34
Electron Beam Induced Deposition investigating a new tool for Spintronics Graduation presentation Michael Beljaars Hans Mulders, FEI Company Reinoud Lavrijsen, TU/e Henk Swagten, TU/e Physics of Nanostructures (FNA)

Final Presentation - Graduation Project Ebid

Embed Size (px)

Citation preview

Page 1: Final Presentation - Graduation Project Ebid

Electron Beam Induced Depositioninvestigating a new tool for Spintronics

Graduation presentation

Michael Beljaars

Hans Mulders, FEI Company

Reinoud Lavrijsen, TU/e

Henk Swagten, TU/e

Physics of Nanostructures (FNA)

Page 2: Final Presentation - Graduation Project Ebid

Spintronics

Electron• charge• spin

e-

spin + electronics =

Spintronics!

Page 3: Final Presentation - Graduation Project Ebid

Electron Beam Induced Deposition

substrate

needle

electron beam

precursor

vacuum environment

EBIDEBIDEBIDmultiple passes

element of interest

contamination

precursor fluxdeposition

direct structuring deposition of arbitrary material resolution down to 10 nm

Page 4: Final Presentation - Graduation Project Ebid

Possibilities of EBID

Page 5: Final Presentation - Graduation Project Ebid

EBID deposited iron magnets

substrate

• What equipment is used ?• Which precursors are investigated?

Deposition yieldComposition

Magnetic properties

Shape analysis

• How fast can we make a deposition?• How much iron is in the magnet?• How strong is the magnet?

• How well defined is the shape of the deposition?

FEI dual beamInvestigated iron precursors

iron

NZ

Page 6: Final Presentation - Graduation Project Ebid

FEI dual beam

view inside chamberoutside view

electron beam

sample holder

needle

vacuum chamber

Page 7: Final Presentation - Graduation Project Ebid

Investigated iron precursors

Tri-iron-dodeca-carbonyl Di-iron-nona-carbonyl

Fe3(CO)12 Fe2(CO)9

low gas flux high gas flux

Page 8: Final Presentation - Graduation Project Ebid

Deposition yield

substrate

deposition

beam

VY

I t

deposition volume V

high gas flux

low gas flux

Page 9: Final Presentation - Graduation Project Ebid

Composition

iron

carbon

oxygen

high gas flux

low gas flux

Page 10: Final Presentation - Graduation Project Ebid

Magnetic properties

AFMheight image

MFMmagnetic image

NZ

5 µm

Page 11: Final Presentation - Graduation Project Ebid

Shape analysis

substrate

deposition

3D AFM image

Page 12: Final Presentation - Graduation Project Ebid

Surface processes

substrate

needle

adsorption

desorption

diffusion

vacuum environment

high N

low N

surface occupation N

Page 13: Final Presentation - Graduation Project Ebid

EBID and surface occupation

substrate

deposition

electron beamdepositiondeposition

adsorption desorption

diffusion diffusion

N

N

heig

ht

Page 14: Final Presentation - Graduation Project Ebid

Simulation

• Adsorption• Desorption

• Diffusion

• Deposition

adsE

diffE

adsorptiondesorption

distance to surface

pote

ntia

l

adsEdiffE

distance along surface

pote

ntia

l

diffusion

Page 15: Final Presentation - Graduation Project Ebid

Experiment and simulation

heig

ht (

a.u.

)

length (a.u.)

width (a.u.)

experiment simulation

Page 16: Final Presentation - Graduation Project Ebid

Waiting time experiment

substrate

deposition

5

10

15

20

25

30

35

0 ms15 ms40 ms

0 1 2 3 4 50

heig

ht (

nm)

width (μm)1 1.2 1.4 1.6

0

5

10

15

20

25

30

35

width (μm)

high surface occupation

low surface occupation

diffusion

spiralingdeposition

inner to outer

Pass time 45 ms

Page 17: Final Presentation - Graduation Project Ebid

Conclusions

• Depositions of two iron precursors characterized• Yield low yield for Fe3(CO)12, average yield for Fe2(CO)9

• Composition very high iron content (up to 60 atomic %)

• Magnetic properties indications for ferromagnetic behavior

• Deposition shapes understood• Model developed• Experimental results qualitatively explained by model

Page 18: Final Presentation - Graduation Project Ebid

Outlook

• Model enhancement• determine energy barriers involved in surface processes• quantitative description of deposition process

• Deposition properties• further enhance composition• extensive magnetic characterization• investigate electrical conductance

Page 19: Final Presentation - Graduation Project Ebid
Page 20: Final Presentation - Graduation Project Ebid

Electron Beam Induced Deposition

substrate

needle

electron beam

Page 21: Final Presentation - Graduation Project Ebid

Magnetic properties

Page 22: Final Presentation - Graduation Project Ebid

FEI dual beam

Page 23: Final Presentation - Graduation Project Ebid

Investigated iron precursors

Tri-iron-dodeca-carbonyl Di-iron-nona-carbonyl

Fe3(CO)12 Fe2(CO)9

methanol

Page 24: Final Presentation - Graduation Project Ebid

Deposition - Diffusion regimes

N

N

heig

hthe

ight

Page 25: Final Presentation - Graduation Project Ebid

Giant Magneto Resistance

spin + electronics = Spintronics!

Page 26: Final Presentation - Graduation Project Ebid

Electron – Solid interactions

substrate

electron beam

secondary electrons

Increasing beam energy

0 1 2 3 4 50 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

SE y

ield

(SE

/ P

E)

elect ron beam energy (keV )

area of maximum SE yield

Page 27: Final Presentation - Graduation Project Ebid
Page 28: Final Presentation - Graduation Project Ebid

Electron Beam Induced Deposition

substrate

needle

electron beam

precursor

adsorption

desorption

precursor flux

diffusion

vacuum environment

Page 29: Final Presentation - Graduation Project Ebid

Electron – Solid interactions

substrate

electron beam

Page 30: Final Presentation - Graduation Project Ebid

Electron – Solid interactions

substrate

electron beam

secondary electrons

Increasing beam energy

0 1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SE

yie

ld (

SE

/ P

E)

P E energy (keV )

Page 31: Final Presentation - Graduation Project Ebid
Page 32: Final Presentation - Graduation Project Ebid

Outline

• Introduction to Spintronics• Electron Beam Induced Deposition• Investigated iron precursors• Characterization of depositions• Deposition geometry

• Conceptual model• Experiment

• Conclusions• Outlook

Page 33: Final Presentation - Graduation Project Ebid

Deposition yield

substrate

deposition

beam

VY

I t

Beam current (nA)

Yie

ld (

μm

3 nC

-1)

deposition volume V

high gas flux

low gas flux

Page 34: Final Presentation - Graduation Project Ebid

EBID deposited magnets

substrateEBIDEBIDEBIDmultiple passes

• What equipment is used ?• Which precursors are investigated?

Deposition yieldComposition

Magnetic properties

Shape analysis

• How fast can we make a deposition?• How much iron is in the magnet?• How strong is the magnet?

• How well defined is the shape of the deposition?

FEI dual beamInvestigated Iron precursors