30
ENGINEERING MEASUREMENT: Ch-2 Yan Naing Aye November 29, 2010 1 Static Characteristics O ideal = KI + a (1) K = O max - O min I max - I min (2) a = O min - KI min (3) W ith non - linearity, O (I )= KI + a + N (I ) (4) M aximum non - linearity = ˆ N O max - O min × 100% (5) Sensitivity = K + dN (I ) dI (6) Generalized model, O (I )=(K + K M I M ) I +(a + K I I I )+ N (I ) (7) Maximum hysteresis = ˆ H O max - O min × 100% (8) Resolution = ΔI R I max - I min × 100% (9) Error band, P (O)= 1 2h if O ideal - h O O ideal + h 0 if O>O ideal + h 0 if O<O ideal - h (10) 1

engineering measurements ch2 solution

Embed Size (px)

Citation preview

ENGINEERING MEASUREMENT: Ch-2

Yan Naing Aye

November 29, 2010

1 Static Characteristics

Oideal = KI + a (1)

K =Omax −Omin

Imax − Imin

(2)

a = Omin −KImin (3)

With non− linearity, O (I) = KI + a+N (I) (4)

Maximum non− linearity =N

Omax −Omin

× 100% (5)

Sensitivity = K +dN (I)

dI(6)

Generalized model,

O (I) = (K +KMIM) I + (a+KIII) +N (I) (7)

Maximum hysteresis =H

Omax −Omin

× 100% (8)

Resolution =∆IR

Imax − Imin

× 100% (9)

Error band,

P (O) =

1

2hif Oideal − h ≤ O ≤ Oideal + h

0 if O > Oideal + h0 if O < Oideal − h

(10)

1

Figure 1: Block diagram

Normal distribution,

P (x) =1

σ√

2πe−

(x−x)2

2σ2 (11)

Single element,

Mean output, O =(K +KM IM

)I +

(a+KI II

)+N

(I)

(12)

Standard deviation, σO =

√(∂O

∂I

)2

σ2I +

(∂O

∂IM

)2

σ2IM

+

(∂O

∂II

)2

σ2II

(13)

Batch of elements,

O =(K + KM IM

)I +

(a+ KI II

)+N

(I)

(14)

σ2O =

(∂O

∂I

)2

σ2I +

(∂O

∂IM

)2

σ2IM

+

(∂O

∂II

)2

σ2II

+

(∂O

∂K

)2

σ2K

+

(∂O

∂KM

)2

σ2KM

+

(∂O

∂KI

)2

σ2KI

+

(∂O

∂a

)2

σ2a (15)

Repeatability test,

O =1

N

N∑k=1

Ok (16)

σO =

√√√√ 1

N

N∑k=1

(Ok − O

)2(17)

2

∆O =∂O

∂I∆I +

∂O

∂IM∆IM +

∂O

∂II∆II (18)

1.1 Example 1 ***

A thermocouple’s e.m.f (µV ) is represented by: E = 40T + 0.04T 2, where T C isthe junction temp. Use T = 0 and 100 for Imin and Imax. What are the

1. ideal straight line intercept and

2. the non-linearity at 50C?

#Solution

Imin = 0CImax = 100COmin = 40T + 0.04T 2 = 0µVOmax = 40T + 0.04T 2 = 40× 100 + 0.04× 1002 = 4400µV

K =Omax −Omin

Imax − Imin

=4400− 0

100− 0

= 44µV C−1

a = Omin −KImin

= 0µV

Oideal = KI + a

Eideal = 44T + 0

Eideal = 44T

E (50C) = 40T + 0.04T 2

= 40× 50 + 0.04× 502

= 2100µV

3

Eideal (50C) = 44T

= 44× 50

= 2200µV

Non-linearity,

N (50C) = E − Eideal

= 2100− 2200

= −100µV

4

2 Problems

2.1 Pr 2.1

According to wikipedia,

Melting point for zinc:419.5CBoiling point for zinc:907CMelting point for silver:961.78CBoiling point for silver:2162C

E (100C) = 645µVE (420C) = 3375µVE (838.7C) = 9149µV (calculated from answers, may be it is for silver alloy)E (T C) = a1T + a2T

2 + a3T3

After substitution,

a1 (100) + a2 (100)2 + a3 (100)3 = 645

a1 (420) + a2 (420)2 + a3 (420)3 = 3375

a1 (838.7) + a2 (838.7)2 + a3 (838.7)3 = 9149

102a1 + 104a2 + 106a3 = 645

420a1 + 1.764× 105a2 + 7.4× 107a3 = 3375

838.7a1 + 7.034× 105a2 + 5.9× 108a3 = 9149

Solve simultaneous linear equations with three unknowns: 1

a1 = 6.06µV C−1

a2 = 3.61× 10−3µV C−2

a3 = 2.59× 10−6µV C−3

1For Casio fx-991MS and similar calculators

• Enter equation mode and choose 3 unknowns : mode,mode,mode, 1, 3

• Input data (key in number) and then press =

• As soon as you input a value for the final coefficient, one of the solutions appears.

• Press down arrow key to view other solutions.

• Pressing AC key at this point returns to the coefficient input screen.

5

2.2 Pr 2.2

R (θ) = αeβθ

R (273.15) = 9kΩ

R (373.15) = 0.5kΩ

αeβ

273.15 = 9000

αeβ

373.15 = 500

e(β

273.15− β

373.15) =9000

500

β

(1

273.15− 1

373

)= ln (18)

β = 2946K

R (θ) = αeβθ

R (273.15) = 9kΩ

αe2946

273.15 = 9000Ω

α = 0.1863Ω

R (θ) = αeβθ

R (25 + 273.15) = 0.1863e2946

298.15

R (298.15) = 3643Ω

= 3.64kΩ

2.3 Pr 2.3 ***

(a)

Imin = 0cmImax = 3cmOmin = 0mVOmax = 58mV

6

K =Omax −Omin

Imax − Imin

=58− 0

3− 0

=58

3mV cm−1

a = Omin −KImin

= 0mV

Oideal = KI + a

=58

3I

Table 1: Ideal output and non-linearity

I 0.0 0.5 1.0 1.5 2.0 2.5 3.0O 0.0 16.5 32.0 44.0 51.5 55.5 58.0

Oideal 0.0 9.66 19.33 29.0 38.6 48.33 58.0N(I) 0.0 6.84 12.67 15.0 12.9 7.17 0.0

From table, N = 15mV

Maximum non-linearity as a % of f.s.d =N

Omax −Omin× 100%

=15

58− 0× 100%

= 25.9%

(b) To find KI , set I = Imin = 0When Vs changes from 0.5V to 0.6V , output did not change.∆II = 0.6− 0.5 = 0.1V∆O = 0

KI =∆O

∆II= 0

7

To find KM , calculate modified K for new IM .At Vs = 0.6V ,

Knew =Omax −Omin

Imax − Imin

=74− 0

3− 0

=74

3mV cm−1

IM = 0.6− 0.5 = 0.1V ,

Knew = K +KMIM74

3=

58

3+KM × 0.1

KM = 53.33mV cm−1V −1

(c)K = 58

3 = 19.33mV cm−1

2.4 Pr 2.4

Table 2: Liquid level sensor calibration results and hysteresis

Level h (cm) 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0O ↑ (V ) 0.00 0.35 1.42 2.40 3.43 4.35 5.61 6.50 7.77 8.85 10.2O ↓ (V ) 0.14 1.25 2.32 3.55 4.43 5.70 6.78 7.80 8.87 9.65 10.2

Hysteresis (V ) 0.14 0.90 0.90 1.15 1.00 1.35 1.17 1.30 1.10 0.80 0.00

Maximum hysteresis as a % of f.s.d =H

Omax −Omin× 100%

=1.35

10.2− 0× 100%

= 13.245%

8

2.5 Pr 2.5 ***

Table 3: Probability density for each interval

Interval N P = N35

p(O) = P0.5

207.0− 207.4 1 1/35 0.0571207.5− 207.9 3 3/35 0.1714208.0− 208.4 9 9/35 0.5143208.5− 208.9 12 12/35 0.6857209.0− 209.4 7 7/35 0.4000209.5− 209.9 2 2/35 0.1143210.0− 210.4 1 1/35 0.0571

(a)

Figure 2: Histogram of probability density values

9

(b) 2

Mean, O =1

N

N∑k=1

Ok

= 208.64Hz

Standard deviation, σO =

√√√√ 1

N

N∑k=1

(Ok − O

)2= 0.621Hz

(c)

Figure 3: Normal probability density function with O = 208.64 and σ = 0.621

2For Casio fx-991MS and similar calculators

• Enter SD mode to perform statistical calculations : mode,mode, 1

• Clear statistical memory : shift, CLR(mode), 1(Scl),=

• Input data (key in number) and then press DT (M+)

• To get mean: shift, S − V AR(2), 1(x)

• To get standard deviation: shift, S − V AR(2), 2(xσn)

• Precaution : DT,DT inputs the same data twice

10

2.6 Pr 2.6

RT = R0

(1 + αT + βT 2

)At 0C, R0 = 100Ω

At 100C,

RT = R0

(1 + αT + βT 2

)138.5 = 100

(1 + α (100) + β (100)2

)100α+ 104β = 0.385

At 419.6C,

RT = R0

(1 + αT + βT 2

)253.7 = 100

(1 + α (419.6) + β (419.6)2

)419.6α+ 1.76× 105β = 1.537

Solve simultaneous linear equations with two unknowns: 3

α = 3.9× 10−3C−1

β = −5.85× 10−7C−2

RT = 100(1 + 3.9× 10−3T − 5.85× 10−7T 2

)

3For Casio fx-991MS and similar calculators

• Enter equation mode and choose 2 unknowns : mode,mode,mode, 1, 2

• Input data (key in number) and then press =

• As soon as you input a value for the final coefficient, one of the solutions appears.

• Press down arrow key to view other solutions.

• Pressing AC key at this point returns to the coefficient input screen.

11

2.7 Pr 2.7 ***

(a)

K =Omax −Omin

Imax − Imin

=20− 4

10− 0

= 1.6mAbarg−1

a = Omin −KImin

= 4− 0

= 4mA

Output at I = 0 changes only when temperature changes. Therefore, temper-ature is interfering input.

To find KI , set I = Imin = 0∆II = 25− 20 = 5C∆O = 6− 4 = 2mA

KI =∆O

∆II

=2

5= 0.4mAC−1

To find KM , calculate modified K for new IM .At Vs = 12V ,

Knew =Omax −Omin

Imax − Imin

=28− 4

10− 0

= 2.4mAbarg−1

Vs is modifying input, IM = 12− 10 = 2V ,

Knew = K +KMIM

2.4 = 1.6 +KM × 2

KM = 0.4mAbarg−1V −1

12

(b) Generalized model,

O (I) = (K +KMIM ) I + (a+KIII)

= (1.6 + 0.4IM ) I + (4 + 0.4II)

For I = 5barg,IM = 12− 10 = 2V , and II = 25− 20 = 5C,

O (I) = (1.6 + 0.4IM ) I + (4 + 0.4II)

= (1.6 + 0.4× 2) 5 + (4 + 0.4× 5)

= 18mA

2.8 Pr 2.8

Omin = 1VOmax = 5VImin = 0NImax = 2× 105N

K =Omax −Omin

Imax − Imin

=5− 1

2× 105

= 2× 10−5V N−1

a = Omin −KImin

= 1− 0

= 1V

O = KI + a

= 2× 10−5I + 1V

2.9 Pr 2.9

Omin = 4mAOmax = 20mAImin = 0PaImax = 2× 104Pa

13

K =Omax −Omin

Imax − Imin

=20− 4

2× 104

= 8× 10−4mAPa−1

a = Omin −KImin

= 4− 0

= 4mA

O = KI + a

= 8× 10−4I + 4 mA

2.10 Pr 2.10

Omin = 0VOmax = 5VImin = 0barImax = 10barO (4) = 2.2V

K =Omax −Omin

Imax − Imin

=5− 0

10− 0

= 0.5V bar−1

a = Omin −KImin

= 0− 0

= 0V

Oideal = KI + a

= 0.5I

Oideal (4) = o.5× 4

= 2V

14

Non-linearity = Omeasured −Oideal

= 2.2− 2

= 0.2V

Non-linearity as a % of f.s.d =N

Omax −Omin× 100%

=0.2

5− 0

= 4%

2.11 Pr 2.11

Omin = 0mVOmax = 20mVImin = 0CImax = 400CO (100) = 4.5mV

K =Omax −Omin

Imax − Imin

=20− 0

400− 0

= 0.05mV C−1

a = Omin −KImin

= 0− 0

= 0mV

Oideal = KI + a

= 0.05I

Oideal (100) = o.05× 100

= 5mV

15

Non-linearity = Omeasured −Oideal

= 4.5− 5

= −0.5mV

Non-linearity as a % of f.s.d =N

Omax −Omin× 100%

=−0.5

20− 0

= −2.5%

2.12 Pr 2.12

K =Omax −Omin

Imax − Imin

=27388− 0

500− 0

= 54.776µV C−1

a = Omin −KImin

= 0− 0

= 0µV

(a)

Oideal = KI + a

= 54.776I

(b) At 100C,

Oideal (100) = 54.776× 100

= 5477.6µV

Non-linearity = Omeasured −Oideal

= 5268− 5477.6

= −209.6µV

16

Non-linearity as a % of f.s.d =N

Omax −Omin× 100%

=−209.6

27388− 0

= −0.77%

At 300C,

Oideal (300) = 54.776× 300

= 16432.8µV

Non-linearity = Omeasured −Oideal

= 16325− 16432.8

= −107.8µV

Non-linearity as a % of f.s.d =N

Omax −Omin× 100%

=−107.8

27388− 0

= −0.4%

2.13 Pr 2.13

At standard temperature of 20C,

K =Omax −Omin

Imax − Imin

=5− 0

104 − 0

= 5× 10−4V N−1

a = Omin −KImin

= 0− 0

= 0V

To find KI , set I = Imin = 0. When ∆II = 30− 20 = 10C, ∆O = 0V .

KI =∆O

∆II= 0

17

To find KM , calculate modified K for IM = 30− 20 = 10C. At temperatureof 30C,

Knew =Omax −Omin

Imax − Imin

=5.5− 0

104 − 0

= 5.5× 10−4V N−1

Knew = K +KMIM

5.5× 10−4 − 5× 10−4 = KM × 10

KM = 5× 10−6V N−1C−1

2.14 Pr 2.14

At standard temperature of 20C,

K =Omax −Omin

Imax − Imin

=5− 1

∆I

=4

∆I

To find KI , set I = Imin. When ∆II = 30−20 = 10C, ∆O = 1.2−1 = 0.2V .

KI =∆O

∆II

=0.2

10= 0.02V C−1

To find KM , calculate modified K for IM = 30− 20 = 10C. At temperatureof 30C,

Knew =Omax −Omin

Imax − Imin

=5.2− 1.2

∆I

=4

∆I

Knew = K +KMIM4

∆I− 4

∆I= KM × 10

KM = 0

18

2.15 Pr 2.15

At standard temperature of 20C,

K =Omax −Omin

Imax − Imin

=20− 4

104 − 0

= 1.6× 10−3mAPa−1

To find KI , set I = Imin. When ∆II = 30−20 = 10C, ∆O = 4.2−4 = 0.2mA.

KI =∆O

∆II

=0.2

10= 0.02mAC−1

To find KM , calculate modified K for IM = 30− 20 = 10C. At temperatureof 30C,

Knew =Omax −Omin

Imax − Imin

=20.8− 4.2

104 − 0

= 1.66× 10−3mAPa−1

Knew = K +KMIM

1.66× 10−3 − 1.6× 10−3 = KM × 10

KM = 6× 10−6mAPa−1C−1

2.16 Pr 2.16

Input range= 0 to 5V

(a) 8 bit binaryNumber of levels= 28 = 256Range= 0 to 255

Resolution =5− 0

255= 0.0196V

19

Resolution as a % of f.s.d =0.0196

5× 100%

= 0.392%

(b) 16 bit binaryNumber of levels= 216 = 65536Range= 0 to 65535

Resolution =5− 0

65535= 76.3µV

Resolution as a % of f.s.d =76.3× 10−6

5× 100%

= 0.00153%

2.17 Pr 2.17

Output range = 0 to 10VO(3) ↓=3.05VO(3) ↑=2.95V

Hysteresis = 3.05− 2.95

= 0.1V

Hysteresis as a % of f.s.d =H

Omax −Omin× 100%

=0.1

10− 0× 100%

= 1%

20

3 Old Questions

3.1 2009-3

(a)

At standard temperature, T = 20C Imin = 0Omin =100Imax = 10−5

Omax = 101

K =Omax −Omin

Imax − Imin

=101− 100

10−5 − 0

= 105Ω

a = Omin −KImin

= 100− 0

= 100Ω

Oideal = KI + a

= 105I + 100

To find KI , set I = Imin = 0When T changes from 20C to 30C, output did not change.∆II = 30− 20 = 10C∆O = 100− 100 = 0

KI =∆O

∆II= 0ΩC−1

To find KM , calculate modified K for new IM .At T = 30C,

Knew =Omax −Omin

Imax − Imin

=102− 100

10−5 − 0

= 2× 105Ω

21

IM = 30− 20 = 10C,

Knew = K +KMIM

2× 105 = 105 +KM × 10

KM = 104ΩC−1

Since characteristics are linear, N(I) = 0

O = KI + a+N(I) +KMIMI +KIII

= 105I + 100 + 0 + 104IMI + 0

= 105I + 104IMI + 100

For input strain, I = 5× 10−6 at T = 25CIM = 25− 20 = 5C

O(5× 10−6

)= 105I + 104IMI + 100

= 105 × 5× 10−6 + 104 × 5× 5× 10−6 + 100

= 100.75Ω

(b)

Figure 4: Characteristics of a thermocouple

• T1 is the input temperature to be measured.

• Sensitivity K is 52.17.

• Non-linearity is −13.43() + . . .

22

• Interfering input is T2C reference temperature.

• The interfering coupling constant, KI , is −38.74

• The output is e.m.f , E in microvolts.

• All the T junctions add the two inputs entering the junction to produce anoutput.

3.2 2008-5

At standard supply voltage, Vs = 1VImin = 0cmImax = 10cmy = x2

Omin = I2min

= 0mV

Omax = I2max

= 100mV

(a)

K =Omax −Omin

Imax − Imin

=100− 0

10− 0

= 10mV cm−1

a = Omin −KImin

= 0− 0

= 0mV

Oideal = KI + a

= 10I

Oideal (5) = 10× 5

= 50mV

23

O = I2

O (5) = 52

= 25mV

Non-linearity at 5cm, N(5) = O(5)−Oideal(5) = 25− 50 = −25mV

Non-linearity as a % of f.s.d =N

Omax −Omin× 100%

=−25

100− 0× 100%

= −25%

(b) To find KI , set I = Imin = 0At Vs = 1.1V ,Omin = 1.1 × 02 = 0mV When Vs changes from 1V to 1.1V ,

output did not change.∆II = 1.1− 1 = 0.1V∆O = 0− 0 = 0

KI =∆O

∆II= 0mV V −1

To find KM , calculate modified K for new IM .At Vs = 1.1V ,Omax = 1.1I2

max = 1.1× 100 = 110mV

Knew =Omax −Omin

Imax − Imin

=110− 0

10− 0

= 11mV cm−1

IM = 1.1− 1 = 0.1V ,

Knew = K +KMIM

11 = 10 +KM × 0.1

KM = 10mV cm−1V −1

24

3.3 2007-1-e ***

Table 4: Probability density for each interval

Interval N P = N5

p(O) = P1

206.0− 206.9 0 0 0207.0− 207.9 1 0.2 0.2208.0− 208.9 3 0.6 0.6209.0− 209.9 12 0.2 0.2

3.4 2007-3-a

At standard condition, T = 15C and Vs = 8V ,

K = 1.6V cm−1

a = 4V

At T = 15C and Vs = 10V , To find KI , set I = Imin = 0At Vs = 10V ,Omin = 1.6 × 0 + 4 = 4V When Vs changes from 8V to 10V ,

output did not change.∆II = 10− 8 = 2V∆O = 0− 0 = 0

KI =∆O

∆II= 0 V cm−1

Knew = 2.4V cm−1

IM = 10− 8 = 2V ,

Knew = K +KMIM

2.4 = 1.6 +KM × 2

KM = o.4V cm−1V −1

Therefore, Vs is a modifying input.

25

At T = 20C and Vs = 8V , To find KI , set I = Imin = 0At T = 20C,Omin = 1.6 × 0 + 6 = 6V When T changes from 15C to 20C,

output has changed.∆II = 20.15 = 5C∆O = 6− 4 = 2V

KI =∆O

∆II

=2

5= 0.4 V C−1

Knew = 1.6V cm−1

IM = 20.15 = 5C

Knew = K +KMIM

1.6 = 1.6 +KM × 5

KM = oV cm−1C−1

Therefore, T is a interfering input.Since equations are linear equations, N(I) = 0

O = KI + a+N(I) +KMIMI +KIII

= 1.6I + 4 + 0 + o.4IMI + 0.4II

At T = 20C and Vs = 10V

I = 5cmIM = 10− 8 = 2VII = 20− 15 = 5C

O = 1.6I + 4 + 0 + o.4IMI + 0.4II

= 1.6× 5 + 4 + 0.4× 2× 5 + 0.4× 5

= 18V

26

3.5 2006-3

(a) To determine interfering input,

• Imin is entered

• Sensor is hold under standard condition

• The environmental input to be tested is changed by a known amount, ∆II

• It is an interfering input if a resulting output, ∆O, appears

• An interfering input raises the input-output characteristic line vertically onthe graph and maintains the gradient to be constant

• Then KI = ∆O∆II

(b)

At standard supply voltage, Vs = 10VImin = 0barOmin = 0mAO = ITherefore, K = 1mAbar−1 and a = 0mA

To find KI , set I = Imin = 0At Vs = 12V ,Omin = I + 1 = 1mA When Vs changes from 10V to 12V ,∆II = 12− 10 = 2V∆O = 1− 0 = 1

KI =∆O

∆II

=1

2= 0.5mA V −1

There is no modifying input, KM = 0Since equations are linear equations, N(I) = 0

O = KI + a+N(I) +KIII

= 1× I + 0 + 0 + o.5II

= I + 0.5II

When I = 5bar and II = 11− 10 = 1V

27

O = I + 0.5II

= 5 + 0.5× 1

= 5.5mA

(c) It should be assumed that s=0.

I = T1 = 0CK = 52.17N(I) = −13.43T1 + 3.319× 10−2T 2

1

KI = −38.74II = T2 = 1Ca = 0

O(I) = KI + a+N(I) +KIII

E(T1) = 52.17T1 + 0− 13.43T1 + 3.319× 10−2T 21 + 2.071× 10−4T 3

1 − 2.195× 10−6T 41 − 38.74T2

= −38.74µV

3.6 2005-4

(d) Since input-output graph is linear, N(I) = 0.At T = 20C and Vs = 10V

K =Omax −Omin

Imax − Imin

=20− 4

10− 0

= 1.6mA bar−1

a = Omin −KImin

= 4− 1.6× 0

= 4mA

At T = 20C and Vs = 12V ,When Vs changes from 10V to 12V , Omin doesn’t change. That is why, Vs is

not an interfering input.

Knew =Omax −Omin

Imax − Imin

=28− 4

10− 0

= 2.4mA bar−1

28

IM = 12− 10 = 2V

Knew = K +KMIM

2.4 = 1.6 +KM × 2

KM = 0.4mA bar−1V −1

Vs is modifying input.At T = 25C and Vs = 10V ,When T changes from 20C to 25C,∆O = 8− 4 = 4mA ∆II = 25− 20 = 5C

KI =∆O

∆II

=4

5= 0.8mA bar−1

That is why, T is an interfering input.

Knew =Omax −Omin

Imax − Imin

=24− 8

10− 0

= 1.6mA bar−1

IM = 25− 20 = 5C

Knew = K +KMIM

1.6 = 1.6 +KM × 5

KM = 0mA bar−1V −1

T is not a modifying input.(e)

I = 4barIM = 10− 10 = 0VII = 23− 20 = 3C

O = (K +KMIM )I + (a+KIII) +N(I)

= (1.6 + 0.4× 0)4 + (4 + 0.8× 3) + 0

= 12.8mA

29

3.7 2004-4-c

(c)

K =Omax −Omin

Imax − Imin

=2− 0

2− 0

= 1mA MPa−1

a = Omin−KImin

= 0− 0

= 0mA

Oideal(I) = KI + a

= I

O(I) ↑ = 0.5I2

O(1MPa) ↑ = 0.5mA

General equation when there is no interfering and modifying inputs,

O(I) ↓ = (K +KMIM )I + (a+KIII) +N(I)

= KI + a+N(I)

= I − 0.5I2 + I

= 2I − 0.5I2

O(1MPa) ↓ = 2− 0.5

= 1.5mA

Hysteresis = O(I) ↓ −O(I) ↑= 1.5− 0.5

= 1mA

30