear regression and transformed on calculating the natural

logarithm.

R² = 1.00

-11

-10

-9

-8

-7

8.3 8.8 9.3 9.8

ln(k

1)

1.44 + 1.26 + 7.98*

S23

Figure S20. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [mtoa][N(SO2CF3)2] 6, [bmim][BF4] 7 and

[bmim][PF6] 8 in acetonitrile at = 0.20. Uncertainties are calculated from the linear regression and

transformed on calculating the natural logarithm.

Figure S21. The relationship between the natural logarithm of k1 and a combination of the , and *

parameters for the reaction between bromodiphenylmethane 1 and 3-chloropyridine 2 in mixtures of each of the

ionic liquids [bmim][N(SO2CF3)2] 4, [bmpyr][N(SO2CF3)2] 5, [mtoa][N(SO2CF3)2] 6, [bmim][BF4] 7 and

[bmim][PF6] 8 in acetonitrile at = 0.70. Uncertainties are calculated from the linear regression and

transformed on calculating the natural logarithm.

R² = 0.98

-13

-12

-11

-10

-9

-8

-7

4.4 4.6 4.8 5 5.2 5.4 5.6

ln(k

1)

0.68 + 4.72*

R² = 0.96

-11

-10

-9

-8

-7

3.6 3.8 4 4.2 4.4 4.6

ln(k

1)

0.75 + 3.87*

S24

Rate data for the mole fraction dependence studies

Table S2. The mole fraction of [bmpyr][N(SO2CF3)2] 5, the exact amounts of ionic liquid 5, acetonitrile, the

bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first order rate constant

(kobs) and the resultant k1 and k2 for each stock solution.

χ5 Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1 k1 / 10-4 s-1

k2 / 10-4 L mol-1 s-1

0.05 0.616 1.147 0.0045 0.107 0.473 3.02 1.47 (0.12) 3.44 (0.31) 3.19

0.626

1.150

0.0040

0.088

0.388 3.05 2.78

2.80

0.637

1.150

0.0046

0.064

0.283 2.75 2.34

0.687 0.653

1.150 1.180

0.0048 0.0044

0.069 0.046

0.303 0.203

2.57 2.77 2.13

2.14 2.10

0.11 1.013 0.902 0.0038 0.105 0.461 3.77 1.93 (0.15) 4.03 (0.44) 3.96

1.012

0.913

0.0038

0.089

0.391 4.04 3.35

3.24

1.017

0.906

0.0043

0.064

0.281 3.33 3.16

3.11

1.110

0.901

0.0031

0.045

0.196 3.10 2.66

1.121

0.902

0.0035

0.044

0.192 2.69 2.83

0.20 1.553 0.602 0.0040 0.106 0.468 4.22 1.57 (0.26) 6.68 (0.75) 4.75

1.550

0.610

0.0038

0.085

0.374 4.75 4.03

4.62

1.452

0.645

0.0041

0.068

0.299 4.18 3.36

3.79

1.534

0.630

0.0038

0.045

0.199 3.53 2.80

2.83 2.87

S25

0.30 1.814 0.402 0.0049 0.105 0.464 4.70 1.43 (0.16) 7.28 (0.48) 4.83

1.840

0.415

0.0042

0.085

0.375 4.83 3.89

4.59

1.900

0.420

0.0040

0.060

0.264 4.10 3.30

3.34

1.900

0.440

0.0040

0.045

0.198 3.39 2.88

2.90 2.82

0.48 1.814 0.402 0.0049 0.105 0.501 4.59 1.13 (0.28) 7.28 (0.79) 4.68

1.840

0.415

0.0042

0.085

0.371 4.68 3.70

4.26

1.900

0.420

0.0040

0.060

0.300 4.28 3.07

3.67

1.900

0.440

0.0040

0.045

0.203 3.09 2.30

2.42 2.85

0.70 2.425 0.070 0.0043 0.106 0.469 4.29 0.41 (0.25) 9.38 (0.71) 4.80

2.430

0.080

0.0037

0.097

0.429 4.67 5.01

4.56

2.491

0.081

0.0040

0.077

0.338 4.75 3.48

3.46

2.447

0.081

0.0043

0.067

0.295 3.27 3.15

3.03

2.499

0.092

0.0041

0.045

0.198 3.35 2.37

2.24 2.25 0.87 6.646 0.000 0.0098 0.257 0.453 3.78 0.70 (0.19) 7.48 (0.61)

3.77

6.692

0.022

0.0100

0.193

0.339 4.49 3.55

3.36

6.701

0.052

0.0096

0.132

0.232 3.12 2.77

S26

2.37

6.727

0.075

0.0106

0.072

0.127 2.25 1.63

1.48 1.68

S27

Table S3. The mole fraction of [mtoa][N(SO2CF3)2] 6, the exact amounts of ionic liquid 6, acetonitrile, the

bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first order rate constant

(kobs) and the resultant k1 and k2 for each stock solution.

χ6

Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromide

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1 k1 / 10-4 s-1 k2 / 10-4 L

mol-1 s-1

0.01 0.199 1.360 0.0035 0.103 0.454 1.23 0.48 (0.06) 1.71 (0.18) 1.35

0.247

1.360

0.0039

0.085

0.372 1.21 1.15

1.18

0.229

1.360

0.0036

0.066

0.288 1.03 0.93

1.00

0.212

1.370

0.0033

0.045

0.197 0.93 0.82

0.79 0.89

0.03 0.507 1.200 0.0049 0.105 0.464 1.36 0.77 (0.05) 1.39 (0.13) 1.47

0.394

1.210

0.0048

0.085

0.373 1.41 1.30

0.492

1.210

0.0041

0.063

0.277

1.28 1.14

1.12

0.470

1.230

0.0049

0.048

0.210 1.17 1.02

1.02 1.15

0.06 0.841 0.901 0.0039 0.105 0.464 1.59 0.76 (0.08) 1.53 (0.26) 1.41

0.797

0.907

0.0038

0.085

0.372 1.43 1.32

1.22

0.859

0.902

0.0036

0.065

0.284 1.26 1.44

1.20 1.34 1.10

0.861

0.906

0.0048

0.046

0.203 1.09 0.91

0.830

0.951

0.0033

0.034

0.151 1.00 1.06

0.98

S28

1.00 0.11 1.162 0.650 0.0036 0.106 0.466 1.37 0.66 (0.07) 1.50 (0.21)

1.37

1.200

0.650

0.0038

0.086

0.377 1.34 1.28

1.22

1.187

0.651

0.0036

0.066

0.291 1.19 0.99

1.14

1.193

0.649

0.0045

0.048

0.213 1.01 0.94

0.86 1.21 1.05 1.16

1.160

0.673

0.0045

0.026

0.112 0.90 0.75

0.81

0.19 1.547 0.400 0.0049 0.107 0.470 1.27 0.46 (0.10) 1.33 (0.28) 1.03

1.471 1.546

0.401 0.401

0.0045 0.0047

0.088 0.089

0.388 0.394

1.15 0.98 0.87

1.500

0.401

0.0042

0.065

0.285 0.82 0.92

0.76

1.506

0.420

0.004

0.050

0.198 0.89 0.74

0.78 0.71

0.3 1.778 0.220 0.0038 0.104 0.459 1.33 0.42 (0.02) 1.70 (0.44) 1.37

1.730

0.233

0.0042

0.087

0.383 0.97 1.15

0.99

1.731

0.244

0.0042

0.067

0.296 0.87 0.95

0.92

1.749

0.256

0.0038

0.044

0.195 1.04 0.74

0.72

0.39 1.806 0.148 0.0045 0.110 0.485 1.18 0.32 (0.04) 1.87 (0.11) 1.27

1.891

0.159

0.0038

0.083

0.366 1.28 0.99

1.03

S29

1.839

0.170

0.0039

0.064

0.283

0.92 0.85

0.87

1.849

0.173

0.0039

0.045

0.196 0.85 0.69

0.70 0.70

0.49 1.906 0.092 0.004 0.105 0.461 1.10 0.22 (0.08) 1.97 (0.24) 1.14

1.871

0.103

0.0036

0.087

0.385 1.14 1.11

1.04

1.900

0.111

0.0041

0.069

0.303 0.86 0.70

0.85

1.929

0.120

0.0042

0.045

0.196 0.71 0.66

0.62 0.61

0.69 1.986 0.021 0.0039 0.107 0.470 1.18 0.11 (0.05) 2.27 (0.15) 1.21

2.028

0.030

0.0035

0.087

0.384 1.10 1.03

1.02

2.037

0.035

0.0048

0.064

0.283 1.00 0.78

0.71

2.037

0.041

0.004

0.043

0.191 0.78 0.42

0.39

2.000

0.050

0.0044

0.024

0.107 0.47 0.43

0.37 0.45

S30

Table S4. The mole fraction of [bmim][BF4] 7, the exact amounts of ionic liquid 7, acetonitrile, the bromide 1

and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first order rate constant (kobs) and

the resultant k1 and k2 for each stock solution.

7

Mass ionic liquid

/ g

Mass acetonitrile

/ g

Mass bromide

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1 k1 / 10-4 s-1 k2 / 10-4 L

mol-1 s-1

0.05 0.361 1.254 0.0041 0.106 0.468 4.94 3.36 (0.44) 5.56 (1.37) 6.45

0.370

1.263

0.0037

0.079

0.348 6.76 5.42

5.80

0.373

1.287

0.0040

0.051

0.225 4.72 4.47

4.42

0.384

1.281

0.0039

0.029

0.128 4.24 4.38

3.53 4.83

0.11 0.681 1.049 0.0048 0.104 0.458 9.63 4.79 (0.61) 9.33 (1.96) 9.53

0.684

1.067

0.0038

0.076

0.335 9.29 6.45

6.75

0.681

1.077

0.0039

0.051

0.225 8.98 6.42

7.08

0.725

1.078

0.0047

0.032

0.139 6.23 6.45

6.69 6.45

0.20 1.094 0.801 0.0038 0.101 0.445 9.65 6.02 (0.95) 13.2 (3.07) 13.10

1.041

0.802

0.0045

0.075

0.328 12.50 9.08

10.10

1.104

0.825

0.0034

0.049

0.218 11.50 9.66

1.110

0.833

0.0036

0.029

0.129 1.00 6.89

6.68 8.33

0.29 1.334 0.638 0.0046 0.102 0.450 12.80 8.04 (1.46) 14.3 (4.73) 16.30 17.30

S31

1.398 0.622 0.0033 0.076 0.334 9.61 12.60

1.377

0.636

0.0031

0.050

0.219 11.60 12.20

10.70

1.402

0.640

0.0035

0.031

0.138 10.40 8.45

11.00 12.50

0.42 1.781 0.420 0.0041 0.106 0.467 12.90 7.50 (0.74) 12.8 (2.60) 14.00

1.690

0.430

0.0046

0.074

0.327 12.30 9.97

13.80

1.695

0.442

0.0038

0.050

0.221 12.90 11.20

8.92

1.715

0.449

0.0040

0.028

0.124 11.60 11.10

9.78

1.713

0.452

0.0043

0.023

0.102 7.48 8.17

8.10 7.93

0.49 1.813 0.323 0.0034 0.103 0.455 14.90 4.91 (1.21) 15.0 (3.88) 9.67

1.823

0.334

0.0039

0.076

0.336 11.90 8.32

9.41

1.803

0.367

0.0036

0.050

0.222 8.81 8.51

10.90

1.835

0.351

0.0038

0.030

0.131 8.00 5.88

7.28 6.70

0.69 2.113 0.143 0.0046 0.108 0.473 9.44 3.85 (0.83) 13.8 (2.55) 10.50

2.105

0.152

0.0043

0.077

0.338 10.20 10.30

8.09

2.134

0.164

0.0037

0.050

0.221 7.94 9.08

2.142

0.171

0.0040

0.029

0.129 7.06 5.43

4.39

S32

5.09 0.79 5.499 0.152 0.0114 0.263 0.463 10.40 2.56 (0.36) 16.2 (1.14)

10.40

5.468

0.214

0.0097

0.199

0.350 9.96 8.67

7.86

5.513

0.237

0.0098

0.129

0.227 7.30 6.96

6.39

5.541

0.260

0.0099

0.075

0.131 5.94 4.95

4.22 4.96

S33

Table S5. The mole fraction of [bmim][PF6] 8, the exact amounts of ionic liquid 8, acetonitrile, the bromide 1

and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first order rate constant (kobs) and

the resultant k1 and k2 for each stock solution.

8

Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1 k1 / 10-4 s-1 k2 / 10-4 L

mol-1 s-1

0.05 0.343 1.203 0.0032 0.107 0.469 5.38 2.59 (0.50) 7.39 (1.57) 5.27

0.560

1.199

0.0036

0.081

0.356 6.00 5.97

6.02

0.542

1.225

0.0031

0.048

0.213 5.29 4.66

4.64

0.413

1.313

0.0033

0.028

0.133 5.11 2.94

2.88 2.91

0.11 0.842 1.005 0.0047 0.103 0.454 8.20 4.65 (0.61) 9.50 (1.80) 8.65

0.966

1.000

0.0037

0.084

0.369 8.41 9.45

9.05

0.844

1.054

0.0042

0.062

0.274 8.42 7.44

7.07

0.823

1.051

0.0043

0.043

0.190 7.12 6.09

6.21 6.35

0.21 1.376 0.731 0.0042 0.108 0.477 14.80 5.41 (0.59) 16.4 (1.85) 13.80

1.341

0.739

0.0048

0.075

0.330 12.30 10.10

10.10

1.386

0.749

0.0041

0.050

0.222 9.88 8.65

8.67

1.355

0.774

0.0054

0.029

0.127 9.93 7.79

7.84 7.73

0.30 1.680 0.569 0.0033 0.101 0.443 12.00 6.96 (0.66) 12.4 (2.15) 12.30

S34

1.643

0.584

0.0032

0.076

0.336

12.80 10.80

10.90

1.711

0.573

0.0037

0.048

0.212 11.50 9.28

9.53

1.704

0.577

0.0040

0.033

0.145 12.00 8.06

8.41 8.34

0.40 1.932 0.399 0.0031 0.100 0.439 14.80 5.09 (0.56) 16.7 (1.81) 13.80

1.958

0.399

0.0046

0.079

0.349 12.30 10.10

10.10

1.934

0.441

0.0042

0.051

0.223 9.88 8.65

8.67

1.939

0.447

0.0047

0.033

0.143 9.93 7.79

7.84 7.73

0.51 2.129 0.289 0.0042 0.099 0.434 12.70 3.79 (0.56) 19.3 (1.81) 13.00

2.155

0.292

0.0044

0.081

0.355 12.70 9.71

10.30

2.149

0.301

0.0049

0.050

0.219 8.98 8.39

8.07

2.154

0.313

0.0037

0.030

0.130 8.53 6.23

6.20 6.56

0.72 2.483 0.109 0.0034 0.098 0.433 9.05 1.97 (0.47) 18.8 (1.59) 9.56

2.435

0.122

0.0037

0.080

0.352 10.70 9.19

9.43

2.456

0.135

0.0033

0.050

0.220 8.07 6.20

6.08

2.483

0.130

0.0032

0.031

0.135 6.85 4.33

3.99 4.28

S35

0.80 6.274 0.140 0.0103 0.261 0.460 9.83 2.34 (0.67) 14.7 (2.09) 8.95

6.295

0.171

0.0101

0.203

0.358

9.20 8.08

6.90

6.325

0.199

0.0102

0.131

0.231 6.50 7.71

5.71

6.332

0.231

0.0100

0.076

0.135 4.51 4.13

4.58 4.14

S36

Rate data for temperature dependence studies

Table S6. The exact temperature, amount of [bmpyr][N(SO2CF3)2] 5 at a mole fraction of 0.20, the exact

amounts of acetonitrile, the bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed

pseudo first order rate constant (kobs) and the resultant k1 and k2.

Temp / °C

Mass ionic

liquid / g

Mass acetonitrile /

g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1

k1 / 10-4 s-1

k2 / 10-4 L mol-1

s-1

38.1 3.981

1.499 0.0105 0.258 0.455 2.28

0.67 (0.07)

3.25 (0.23)

2.25

3.972

1.553

0.0104

0.189

0.333 2.06 1.68

1.64

4.020

1.551

0.0104

0.130

0.229 1.69 1.36

1.50

4.033

1.596

0.0106

0.073

0.129 1.38 1.01

1.22

1.12

47.5 3.981

1.499 0.0105 0.258 0.455 4.29

2.01 (0.19)

6.18 (0.62)

4.86

3.972

1.553

0.0104

0.189

0.333 4.95 4.32

4.00

4.020

1.551

0.0104

0.130

0.229 4.47 3.24

3.35

4.033

1.596

0.0106

0.073

0.129 3.70 2.73

2.67 2.80

56.8 3.981

1.499 0.0105 0.258 0.455 10.20

4.56 (0.72)

16.5 (2.31)

12.10

3.972

1.553

0.0104

0.189

0.333 13.30 10.10

10.10

4.020

1.551

0.0104

0.130

0.229 11.80 7.34

8.07 8.09

S37

4.033 1.596 0.0106 0.073 0.129 6.58 6.71 7.21

64.9 3.981

1.499 0.0105 0.258 0.455 24.10

10.1 (1.26)

31.7 (4.06)

26.30

3.972

1.553

0.0104

0.189

0.333 24.80 21.60

17.40

4.020

1.551

0.0104

0.130

0.229 18.50 19.30

19.40

4.033

1.596

0.0106

0.073

0.129 17.30 14.30

13.00 14.30

S38

Table S7. The exact temperature, amount of [bmpyr][N(SO2CF3)2] 5 at a mole fraction of 0.87, the exact

amounts of acetonitrile, the bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed

pseudo first order rate constant (kobs) and the resultant k1 and k2.

Temp / °C

Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1

k1 / 10-4 s-1

k2 / 10-4 L mol-1

s-1

38.1 6.646

0.000 0.0098 0.257 0.453 1.65

0.34 (0.14)

3.22 (0.46)

1.65

6.692

0.023 0.0103

0.193

0.339

1.71 1.53

1.36

6.701

0.052

0.0096

0.132

0.232 1.88 1.20

0.93

6.727

0.075

0.0106

0.072

0.127 1.28 0.62

0.61

0.73

47.5 6.646

0.000 0.0098 0.257 0.453 3.78

0.70 (0.19)

7.48 (0.61)

3.77

6.692

0.023 0.0103

0.193

0.339

4.49 3.55

3.36

6.701

0.052

0.0096

0.132

0.232 3.12 2.77

2.37

6.727

0.075

0.0106

0.072

0.127 2.25 1.63

1.48 1.68

56.8 6.646

0.000 0.0098 0.257 0.453 8.87

1.56 (0.34)

17.0 (1.10)

9.86

6.692

0.023 0.0103

0.193

0.339

8.59 8.16

7.32

6.701

0.052

0.0096

0.132

0.232 7.58 5.07

5.13

6.727

0.075

0.0106

0.072

0.127 5.40 3.64

3.97 3.75

S39

64.9 6.646

0.000 0.0098 0.257 0.453 19.90

3.81 (0.33)

35.0 (1.11)

6.692

0.023

0.0103

0.193

0.339

19.40 15.30

16.20

6.701

0.052

0.0096

0.132

0.232 15.90 12.10

11.10

6.727

0.075

0.0106

0.072

0.127 12.40 8.05

8.30 8.51

S40

Table S8. The exact temperature, amount of [bmim][BF4] 7 at a mole fraction of 0.20, the exact amounts of

acetonitrile, the bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first

order rate constant (kobs) and the resultant k1 and k2.

Temp / °C

Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1

k1 / 10-4 s-

1

k2 / 10-4 L mol-1 s-1

29.5 2.663

2.004 0.0104 0.261 0.460 2.05

1.03 (0.15)

2.35 (0.49)

1.99

2.001

2.734

0.0097

0.190

0.334 2.51 1.54

1.79

2.023

2.750

0.0096

0.121

0.214 1.74 1.50

1.39

2.755

2.078

0.0112

0.075

0.132 1.72 1.11

1.50 1.54

37.5 2.663

2.004 0.0104 0.261 0.460 6.08

2.11 (0.55)

6.96 (1.69)

6.05

2.001

2.734

0.0097

0.190

0.334 4.18 5.22

4.39

2.023

2.750

0.0096

0.121

0.214 5.52 3.59

3.11

2.755

2.078

0.0112

0.075

0.132 3.26 2.58

3.12 3.29

47.5 1.094

0.801 0.0038 0.101 0.445 9.65

6.02 (0.95)

13.2 (3.07)

13.10

1.041

0.802

0.0045

0.075

0.328 12.50 9.08

10.10

1.104

0.825

0.0034

0.049

0.218 11.50 9.66

1.110

0.833

0.0036

0.029

0.129 1.00 6.89

6.68 8.33

54.5 1.064 0.803 0.1040 0.004 0.459 29.30 10.3 39.5

S41

(1.69) (5.50) 28.80

2.001

2.734

0.0097

0.190

0.334 27.20 25.20

2.023

2.750

0.0096

0.121

0.214 21.90 22.60

21.60

2.755

2.078

0.0112

0.075

0.132 14.70 16.00

14.80 14.20

S42

Table S9. The exact temperature, amount of [bmim][BF4] 7 at a mole fraction of 0.79, the exact amounts of

acetonitrile, the bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first

order rate constant (kobs) and the resultant k1 and k2.

Temp / °C

Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1

k1 / 10-4 s-

1

k2 / 10-4 L mol-1 s-1

23.1 2.185

0.070 0.0039 0.103 0.455 0.69

0.22 (0.04)

0.92 (0.17)

0.88

2.198

0.082

0.0040

0.080

0.350 0.70 0.54

0.53

2.193

0.097

0.0048

0.053

0.234 0.57 0.47

0.40

2.101

0.113

0.0039

0.030

0.134 0.44 0.36

0.41 0.26

29.8 5.499

0.152 0.0114 0.263 0.463 1.48

0.48 (0.08)

2.12 (0.24)

1.43

5.468

0.214

0.0097

0.199

0.350 1.50 1.03

5.513

0.237

0.0098

0.129

0.227 1.40 0.83

0.92

5.541

0.260

0.0099

0.075

0.131 0.98 0.84

0.78 0.74

38.0 5.499

0.152 0.0114 0.263 0.463 3.89

1.22 (0.39)

5.93 (1.22)

3.75

5.468

0.214

0.0097

0.199

0.350 3.25 3.44

4.59

5.513

0.237

0.0098

0.129

0.227 3.61 2.16

2.77

5.541

0.260

0.0099

0.075

0.131 2.26 2.20

1.87 1.69

47.5 5.499 0.152 0.0114 0.263 0.463 10.40 2.56 16.2

S43

(0.36) (1.14) 10.40

5.468

0.214

0.0097

0.199

0.350 9.96 8.67

7.86

5.513

0.237

0.0098

0.129

0.227 7.30 6.96

6.39

5.541

0.260

0.0099

0.075

0.131 5.94 4.95

4.22 4.96

54.4 5.499

0.152 0.0114 0.263 0.463 17.60

6.97 (1.05)

27.6 (3.29)

18.20

5.468

0.214

0.0097

0.199

0.350 22.10 17.50

17.80

5.513

0.237

0.0098

0.129

0.227 16.90 14.00

13.30

5.541

0.260

0.0099

0.075

0.131 11.90 11.50

10.70 9.14

S44

Table S10. The exact temperature, amount of [bmim][PF6] 8 at a mole fraction of 0.20, the exact amounts of

acetonitrile, the bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first

order rate constant (kobs) and the resultant k1 and k2.

Temp / °C

Mass ionic liquid

/ g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1

k1 / 10-4 s-1

k2 / 10-4 L mol-1 s-1

19.8 1.344

0.733 0.0037 0.100 0.442 0.75

0.23 (0.14)

1.24 (0.47)

1.19

1.343

0.741

0.0034

0.076

0.336 0.56 0.55

0.80

1.368

0.750

0.0036

0.050

0.222 0.41 0.53

0.34

1.374

0.758

0.0043

0.030

0.131 0.52 0.42

0.54 0.38

29.5 1.359

0.730 0.0037 0.099 0.437 2.38

1.03 (0.15)

2.35 (0.49)

2.62

1.344 0.705

0.745 0.375

0.0045 0.0027

0.077 0.037

0.339 0.329

2.02 2.43 1.94

1.371 1.382

0.748 0.750

0.0038 0.0036

0.050 0.050

0.219 0.222

1.57 1.64 1.23

1.357 1.275

0.771 0.772

0.0042 0.0043

0.031 0.031

0.137 0.135

1.50 0.86 1.53

1.25

37.2 1.347 1.359 0.732

0.730 0.0042 0.0037

0.106 0.099

0.468 0.437

4.16 4.50

1.76 (0.44)

5.30 (1.40)

1.348 1.344

0.741 0.745

0.0052 0.0045

0.077 0.077

0.337 0.339

3.72 3.22 2.90

1.371 1.382

0.748 0.750

0.0038 0.0036

0.050 0.050

0.219 0.222

4.34 2.34 3.54

1.275 0.716

0.772 0.378

0.0043 0.0017

0.031 0.018

0.135 0.155

3.63 2.76 2.14

2.24

S45

47.5 1.376

0.731 0.0042 0.108 0.477 14.80

5.41 (0.59)

16.4 (1.85)

13.80

1.341

0.739

0.0048

0.075

0.330 12.30 10.10

10.10

1.386

0.749

0.0041

0.050

0.222 9.88 8.65

8.67

1.355

0.774

0.0054

0.029

0.127 9.93 7.79

7.84 7.73

54.2 1.347

0.732 0.0042 0.106 0.468 19.90

6.38 (1.56)

31.8 (5.05)

1.353

0.730

0.0035

0.098

0.432

24.00 19.30

14.7

1.348

0.741

0.0052

0.077 0.337

25.1 20.90

1.344 1.371

0.745 0.748

0.0045 0.0038

0.077 0.050

0.339 0.219

16.50 14.50 13.80

1.357

0.771

0.0042

0.031

0.137 12.10 8.24

1.275 1.381

0.772 0.761

0.0043 0.0037

0.031 0.023

0.135 0.102

10.80 11.50 7.94

9.70 1.34

S46

Table S11. The exact temperature, amount of [bmim][PF6] 8 at a mole fraction of 0.79, the exact amounts of

acetonitrile, the bromide 1 and the nucleophile 2, the nucleophile 2 concentration, the observed pseudo first

order rate constant (kobs) and the resultant k1 and k2.

Temp / °C

Mass ionic

liquid / g

Mass acetonitrile

/ g

Mass bromine

1 / g

Mass pyridine

2 / g

[Nu] / mol L-1

kobs / 10-4

s-1

k1 / 10-4 s-

1

k2 / 10-4 L mol-1 s-1

29.5 6.274

0.140 0.0103 0.261 0.460 1.73

0.23 (0.11)

3.29 (0.34)

1.78

6.295

0.171

0.0101

0.203

0.358 1.75 1.26

1.17

6.325

0.199

0.0102

0.131

0.231 1.57 1.13

1.15

6.332

0.231

0.0100

0.076

0.135 1.07 0.64

0.72 0.44

38.2 6.274

0.140 0.0103 0.261 0.460 4.18

0.71 (0.31)

7.63 (0.97)

4.46

6.295

0.171

0.0101

0.203

0.358 4.16 3.98

3.14

6.325

0.199

0.0102

0.131

0.231 3.16 1.59

2.37

6.332

0.231

0.0100

0.076

0.135 3.11 1.84

1.81 1.83

47.5 6.274

0.140 0.0103 0.261 0.460 9.83

2.34 (0.67)

14.7 (2.09)

8.95

6.295

0.171

0.0101

0.203

0.358 9.20 8.08

6.90

6.325

0.199

0.0102

0.131

0.231 6.50 7.71

5.71

6.332

0.231

0.0100

0.076

0.135

4.51 4.13

4.58 4.14

S47

54.7 6.274

0.140 0.0103 0.261 0.460 17.60

7.19 (1.08)

25.0 (3.36)

18.40

6.295

0.171

0.0101

0.203

0.358 19.10 16.30

16.20

6.325

0.199

0.0102

0.131

0.231 15.30 13.60

15.60

6.332

0.231

0.0100

0.076

0.135 15.10 9.73

10.30 8.11

S48

Rate data for competition experiments

Table S12. The mole fraction of [bmpyr][N(SO2CF3)2] 5, the exact amounts of ionic liquid 5, acetonitrile, the

bromide 1, the benzoate 9, the nucleophile 2, and the observed pseudo first order rate constants (kobs) for both 1

and 9 for each stock solution.

5

Mass

ionic

liquid / g

Mass

acetonitrile

/ g

Mass

bromine

1 / g

Mass

benzoate

9 / g

Mass

pyridine

2 / g

kobs

bromide

1 /

10-4 s-1

kobs

benzoate

9 /

10-4 s-1

0.06 0.730 1.103 0.0021 0.0021 0.056 2.85 0.82

2.56 0.90

2.44 0.89

0.11 1.105 0.900 0.0023 0.0023 0.056 3.14 1.07

3.18 0.94

3.51 1.07

0.22 1.647 0.599 0.0021 0.0020 0.056 3.67 1.32

3.28 1.44

3.12 1.05

0.31 1.951 0.431 0.0022 0.0021 0.055 3.15 1.68

3.60 1.47

3.24 1.42

0.51 2.346 0.209 0.0023 0.0019 0.055 2.88 1.53

3.00 1.98

2.92 1.66

0.73 2.588 0.079 0.0024 0.0026 0.056 2.63 1.88

2.27 1.54

2.57 1.96

0.87 2.679 0.020 0.0022 0.0021 0.056 2.19 2.08

1.89 1.41

2.42 2.20

S49

References

1. B. Denegri, A. Streiter, S. Jurić, A. R. Ofial, O. Kronja and H. Mayr, Chem.- Eur. J., 2006, 12, 1648-1656.

2. V. Strehmel and V. Senkowski, J. Polym. Sci. A, 2015, 53, 2849-2859. 3. E. E. L. Tanner, R. R. Hawker, H. M. Yau, A. K. Croft and J. B. Harper, Org. Biomol.

Chem., 2013, 11, 7516-7521. 4. J. Flieger and A. Czajkowska-Żelazko, J. Sep. Sci., 2012, 35, 248-255. 5. L. Cammarata, S. G. Kazarian, P. A. Salter and T. Welton, Phys. Chem. Chem. Phys.,

2001, 3, 5192-5200. 6. H. Srour, H. Rouault, C. C. Santini and Y. Chauvin, Green Chem., 2013, 15, 1341-

1347. 7. G. Chatel, C. Monnier, N. Kardos, C. Voiron, B. Andrioletti and M. Draye, Appl. Cat.

A., 2014, 478, 157-164. 8. H. Eyring, J. Chem. Phys., 1935, 3, 107-115. 9. S. T. Keaveney, B. P. White, R. S. Haines and J. B. Harper, Org. Biomol. Chem.,

2016, 14, 2572-2580.