F. Mila- Introduction au magnétisme

  • Upload
    imaxsw

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 F. Mila- Introduction au magntisme

    1/62

    Introduction au

    magntismeF. Mila

    Institute of Theoretical Physics

    Ecole Polytechnique Fdrale de Lausanne

  • 8/3/2019 F. Mila- Introduction au magntisme

    2/62

    Plan du cours

    1) Modles de base

    - Ising

    - Heisenberg2) Modle de Heisenberg et ordre magntique

    - Structures hlicodales

    - Ondes de spin

    3) Dimensionnalit rduite et fluctuations quantiques

    - Gap de spin

    - Ordre algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    3/62

    Plan du cours (suite)

    4) Modle d'Ising et frustration gomtrique

    - Entropie rsiduelle

    - Corrlations algbriques et dipolaires5) Liquides de spin quantiques

    - Frustration, modes mous et fluctuations quantiques

    - Liquide RVB et modles de dimres quantiques

    - Liquide de spin algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    4/62

    Plan du cours

    1) Modles de base

    - Ising

    - Heisenberg2) Modle de Heisenberg et ordre magntique

    - Structures hlicodales

    - Ondes de spin

    3) Dimensionnalit rduite et fluctuations quantiques

    - Gap de spin

    - Ordre algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    5/62

    Basic Models

    Heisenberg

    XXZ

    Transverse field Ising model

    Ising

    Classical Quantum

  • 8/3/2019 F. Mila- Introduction au magntisme

    6/62

    Plan du cours

    1) Modles de base

    - Ising

    - Heisenberg2) Modle de Heisenberg et ordre magntique

    - Structures hlicodales

    - Ondes de spin

    3) Dimensionnalit rduite et fluctuations quantiques

    - Gap de spin

    - Ordre algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    7/62

    Magnetic long-range order

    Classical GS: helix with pitch vector Q

  • 8/3/2019 F. Mila- Introduction au magntisme

    8/62

    Quantum spins: Large S

    Fluctuations around classical GS = bosonsHolstein-Primakoff

  • 8/3/2019 F. Mila- Introduction au magntisme

    9/62

    I - Local rotation

  • 8/3/2019 F. Mila- Introduction au magntisme

    10/62

    II Terms of order S2 and S

  • 8/3/2019 F. Mila- Introduction au magntisme

    11/62

    III Fourier transformation

  • 8/3/2019 F. Mila- Introduction au magntisme

    12/62

    IV Bogoliubov transformation

    Goldstone modes

    with ukand vksuch that

  • 8/3/2019 F. Mila- Introduction au magntisme

    13/62

    Physical consequences

    La2CuO4

    Inelastic Neutron Scattering Spin-wave dispersion

    (Coldea et al,

    PRL 2001)

    Specific heat: Cv/T

    D

  • 8/3/2019 F. Mila- Introduction au magntisme

    14/62

    Domain of validityFluctuations around

    Thermal Fluctuations (T>0)

    diverges in 1D and 2D

    No LRO at T>0 in 1D and 2D (Mermin-Wagner theorem)

  • 8/3/2019 F. Mila- Introduction au magntisme

    15/62

    Plan du cours

    1) Modles de base

    - Ising

    - Heisenberg2) Modle de Heisenberg et ordre magntique

    - Structures hlicodales

    - Ondes de spin

    3) Dimensionnalit rduite et fluctuations quantiques

    - Gap de spin

    - Ordre algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    16/62

    Quantum Fluctuations (T=0)

    diverges in 1D

    No magnetic long-range orderin 1D antiferromagnets

    Ground-state and excitations in 1D?

  • 8/3/2019 F. Mila- Introduction au magntisme

    17/62

    Spin gap

    infrared singularity

    Ifexcitations are spin waves,there must be a spin gap to produce

    an infrared (low-energy) cut-off

    First example: spin 1 chain (Haldane, 1983)(see below)

    Recent example: spin 1/2 ladders

  • 8/3/2019 F. Mila- Introduction au magntisme

    18/62

    Spin ladders

    SrCu2O3(Azuma, PRL 94)

    : spin gap

  • 8/3/2019 F. Mila- Introduction au magntisme

    19/62

    Magnetization of spin ladders

    CuHpCl Chaboussant et al, EPJB 98

  • 8/3/2019 F. Mila- Introduction au magntisme

    20/62

    Origin of spin gap in ladders

    Strong coupling

    J

    J

    JJ weakly coupled chains ( Giamarchi)

    Review: Dagotto and Rice , Science 96

    J=0 =J

    Weak coupling

    JJ =J+O(J)

  • 8/3/2019 F. Mila- Introduction au magntisme

    21/62

    Spinons

    Ifthe spectrum is gapless,

    low-lying excitations

    cannot be spin-wavesCan the spectrum be gapless in 1D?

    YES!

    Example: S=1/2 chain (Bethe, 1931)

  • 8/3/2019 F. Mila- Introduction au magntisme

    22/62

    Nature of excitations? Spinons!

    S=1

    Spinons

  • 8/3/2019 F. Mila- Introduction au magntisme

    23/62

    Excitation spectrum

    Stone et al, PRL 03

    Early theory

    Des Cloiseaux PearsonPRB 62

    A spin 1 excitation

    = 2 spinons

    continuum

  • 8/3/2019 F. Mila- Introduction au magntisme

    24/62

    Algebraic correlations

    Jordan-Wigner transformation

    1D interacting fermions

    Spin-spin correlation

    Bosonisation

    see Giamarchis lecture

  • 8/3/2019 F. Mila- Introduction au magntisme

    25/62

    Unified framework

    Haldane, 1983

    When to expect spin-waves,

    and when to expect spinons?

    Integer spins: gapped spin-waves

    Half-integer spins: spinons

  • 8/3/2019 F. Mila- Introduction au magntisme

    26/62

    Field theory approach

    Solid angle of path (mod 4)

    Berry phase

    Evolution operator

    Spin coherent state

    Haldane, PRL 88Path integral formulation

  • 8/3/2019 F. Mila- Introduction au magntisme

    27/62

    Field theory approach

    Pontryagin index (integer)

    1 (S integer)

    1(S -integer)

    In 1D antiferromagnets

    Destructive interferences for -integer spins

  • 8/3/2019 F. Mila- Introduction au magntisme

    28/62

    Plan du cours (suite)

    4) Modle d'Ising et frustration gomtrique

    - Entropie rsiduelle

    - Corrlations algbriques et dipolaires

    5) Liquides de spin quantiques

    - Frustration, modes mous et fluctuations quantiques

    - Liquide RVB et modles de dimres quantiques

    - Liquide de spin algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    29/62

    AF Ising model on triangular lattice

    ?

    Many different ways of minimizing the energy

  • 8/3/2019 F. Mila- Introduction au magntisme

    30/62

    Residual entropy

    = or

    =2N/3

    S>1/3 ln 2=0.23105 Exact entropy?

  • 8/3/2019 F. Mila- Introduction au magntisme

    31/62

    Mapping onto dimer model - I

  • 8/3/2019 F. Mila- Introduction au magntisme

    32/62

    Mapping onto dimer model - II

    Dimer covering of honeycomb lattice

  • 8/3/2019 F. Mila- Introduction au magntisme

    33/62

    Counting the dimer coverings

    How to calculate it?

    Transform it into a determinant!

  • 8/3/2019 F. Mila- Introduction au magntisme

    34/62

    Kasteleyns method

    Odd number of clockwise

    arrows in each even loop

    Z=Pfaffian of a

  • 8/3/2019 F. Mila- Introduction au magntisme

    35/62

    Calculation of Pfaffian

    a: periodic, 2 sites per unit cell

    det(a)= product on k of eigenvalues

    of (2x2) Kasteleyn matrix

    Entropy Ising model

  • 8/3/2019 F. Mila- Introduction au magntisme

    36/62

    Spin-spin correlations

    Many ground states average overground states

    Pfaffian representation inverse ofKasteleyn matrix

    Kasteleyn matrix gapped: exponential

    decay Kasteleyn matrix not gapped: algebraic

    decay

  • 8/3/2019 F. Mila- Introduction au magntisme

    37/62

    Kasteleyn matrix for honeycomb

    algebraic correlations

  • 8/3/2019 F. Mila- Introduction au magntisme

    38/62

    Spin Ice Dy2Ti2O6, Ho2Ti2O6 Pyrochlore lattice

    Ferromagnetic exchange interactions

    Strong anisotropy: spins in or out

    Ground state:

    2 spins in, 2 spins out

    Residual entropy:

    the ice problem

  • 8/3/2019 F. Mila- Introduction au magntisme

    39/62

    Pyrochlore lattice

  • 8/3/2019 F. Mila- Introduction au magntisme

    40/62

    Residual entropy

    Spin ice Ice

    Pauling (1945): S/kB (1/2) ln (3/2) = 0.202732

    Exact: S/kB 0.20501(Nagle, 1966)

  • 8/3/2019 F. Mila- Introduction au magntisme

    41/62

    Dipolar correlations

    Theory:

    Canals-Garanin, 1999

    Experiments:

    Fennell, 2009

  • 8/3/2019 F. Mila- Introduction au magntisme

    42/62

    Why dipolar correlations?

    Height model:

    algebraic correlations of height variable

    Triangular lattice: spin= exponential of heightvariable

    simple algebraic decay

    2D pyrochlore: spin= gradient of height variable

    dipolar correlations

  • 8/3/2019 F. Mila- Introduction au magntisme

    43/62

    Plan du cours (suite)

    4) Modle d'Ising et frustration gomtrique

    - Entropie rsiduelle

    - Corrlations algbriques et dipolaires

    5) Liquides de spin quantiques

    - Frustration, modes mous et fluctuations quantiques

    - Liquide RVB et modles de dimres quantiques

    - Liquide de spin algbrique

  • 8/3/2019 F. Mila- Introduction au magntisme

    44/62

    Strong Quantum effects in 2D

    Basic idea

    diverges in 2D as soon as

    or

    since

  • 8/3/2019 F. Mila- Introduction au magntisme

    45/62

    Defining frustration IFrustration = competition between exchange processes

    Not frustrated ? Frustrated

    Not enough!

    RVB theory of triangular lattice (Anderson)

    3-sublattice long-range order (Bernu et al, 1990)

  • 8/3/2019 F. Mila- Introduction au magntisme

    46/62

    Defining frustration IIFrustration = infinite degeneracy of classical ground state

    J1-J2 model (J2>J1/2)

    Effect of quantum fluctuations?

    Kagome lattice

    J1J2

  • 8/3/2019 F. Mila- Introduction au magntisme

    47/62

    J1-J2 model on square lattice

    Infinite number of helical GS for J2/J1=1/2

    No long-range order

    More generallyFrustrated magnets with infinite number

    of ground states and soft modes

  • 8/3/2019 F. Mila- Introduction au magntisme

    48/62

    Quantum spin liquids

    First definition (Shastry-Sutherland, 1981)

    Absence of magnetic long-range order

    even at T=0

    Problem

    Some systems have a symmetry breakingin the ground state, hence some kind of

    order, but no magnetic long-range order

  • 8/3/2019 F. Mila- Introduction au magntisme

    49/62

    Spontaneous symmetry breaking

    J1

    J2

    J1=2J2 2 singlet ground states(Majumdar-Ghosh, 1970)

    = (l > - l >)/2

  • 8/3/2019 F. Mila- Introduction au magntisme

    50/62

    Checkerboard lattice

    2 plaquette coverings 2 groundstates

    which break the translational symmetry

    Fouet et al, 2003; Canals, 2003

  • 8/3/2019 F. Mila- Introduction au magntisme

    51/62

    Spin liquidsNew definition

    Absence ofany kind of orderCan quantum magnets

    behave as spin liquids? Spin-1/2 kagome?

    Quantum Dimer models

  • 8/3/2019 F. Mila- Introduction au magntisme

    52/62

    RVB spin liquids

    Anderson, 1973

    GS = + +

    Restore translational invariance with resonances

    between valence-bond configurations

    Question: with one spin per unit cell, canwe preserve SU(2) without breaking translation?

    Singlet

  • 8/3/2019 F. Mila- Introduction au magntisme

    53/62

    Spin kagome

    Proliferation of low-lying singlets

    Lecheminant et al,

    PRB 97

    Exactdiagonalizations

    of clusters

    with up to 36 sites

    RVB i t t ti

  • 8/3/2019 F. Mila- Introduction au magntisme

    54/62

    RVB interpretationResonance between Valence Bond configurations

    Proposed for triangular lattice by Anderson and Fazekas (73)

    Widely accepted as a good variational basis

    for kagome after Mambrini and Mila, 00

  • 8/3/2019 F. Mila- Introduction au magntisme

    55/62

    Quantum Dimer Models

    Square lattice (Rokhsar-Kivelson, 88)

    Assume dimer configurations are orthogonal

    GS= superposition of all dimer coverings

    V=J: Rokhsar-Kivelson point

    RVB phase? No!

    Kasteleyn matrix gapless algebraic correlations

  • 8/3/2019 F. Mila- Introduction au magntisme

    56/62

    QDM on triangular lattice

    Moessner and Sondhi, 01;A. Ralko, F. Becca, M. Ferrero, D. Ivanov, FM, 05

    Kasteleyn matrix gapped

    Exponential correlations RVB phase

  • 8/3/2019 F. Mila- Introduction au magntisme

    57/62

    Algebraic spin liquids

    Hypothetical ground state of Heisenbergantiferromagnets with no long-range order

    but algebraic correlations, hence a gaplessspectrum

    Can be described using the fermionic

    representation of spin operators Has been proposed (as basically

    everything else) for the spin-1/2 kagome

  • 8/3/2019 F. Mila- Introduction au magntisme

    58/62

    Fermionic representation

    Constraint

  • 8/3/2019 F. Mila- Introduction au magntisme

    59/62

    Mean-field theory

    + constraint

    on average

    Dimerized solution

    Fluctuations beyond mean-field

    Quantum Dimer Models

  • 8/3/2019 F. Mila- Introduction au magntisme

    60/62

    Flux phase

    Affleck-Marston, 1988

    Square lattice

    Dirac spectrum with 4 gapless points

    Algebraic correlations

  • 8/3/2019 F. Mila- Introduction au magntisme

    61/62

    Stability of mean-field solutions

    Compare mean-field energies

    not very reliable (constraint treated on

    average+mean-field decoupling) Treat constraint with Gutzwiller projection

    Treat as variational parameters

  • 8/3/2019 F. Mila- Introduction au magntisme

    62/62

    Further reading

    Interacting electrons and quantum magnetism

    Assa Auerbach

    A modern discussion of non-frustrated magnets

    C. Lacroix, P. Mendels, F. Mila Eds., Springer, 2010

    Introduction to Frustrated Magnetism

    A recent review of all aspects of frustrated magnets

    (theory, experiment, synthesis)