17
3. The soil water balance Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

3. The soil water balance

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

Page 2: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Soil moisture

• Soil moisture is the amount of water in the upper layer of soil that interacts with the atmosphere (active layer).

• Soil moisture controls for plant establishment, growth and reproduction and soil functioning (nutrient cycling)

• Soil moisture dynamics (seasonal, interannual) provides the link among climate, soil, and vegetation

• Soil moisture is the key variable of ecohydrological models thatcouple climate-vegetation models

3

Page 3: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Soil Water variables• Soil volume, depth Z, 1 m2

Vsol = Vair + Vwater + Vmat = Z x 1 m2

• Porosity [m3 m-3] : n = (Vair + Vwater ) / Vsol

• Soil Water Content = Soil Water Store (W) [m3 m-2 = m] W = Vwater s Vsol

0< W < Wsat

• Volumetric Soil Water content [m3 m-3] = Vwater / Vsol

Vair = 0 -> n = sat (Saturated Volumetric Water Content)

• Relative Soil Water Content [0-1] s • s = Vwater / (Vair + Vwater )• s = W / Wsat = W / (sat Z) = W / (n Z)

Vair

Vwat

Vsoil

Vmat

3

Page 4: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Version du 14/01/2014Bioclimatologie 92

Critical values of the Soil Water Content

If soil porosity is completely filled by water, the amount of water left in the soil is the water-holding capacity (W=Wsat and s = 1) (Reserve Utile sensphysique)

If the excess water has drained away (2-3 days), the amount of water left in the soil is the field capacity (W=Wfc and sfc = Wfc/Wsat) (Capacité au Champ)

If vegetation has extracted water until it wilted, the amount of water left in the soil is the wilting level (W=Wwil and sw = Ww/Wsat) (Point de flétrissement)

The available plant soil moisture (Réserve Utile sens agronomique) (m) is : • Wfc - Wwil = Z * (fc – wil) [m]

• Exemple : fc = 0.45 m3 m-3 , wil = 0.31 m3 m-3, Z= 1m • 0.14 m = 140 mm

3

Page 5: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

Page 6: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Master equation : Soil Water balance

Bioclimatologie 94

• Zr Depth of the root zone = active soil depth = rooting depth [m]

• Mass conservation balance

( ) ( ) ( , ) ( , ) ( , )dW P t L t E W t T W t R W tdt

W, s

Transpiration (T)

Precipitation (P)

Evaporation (E)

Leakage - Infiltration(Deep drainage, Percolation)

Ruissellement (R)

RunoffZr

Z

Canopy Interception (L)

( ) ( ) ( , ) ( , ) ( , )rdsnZ P t L t E s t T s t R s tdt

3

Page 7: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Soil moisture and evapotanspiration3

Relative Soil Water Content (s)

Soi

l wat

er lo

sses

(e

vapo

trans

pira

tion

& le

akag

e)

Source: Porporato A. (2003) Journal of geophysical research, 108.

max

( ) ( , ) ( , )

( , ) *( , ) *( , ) 0

( , ) 0

( , ) ( )

r

h

h

fc

fc

dsnZ P t ET s t R s tdtET s t E if s sET s t s if s s sET s t if s s

R s t if s s

R s t P t if s s

Emax

non-saturated soil saturated soil

s* is the soil moisture level at which the plant begins to close stomata in response to water stress

unst

ress

edE

T

stre

ssed

ET

excessrainfalls

Accounting for stomatal control

max

( ) ( , ) ( , )

( , )

( , )

( , ) 0

( , ) 0

( , ) ( )

r

fc

h fc

h

fc

fc

dsnZ P t ET s t R s tdtET s t E if s s

ET s t s if s s s

ET s t if s s

R s t if s s

R s t P t if s s

Neglecting stomatal control

Page 8: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Version du 14/01/2014

Water Retention Curve

sat : water retained at = −0.1 bar = - 10 kPafc : water retained at = −0.33 bar = - 33 kPa wil = water retained at = −15 bar = - 1500 kPa

33 kPa10 kPa

1500 kPa

3

Page 9: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Tropical Vegetation in Northern Australia

Fox (2001), modified from Hill (2005)

2 million km2

12% of the savanna biome

Northern Territories

Queensland

Western Australia

PART 1

Page 10: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Mitchell grasslands : C4 perennial grasslands on vertic soils

Astrebla sp. (Mitchell grass)

PART 1

Page 11: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Toorak (Qld)PART 2

Page 12: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Plant –soil moisture feedbacks

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

( ) ( ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )G L

dsnZ P t L t E s p t T s p t R s p tdt

dp f p s t f p s tdt

3

W, s

Transpiration (T)

Precipitation (P)

Evaporation (E)

Leakage - Infiltration(Deep drainage, Percolation)

Ruissellement (R)

RunoffZr

Z

Canopy Interception (L)

Page 13: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Climate diagram (diagramme ombrothermique)

Mean Annual Temperature(MAT)

Annual Precipitation(AP)

Tem

pera

ture

Précipitation

Climat tempéré (Thot>10, 0<Tcold<18)No dry season

Cold summer (Thot <22)

Temperature of the coldestmonth (Tcold)

Temperature of the hottestmonth (Thot)

Page 14: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

One bucket soil model suitable for climate studies

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013) Source: Stephenson N.L. (1998) J. Biogeogr., 25, 855-870.

Precipitation ≈ supply

PET ≈ demand

energylimited ET

AET = PET

supplylimited

AET < PET

energylimited ET

AET = PET

Surplus

Deficit

surplus

replenishmentof soil reserve

dS >0

use ofof soil reserve

dS<0

Page 15: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Soil water balance and global distribution of vegetation

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

Page 16: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Key issues

• Impact of soil parameters and plant functional properties on plot scale water balance

• Effects of land use change and vegetation dynamics on soil water balance (Upscaling plot -> watershed)

• Coupled soil-vegetation models to understand the dynamics of drylands under global change

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

3

Page 17: Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – …philippe-choler.com/resources/Choler_Ecohydrology_Part3.pdf · 2020. 2. 22. · Fundamentals of Ecohydrology (Philippe

Advanced readings

• Peel, M. C., et al. 2007. Updated world map of the Koppen-Geiger climate classification. - Hydrology and Earth System Sciences 11: 1633-1644.

• Porporato, A., et al. 2002. Ecohydrology of water-controlled ecosystems. - Advances in Water Resources 25: 1335-1348.

• Porporato, A., et al. 2004. Soil water balance and ecosystem response to climate change. - Am. Nat. 164: 625-632.

• Rodriguez-Iturbe, I., et al. 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress - I. Scope and general outline. Advances in Water Resources. 24: 695-705.

• Stephenson, N. L. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. - J. Biogeogr. 25: 855-870.

Fundamentals of Ecohydrology (Philippe CHOLER – CNRS – France). Wuwei (09/2013)

3