12
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational Materials Sciences Computer Science and Mathematics Division

Fermion Glue in the Hubbard Model: New Insights into the Cuprate … · 2007. 10. 31. · Systematic study of D-wave superconductivity in the 2D repulsive Hubbard model, Phys. Rev

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Presented by

    Fermion Glue in the Hubbard Model:New Insights into the Cuprate PairingMechanism with Advanced Computing

    Thomas C. Schulthess

    Computational Materials Sciences

    Computer Science and Mathematics Division

  • 2 Schulthess_Superconductivity_SC07

    SuperconductivitySuperconductivity A model for high-temperatureA model for high-temperaturesuperconductorssuperconductors

    Algorithm andAlgorithm andleadership computingleadership computing

    New scientific insightsNew scientific insights

    tt

    tt

    UU

    Outline

    0.0 2.5 3.02.01.51.00.5

    50

    40

    30

    20

    10

    0

    -10

    -20

    -30T/t

    U = 8t; No = 4;(n) = 0.85

    Vd

    3/2 m

    1/2 d

    irr

    Superconductor

    Non-super-conductive metal

    0 K Tc Temperature

    Res

    ista

    nce

  • 3 Schulthess_Superconductivity_SC07

    What is superconductivity?

    • A macroscopic quantumstate with

    Zero resistance

    Perfect diamagnetism

    • Applications:

    MAGLEV, MRI,power transmission,generators, motors

    • Only disadvantage:

    Cooling necessary

    Tc 150 K in HTSC

    • Ultimate goal:

    Tc room temperature

    Superconductor

    Non-super-conductive metal

    0 K Tc Temperature

    Res

    ista

    nce

    0 20 40 60 80 100

    LHe

    LH2

    LNeLN2

    Power requirementsfor cooling versus

    temperaturein Kelvin

  • 4 Schulthess_Superconductivity_SC07

    Discovered byBednorz and Müllerin 1986

    • Highly anisotropic

    • SuperconductingCuO planes

    High-temperature superconductors

    LiquidHe

    140

    100

    60

    20

    T [K

    ]

    1920 1960 19801940 2000

    TIBaCaCuO 1988

    HgBaCaCuO 1993

    BiSrCaCuO 1980

    La2-xBaxCuO4 1986

    Nb=A1=Ge

    Nb3Ge

    MgB2 2001

    Nb3SuNbN

    NbHg

    Pb

    NbC

    V3Si

    YBa2Cu3O7 19870

    High temperaturenon-BCS

    LowtemperatureBCS

    Bednorz

    and Müller

    BCS Theory

    Liquid H2

    HgTlBaCuO 1995

  • 5 Schulthess_Superconductivity_SC07

    HTSC: 1023

    interacting electrons2-D Hubbard model

    for CuO planes

    DCA/QMC:Map Hubbard model onto

    embedded cluster

    2-D Hubbard model ofhigh-temperature superconductors

    tt

    tt

    UU

  • 6 Schulthess_Superconductivity_SC07

    G

    Warm upWarm up Sample QMC time

    dger

    or delay updating dgemm

    (N = 4480)(N = 4480)

    (4480 x 32)(4480 x 32)

    Measurement cgemm

    Warm up

    G G

    Warm up

    G

    Warm up

    Algorithm and leadership computing:Fixed startup cost favors fewer,faster processors Cray X1E

  • 7 Schulthess_Superconductivity_SC07

    T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, J. B. White,

    Systematic study of D-wave superconductivity in the 2D repulsive Hubbard model,

    Phys. Rev. Lett. 995, 237001 (2005).

    Superconductivity as aconsequence of strongelectronic correlations

    0.0234 26A

    0.0204 24A

    0.0224 20A

    0.0250.02533 16A 16A

    0.0150.01522 16B 16B

    0.0160.01622 12A 12A

    -0.006-0.00611 8A 8A

    0.0560.05600 4A4A

    TTccZZddNNcc

    ++-

    -

  • 8 Schulthess_Superconductivity_SC07

    T. A. Maier, M. S. Jarrell, and D. J. Scalapino, Structure of the pairing

    interaction in the two-dimensional Hubbard Model, Phys. Rev. Lett. 996,047005 (2006).

    T. A. Maier, M. Jarrell, and D. J. Scalapino, Pairing interaction in the two-

    dimensional Hubbard model studied with a dynamic cluster quantum Monte

    Carlo approximation, Phys. Rev. B, 774, 094513 (2006).

    T. A. Maier, M. Jarrell, and D. J. Scalapino, Spin susceptibility

    representation of the pairing interaction for the two-dimensional Hubbard

    model, Phys. Rev. B, 775, 134519 (2007).

    • Attractive pairing interactionbetween nearest neighbor singlets

    • Dynamics associated withantiferromagnetic spin fluctuation spectrum

    • Pairing interaction mediated byantiferromagnetic fluctuations

    Pairing

    Fully irr.

    50

    40

    30

    20

    10

    0

    -10

    -20

    -300.0 2.5 3.02.01.51.00.5

    T/t

    U = 8t; No = 4; (n) = 0.85

    Spin

    Charge

    Vd

    3/2 m

    1/2 d

    irr

    ++-

    -Magnetic origin of pairing interaction

  • 9 Schulthess_Superconductivity_SC07

    • Test simple spin fluctuation representationof pairing interaction and calculate Tcin Hubbard model

    • Future: Demonstrate validity of Hubbard model simulations

    Measure spin susceptibility in neutron scattering experiments andcalculate Tc

    Spin susceptibility representationenables neutron scattering validation

    0.95 0.90 0.85

    Tc0 0.080 0.074 0.067

    Tc0(1)0.100(25%)

    0.087(18%)

    0.074(10%)

    Tc0(2)0.108(35%)

    0.084(14%)

    0.064(4%)

    “Exact” QMC

    fitted from pairing interaction

    fitted from single-particle spectrum

    Electron filling

    T. A. Maier, A. Macridin, M. Jarrell and

    D. J. Scalapino, Systematic analysis of

    a spin susceptibility representation of

    the pairing interaction in the 2D Hubbard

    Model, Phys. Rev. B, in press (2007).

  • 10 Schulthess_Superconductivity_SC07

    Summary/conclusions/outlook

    • Superconductivity: A macroscopic quantum effect

    • 2-D Hubbard model for strongly correlatedhigh-temperature superconducting cuprates

    • Dynamic cluster quantum Monte Carlo simulationson Cray X1E

    • Superconductivity as a result of strong correlations

    • Pairing mediated by antiferromagnetic spin fluctuations

    • Simple spin susceptibility representationof pairing interaction

    • Verification by neutron scattering experiments?

  • 11 Schulthess_Superconductivity_SC07

    Contacts

    Thomas Maier

    Computational Materials Sciences

    Computer Science and Mathematics Division

    (865) 576-3597

    [email protected]

    Paul Kent

    Computational Materials Sciences

    Computer Science and Mathematics Division

    (865) 574-4845

    [email protected]

    Thomas Schulthess

    Computational Materials Sciences

    Computer Science and Mathematics Division

    (865) 574-1942

    [email protected]

    11 Schulthess_Superconductivity_SC07

  • 12 Schulthess_Superconductivity_SC07

    The team

    M. Jarrell

    Universityof Cincinnati

    D. Scalapino

    Universityof California

    Paul Kent

    Thomas Maier

    Thomas Schulthess

    Oak RidgeNational Lab