27
Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale Università di Parma Parma, Italy COMPTEST 2003 Chalons en Champagne, France Jan. 28, 2003

Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Embed Size (px)

Citation preview

Page 1: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Failure Mechanisms in Twill-weave Laminates:FEM Predictions vs. Experiments

 by 

Gianni Nicoletto and Enrica Riva

Dipartimento di Ingegneria Industriale Università di Parma

Parma, Italy

COMPTEST 2003 Chalons en Champagne, France

Jan. 28, 2003

Page 2: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Outline

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

• Introduction e motivation

• Related works

• Twill-weave laminate chacterization

• Finite element modeling

• Experimental observations and computational results

• Conclusions

Page 3: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

CFRP Chassis

Cooperation with Dallara Automobili

F3 racing carIRL racing carInfinity Pro

Motivation

Page 4: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Woven Composites

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Definitions

• Yarns: bundle of thousands fibers• Warp yarns: parallel to load direction• Fill yarns: perpendicular to load direction• Texture: plain weave, twill weave, etc. • Crimp ratio: degree of yarn curvature

Advantages

With respect to unidirectional laminates:• Easier handling and shaping • Improved impact resistance • Superior out-of-plane stiffness• Balanced in-plane mechanical properties• Cost competitive

yarn

Page 5: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Objectives of the work

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

• Develop a finite element-based modeling approach to the mechanics of woven laminate composites.

• Compare modeling results and experimental observations.

• Analyze the role of texture on mechanical performance.

• Develop tools for monitoring damage development in woven laminates.

Page 6: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Related Modeling Work

• Analytical approach

T.W. Chu et al (1983 - )N.K. Naik et al (1991 - )

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

• Models, such as mosaic, crimp and bridging models subjected to iso-strain or iso- stress conditions, predict adequately the stiffness of woven laminates.

• These models are less satisfactory for strength prediction and micromechanical stress determination.

• Convenient approach for texture design.

• The plain-weave texture has been mainly considered.

Page 7: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

• Finite element approach

J. Whitcomb et al. (1990-1998)V. Carvelli and C. Poggi (2001)

D. Blackketter et al. (1993)

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

• Computational prediction of the mechanics of woven laminate composites.

• The finite element method is used to geometrically model an elementary cell of the woven laminate. • Boundary conditions enforcing stress and strain periodicity are imposed to the representative volume (RV) .

• Stress-based damage and stiffness discount technique to model damage progression.

• Most studies deal with the plain-weave texture.

Page 8: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

K. Schulte et al (1988 - )J.C. Abry et al. (1998)

Electrical resistance method applied to unidirectional composites

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Related Experimental Work

Page 9: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Material and Experiments

Fiber: Toray T-300 carbon fibersFiber diameter: 7 μmFiber volume fraction Vf: 42%Density ρ: 1.76 g/cm2

Strength u3200 MPaElastic modulus E: 228 GPa

Matrix: Epoxy Hexcel 1990S

LaminateLay-up: 8-plyTexture: Twill-weaveYarns: 3k fibersWarp and fill yarns: Identical Laminate thickness: 2.4 mm

• Tensile tests according to: ASTM D3039 • Servo-hydraulic testing machine: MTS 810

• Resistance strain gages & Extensometer

• Electric resistance measuring apparatus

0° direction

Page 10: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Geometrical Characterization of Twill-weave Texture

Yarn shape: circular arcs

Ply stacking: random

a b g RT RL

2.04 0.17 1.13 6.11 6.15All dimensions in mm

Page 11: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champaign G. Nicoletto & E. Riva

Tensile Tests and Evolution of Electrical Resistance

Strain

Norm. elect. resistance vs. strain

Stre

ss (

MP

a)

(R-R

0)/R

0

Stress vs. strain

Twill-weave laminates

Page 12: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Damage Observations

Fill yarn Tow yarn

Epoxy

Fiber fracture Fracture in yarn

Page 13: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Damage Mechanisms: a Summary

• Final longitudinal fiber fracture is preceeded by a number of mechanisms.

• Matrix cracks develop in fill yarns.

• Delamination occurs between orthogonal yarns.

• Inter-ply delamination is observed

Inter-ply delamination

Crack in fill yarn

Delamination between orthogonal

yarns

Page 14: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Homogeneization Method for Composite Materials

• Assumption of periodic microstructures which can be represented by unit cells

• Asymptotic expansion of all variables and the average technique to determine the homogeneized (macroscopic) material properties and constitutive relations of composite materials

• Prediction of microscopic fields of deformation inside the unit cell through the localization process

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Page 15: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Texture and Representative Volume RV

Material models:

• Yarn: transverse isotropic, linear elastic

• Matrix: linear elastic

RV

Twill-weave

Page 16: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Finite Element Modeling of RV

• Parametric geometrical model (I-DEAS)

• Finite element code (ABAQUS)

• Convergence study

• Optimized model: > 30000 elements

• Geometric nonlinearity included

• Progressive damage evolution routine in FORTRAN

Page 17: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Boundary conditions on RV

Post, Han and Ifju (1994)

)x(u~xExu)x(u 0

Carvelli & Poggi (2001)

where

u(x) is the displacement field in the RVu0 is a rigid displacement of the RV is a small rigid rotation of RVE is the average strain (macroscopic)

of RVũ(x) is a periodic displacement associated

to microscopic strain field within RV

Free surface

Page 18: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Damage Modes for Fiber Yarn

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

M. Zako et al (2003)

Page 19: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Modeling Damage Development

Blackketter et al (1993)Discount method

• Iterative procedure.

• Evaluation at each integration point.

• Normal stress criterion for failure.

• Elastic modulus is reduced to 1/10 of its initial value.

• Role of time step and mesh size.

Page 20: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Effect of Texture on Longitudinal Stiffness

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

• Strong influence of crimp ratio on stiffness.

• Good correlation with experimental results.

• A thick laminate is stiffer than a single lamina.

• At high crimp ratios the twill-weave is stiffer than the plain- weave.

Plain weave

Twill weave

Lamina

Thick laminate

Page 21: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Effect of Crimp Ratio on Stress-Strain Curve

• Strong influence of crimp ratio on stress-strain curve.

• Good correlation with experimental results.

• Low crimp ratio shows a trend linear to failure.

• Influence of computational parameters.

Page 22: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Stresses and Damage

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Strain (%)

Str

ess

(MP

a)

ab

cd Step a

• The critical stress is perpendicular to the fill yarn surface.

• The wedge elements of the straight portion of the fill yarns fail first.

• Initial damage occurs near the fill yarns.

• The critical stress is representative of damage initiation in the matrix.

Page 23: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Strain (%)

Str

ess

(MP

a)

ab

cd Step b

• The critical stress direction does not change. It is perpendicular to the fill yarn surface.

• Damage continues in the fill yarns.

• Damage now involves the brick elements next to the wedge elements.

• The damage spreads into the matrix.

Stresses and Damage

Page 24: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Strain (%)

Str

ess

(MP

a)

ab

cd Step c

• The wedge elements, where the two perpendicular yarns are close to each other, fail.

• Fiber failure occurs in the fill yarn.

• Failure occurs where the yarn is curved to the maximum.

Stresses and Damage

Page 25: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Strain (%)

Str

ess

(MP

a)

ab

cd Step d

• Failure extends to the neighboring brick elements up to final catastrophic collapse.

• In this final stage different failure modes are activated such as transverse and longitudinal shear, and transverse direct stress.

Stresses and Damage

Page 26: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

Inter-ply delamination

Crack in fill yarn

Delamination between orthogonal

yarns

Qualitative Correlation

Experimental

Computational

Page 27: Failure Mechanisms in Twill-weave Laminates: FEM Predictions vs. Experiments by Gianni Nicoletto and Enrica Riva Dipartimento di Ingegneria Industriale

Conclusions

COMPTEST 2003 Chalons en Champagne G. Nicoletto & E. Riva

• Optical inspection of a twill-weave laminate during tensile testing showed different damage mechanisms.

• Finite element modelling of an appropriate RV provided the macroscopic stress-strain relation of a woven laminate that were compared to experimental results.

• The finite element model of the RV provided the microscopic stresses and strains within matrix and reinforcements.

• An iterative procedure based on a damage routine has been developed to simulate damage evolution.

• A first correlation between experimental observations and computed damage evolution in a twill-weave laminate is encouraging.