45
Spectra: Applications Computational Geophysics and Data Analysis 1 Fourier Transform: Applications in seismology Fourier: Space and Time Fourier: continuous and discrete Seismograms – spectral content (exercises) Filter (exercises) Scope: Understand how to calculate the spectrum from time series and interpret both phase and amplitude part. Learn the basic concepts of filtering

Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis1

Fourier Transform: Applications in seismology

• Fourier: Space and Time• Fourier: continuous and discrete• Seismograms – spectral content (exercises)• Filter (exercises)

Scope: Understand how to calculate the spectrum from time series and interpret both phase and amplitude part. Learn the basic concepts of filtering

Page 2: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis2

Fourier: Space and Time

Spacex space variableL spatial wavelengthk=2p/λ spatial wavenumberF(k) wavenumber spectrum

Timet Time variableT periodf frequencyω=2πf angular frequency

Fourier integrals

With the complex representation of sinusoidal functions eikx (or (eiωt) the Fourier transformation can be written as:

∫∞

∞−

∞−

=

=

dxexfkF

dxekFxf

ikx

ikx

)(21)(

)(21)(

π

π

Page 3: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis3

The Fourier Transformdiscrete vs. continuous

∫∞

∞−

∞−

=

=

dxexfkF

dxekFxf

ikx

ikx

)(21)(

)(21)(

π

π

1,...,1,0,

1,...,1,0,1

/21

0

/21

0

−==

−==

∑−

=

−−

=

NkeFf

NkefN

F

NikjN

jjk

NikjN

jjk

π

π

discrete

continuousWhatever we do on the computer with data will be based on the discrete Fourier transform

Page 4: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis4

Phase and amplitude spectrum

)()()( ωωω Φ= ieFF

The spectrum consists of two real-valued functions of angular frequency, the amplitude spectrum mod (F(ω)) and the phase spectrum φ(ω)

In many cases the amplitude spectrum is the most important part to be considered. However there are cases where the phase spectrum plays an important role (-> resonance, seismometer)

Page 5: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis5

Spectral synthesis

The red trace is the sum of all blue traces!

Page 6: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis6

The spectrum

Amplitude spectrum Phase spectrumFo

urie

r sp

ace

Page 7: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis7

)

Most processing tools (e.g. Python, octave, Matlab, Mathematica, Fortran, etc) have intrinsic functions for FFTs

numpy.fft

See: https://docs.scipy.org/

Page 8: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis8

Good practice – for estimating spectra

1. Filter the analogue record to avoid aliasing2. Digitise such that the Nyquist lies above the

highest frequency in the original data3. Window to appropriate length 4. Detrend (e.g., by removing a best-fitting line)5. Taper to smooth ends to avoid Gibbs6. Pad with zeroes (to smooth spectrum or to use

2n points for FFT)

Page 9: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis9

Resampling (Decimating)

• Often it is useful to down-sample a time series (e.g., from 100Hz to 1Hz, when looking at surface waves).

• In this case the time series has to be preprocessed to avoid aliasing effects

• All frequencies above twice the new sampling interval have to be filtered out

Page 10: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis10

Spectral leakage, windowing, tapering

Care must be taken when extracting time windows when estimating spectra:

– as the FFT assumes periodicity, both ends must have the same value

– this can be achieved by „tapering“– It is useful to remove drifts as to avoid any

discontinuities in the time series -> Gibbs phenonemon-> practicals

Page 11: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis11

Spectral leakage

Page 12: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis12

Frequencies in seismograms

Page 13: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis13

Time – frequency analysis

Page 14: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Fin Whale

Page 15: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Blue Whale

Page 16: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis16

Spectral analysis: windowed spectra

24 hour ground motion, do you see any signal?

Page 17: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis17

Seismo-“weather“

Running spectrum of the same data

Exercise

Page 18: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis18

Sound of an instrument

a‘ - 440Hz

Page 19: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis19

Instrument Earth

26.-29.12.2004 (FFB )

0S2 – Earth‘s gravest tone T=3233.5s =53.9min

Theoretical eigenfrequencies

Exercise

Page 20: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectral analysis: foundations Computational Geophysics and Data Analysis 20

Convolution

∫∫∞

∞−

∞−

−=−=∗ ')'()'(')'()'()()( dttgttfdtttgtftgtf

The convolution operation is at the heart of linear systems.

Definition:

Properties: )()()()( tftgtgtf ∗=∗

)()()( tfttf =∂∗

∫=∗ dttftHtf )()()(

H(t) is the Heaviside function:

Page 21: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectral analysis: foundations Computational Geophysics and Data Analysis 21

The convolution theorem

A convolution in the time domain corresponds to a multiplication in the frequency domain.

… and vice versa …

a convolution in the frequency domain corresponds to a multiplication in the time domain

)()()()( ωω GFtgtf ⇒∗

)()()()( ωω GFtgtf ∗⇒

The first relation is of tremendous practical implication!

Page 22: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectral analysis: foundations Computational Geophysics and Data Analysis 22

The convolution theorem

From Bracewell (Fourier transforms)

Page 23: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectral analysis: foundations Computational Geophysics and Data Analysis 23

Discrete Convolution

Convolution is the mathematical description of the change of waveform shape after passage through a filter (system).

There is a special mathematical symbol for convolution (*):

Here the impulse response function g is convolved with the input signal f. g is also named the „Green‘s function“

)()()( tftgty ∗=

nmk

fgym

iikik

+=

=∑=

,,2,1,00

migi ,....,2,1,0=

njf j ,....,2,1,0=

Page 24: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectral analysis: foundations Computational Geophysics and Data Analysis 24

Convolution Example(Matlab)

>> x

x =

0 0 1 0

>> y

y =

1 2 1

>> conv(x,y)

ans =

0 0 1 2 1 0

Impulse response

System input

System output

Page 25: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectral analysis: foundations Computational Geophysics and Data Analysis 25

Convolution Example (pictorial)

x y„Faltung“

0 1 0 0

1 2 1

0 1 0 01 2 1

0 1 0 0

1 2 1

0 1 0 0

1 2 1

0 1 0 01 2 1

0 1 0 0

1 2 1

0

0

1

2

1

0

y x*y

Page 26: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Digitales Filtern

Oftmals beinhaltet ein aufgezeichnetes Signal eine Fülle von Informationen, an denen wir nicht interessiert sind (Rauschen, Störsignale). Um uns des Rauschens zu entledigen fügen wir einenFilter im Frequenzraum hinzu.

Die wichtigsten Filter sind: Hochpass: schneidet niedrige Frequenzen ab

Tiefpass: schneidet hohe Frequenzen ab

Bandpass: schneidet hohe und tiefe Frequenzen heraus, und hinterlässt ein Band von mittleren Frequenzen

Bandfilter: schneidet bestimmte Frequenzen heraus und hinterlässtalle anderen Frequenzen

Page 27: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Bandpass FilterE

ckfre

quen

z w

ird k

lein

er, A

ntei

l hoh

er F

requ

enze

n ni

mm

t ab

Page 28: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

The Butterworth Filter (Low-pass, 0-phase)

Computational Geophysics and 28

nc

LF 2)/(11)(ωω

ω+

=

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=1, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=4, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=9, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=16, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

Page 29: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

In log-log scale …

Computational Geophysics and 29

100 101 10210-2

10-1

100 Butterworth n=1, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

100 101 10210-6

10-4

10-2

100 Butterworth n=4, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

100 101 10210-15

10-10

10-5

100 Butterworth n=9, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

100 101 10210-30

10-20

10-10

100 Butterworth n=16, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

Page 30: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… effect on a spike …

Computational Geophysics and 30

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1 Original function

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

Filtered with n=1, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2 Filtered with n=4, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2 Filtered with n=9, f0=20 Hz

Time (s)

Am

plitu

de

Page 31: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… on a seismogram … … varying the order …

Computational Geophysics and 31

40 45 50 55 60 65

-5

0

5

x 10-6 Original function

Time (s)

Am

plitu

de

40 45 50 55 60 65

-1

0

1

x 10-6 Filtered with n=4, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65-2

-1

0

1

2x 10-6 Filtered with n=9, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65-2

-1

0

1

2x 10-6 Filtered with n=16, f0=1 Hz

Time (s)

Am

plitu

de

Page 32: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… on a seismogram … … varying the cut-off frequency…

Computational Geophysics and 32

40 45 50 55 60 65

-5

0

5

x 10-6 Original function

Time (s)

Am

plitu

de

40 45 50 55 60 65

-1

0

1

x 10-6 Filtered with n=4, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-1

-0.5

0

0.5

1

x 10-6 Filtered with n=4, f0=0.666667 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-1

-0.5

0

0.5

1

x 10-6 Filtered with n=4, f0=0.5 Hz

Time (s)

Am

plitu

de

Page 33: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

The Butterworth Filter (High-Pass)

Computational Geophysics and 33

nc

HF 2)/(111)(ωω

ω+

−=

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=1, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=4, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=9, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=16, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

Page 34: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… effect on a spike …

Computational Geophysics and 34

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1 Original function

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Filtered with n=1, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Filtered with n=4, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Filtered with n=9, f0=20 Hz

Time (s)

Am

plitu

de

Page 35: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… on a seismogram … … varying the order …

Computational Geophysics and 35

40 45 50 55 60 65

-5

0

5

x 10-6 Original function

Time (s)

Am

plitu

de

40 45 50 55 60 65

-5

0

5

x 10-6 Filtered with n=4, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-5

0

5

x 10-6 Filtered with n=9, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-5

0

5

x 10-6 Filtered with n=16, f0=1 Hz

Time (s)

Am

plitu

de

Page 36: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… on a seismogram … … varying the cut-off frequency…

Computational Geophysics and 36

50 52 54 56 58 60-5

0

5x 10-6 Original function

Time (s)

Am

plitu

de

50 52 54 56 58 60-4

-2

0

2

4x 10-6 Filtered with n=4, f0=1 Hz

Time (s)

Am

plitu

de

50 52 54 56 58 60-4

-2

0

2

4x 10-6 Filtered with n=4, f0=1.5 Hz

Time (s)

Am

plitu

de

50 52 54 56 58 60-4

-2

0

2

4 x 10-6 Filtered with n=4, f0=2 Hz

Time (s)

Am

plitu

de

Page 37: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

The Butterworth Filter (Band-Pass)

Computational Geophysics and 37

[ ] nb

BPF 2/)(111)(

ωωωω

∆−+−=

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=2, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=4, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=6, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1 Butterworth n=8, f0=20 Hz

Frequency (Hz)

Filt

er a

mpl

itude

Hz5=∆ω

Page 38: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… effect on a spike …

Computational Geophysics and 38

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1 Original function

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

-0.05

0

0.05

0.1

Filtered with n=1, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

-0.05

0

0.05

0.1 Filtered with n=4, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

-0.05

0

0.05

0.1 Filtered with n=9, f0=20 Hz

Time (s)

Am

plitu

de

Page 39: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… on a seismogram … … varying the order …

Computational Geophysics and 39

40 45 50 55 60 65

-5

0

5

x 10-6 Original function

Time (s)

Am

plitu

de

40 45 50 55 60 65

-2

-1

0

1

2x 10-6 Filtered with n=2, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-2

-1

0

1

2

x 10-6 Filtered with n=3, f0=1 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-2

0

2

x 10-6 Filtered with n=4, f0=1 Hz

Time (s)

Am

plitu

de

Page 40: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

… on a seismogram … … varying the cut-off frequency…

Computational Geophysics and 40

50 52 54 56 58 60-5

0

5x 10-6 Original function

Time (s)

Am

plitu

de

50 52 54 56 58 60

-5

0

5

x 10-7 Filtered with n=4, f0=2 Hz

Time (s)

Am

plitu

de

50 52 54 56 58 60

-5

0

5

x 10-7 Filtered with n=4, f0=3 Hz

Time (s)

Am

plitu

de

50 52 54 56 58 60

-5

0

5

x 10-7 Filtered with n=4, f0=4 Hz

Time (s)

Am

plitu

de

Page 41: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Zero phase and causal filters - Examples

Computational Geophysics and 41

Zero phase filters can be realised by

Convolve first with a chosen filter Time reverse the original filter and convolve

again First operation multiplies by F(ω), the 2nd

operation is a multiplication by F*(ω) The net multiplication is thus | F(w)|2 These are also called two-pass filters

Page 42: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Zero phase and causal filters

Computational Geophysics and 42

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1 Original function

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

Filtered with n=1, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2 Filtered with n=4, f0=20 Hz

Time (s)

Am

plitu

de

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2 Filtered with n=9, f0=20 Hz

Time (s)

Am

plitu

de

When the phase of a filter is set to zero (and simply the amplitude spectrum is inverted) we obtain a zero-phase filter. It means a peak will not be shifted.

Such a filter is acausal. Why?

Page 43: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

(causal) Butterworth Low-pass (20 Hz) on spike

Computational Geophysics and 43

0 50

0.5

1 Original function

Time (s)

Am

plitu

de

0 0.5 10

0.2

Filtered with n=1, f0=20 Hz

Time (s)

Am

plitu

de

0 0.5 1

0

0.1

0.2

Filtered with n=4, f0=20 Hz

Time (s)

Am

plitu

de

0 0.5 1

0

0.1

0.2 Filtered with n=9, f0=20 Hz

Time (s)

Am

plitu

de

Page 44: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Butterworth Low-pass (20 Hz) on data

Computational Geophysics and 44

40 45 50 55 60 65

-5

0

5

x 10-6 Original function

Time (s)

Am

plitu

de

40 45 50 55 60 65-1

-0.5

0

0.5

1x 10-6 Filtered with n=2, f0=0.5 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-2

-1

0

1

2

x 10-6 Filtered with n=2, f0=2.5 Hz

Time (s)

Am

plitu

de

40 45 50 55 60 65

-2

0

2

x 10-6 Filtered with n=2, f0=4.5 Hz

Time (s)

Am

plitu

de

Page 45: Fourier Transform: Applications in seismologyfbernauer/teaching/Spektr… · Spectra: Applications Computational Geophysics and Data Analysis 3 The Fourier Transform discrete vs

Spectra: Applications Computational Geophysics and Data Analysis45

Summary

• Care has to be taken when estimating spectra for finite-length signals (detrending, down-sampling, …)

• The Fourier transform is extremely useful in understanding and analysing seismic recordings

• Filters are powerful tools for extracting information from seismic recordings