50
Identi’ication and Characterization of the Drosophila retinal degeneration B 205 (rdgB205) Gene as a Phosphoinositol Transfer Protein. ABSTRACT The retinal degeneration B 205 (rdgB205) gene in Drosophila causes retinal degeneration of photoreceptor cells in the eye in response to light. We aimed to identify and characterize a mutation in the phosphatidylinositol transfer protein (PITP) domain as a factor resulting in retinal degeneration in rdgB205 mutants. Chromosome and deletion mapping resulted in the determination of the rdgB205 gene being located in the 12BC region of the X chromosome. A complementation test resulted in the identiFication of rdgB205 as an allele of the known gene rdgB. Mutations to the genes norpA and ninaE caused the suppression of the rdgB205 phenotype, suggesting that rdgB205 functions downstream of these two genes in the phototransduction cascade. The PITP domain was ampliFied using PCR and the product was electrophoresed to ensure that the selected 567 base pair fragment of the 834 base pair rdgB205 gene was properly cloned. Sequencing of this fragment resulted in the discovery of a point mutation at base pair 175 which caused adenine to be replaced by guanine, resulting in a nonconservative, missense mutation at amino acid 58 where glutamic acid was replaced by glycine. We also compared rdgB in Drosophila to the rat brain PITP domain and determined the 58th amino acid was not evolutionarily conserved. Immunolocalization in Drosophila head sections revealed that the location of expression between wild type and rdgB205 mutants had not changed, suggesting a loss of function producing the rdgB205 phenotype rather than a lack of expression. These results suggest that rdgB205 functions as a PITP domain due to its allelism with rdgB and similar expression of their respective proteins.

Genetics lab paper

Embed Size (px)

Citation preview

Page 1: Genetics lab paper

Identi'ication  and  Characterization  of  the  Drosophila  retinal  degeneration  B  205  (rdgB205)  

Gene  as  a  Phosphoinositol  Transfer  Protein.  

ABSTRACT  

 The  retinal  degeneration  B  205  (rdgB205)  gene  in  Drosophila  causes  retinal  degeneration  

of  photoreceptor  cells  in  the  eye  in  response  to  light.    We  aimed  to  identify  and  characterize  a  

mutation  in  the  phosphatidylinositol  transfer  protein  (PITP)  domain  as  a  factor  resulting  in  

retinal  degeneration  in  rdgB205  mutants.    Chromosome  and  deletion  mapping  resulted  in  the  

determination  of  the  rdgB205  gene  being  located  in  the  12B-­‐C  region  of  the  X  chromosome.    A  

complementation  test  resulted  in  the  identiFication  of  rdgB205  as  an  allele  of  the  known  gene  

rdgB.    Mutations  to  the  genes  norpA  and  ninaE    caused  the  suppression  of  the  rdgB205  phenotype,  

suggesting  that  rdgB205  functions  downstream  of  these  two  genes  in  the  phototransduction  

cascade.    The  PITP  domain  was  ampliFied  using  PCR  and  the  product  was  electrophoresed  to  

ensure  that  the  selected  567  base  pair  fragment  of  the  834  base  pair  rdgB205  gene  was  properly  

cloned.    Sequencing  of  this  fragment  resulted  in  the  discovery  of  a  point  mutation  at  base  pair  175  

which  caused  adenine  to  be  replaced  by  guanine,    resulting  in  a  non-­‐conservative,  missense  

mutation  at  amino  acid  58  where  glutamic  acid  was  replaced  by  glycine.    We  also  compared  rdgB  

in  Drosophila  to  the  rat  brain  PITP  domain  and  determined  the  58th  amino  acid  was  not  

evolutionarily  conserved.    Immunolocalization  in  Drosophila  head  sections  revealed  that  the  

location  of  expression  between  wild  type  and  rdgB205  mutants  had  not  changed,  suggesting  a  

loss  of  function  producing  the  rdgB205  phenotype  rather  than  a  lack  of  expression.    These  results  

suggest  that  rdgB205  functions  as  a  PITP  domain  due  to  its  allelism  with  rdgB  and  similar  

expression  of  their  respective  proteins.  

 

Page 2: Genetics lab paper
Page 3: Genetics lab paper

INTRODUCTION  

The  retinal  degeneration  B  205  (rdgB205)  gene  in  Drosophila  encodes  a  

phosphatidylinositol  transfer  protein  (PITP)  that  is  essential  to  proper  functioning  of    the  

phototransduction  cascade  and  prevention  of  retinal  degeneration  (Milligan  1997).      The  

Drosophila  eye  is  composed  of  about  800  ommatidia,  which  contain  eight  photoreceptor  cells  

each.    Photoreceptor  cells  contain  a  cell  body  and  a  rhabdomere,  which  is  Filled  with  the  

membrane  protein  rhodopsin.    The  rdgB205  protein  is  localized  adjacent  to  the  rhabdomeres,  in  

the  subrhabdomeric  cisternae  (SRC)  (Vihtelic  1993).    Retinal  degeneration  is  caused  by  the  death  

of  these  photoreceptor  cells  that  will  lead  to  blindness  in  the  Flies.  

 In  Drosophila,  several  genes  involved  in  the  phototransduction  cascade  are  known  to  

cause  the  failure  of  photoreceptor  cells  leading  to  retinal  degeneration.    One  of  these  genes,  ninaE,  

is  characterized  by  a  failure  to  produce  functional  rhodopsin  in  the  photoreceptor  cells  R1-­‐6  

(Vihtelic  1991).    Another  gene,  norpA,  encodes  the  phototransduction  effector  molecule  

phospholipase  C  (VIhtelic  1991).    Suppression  of  the  rdgB  phenotype  in  the  presence  of  a  

mutated  ninaE  or  norpA  gene  suggests  that  rdgB  functions  downstream  of  phospholipase  C  in  the  

phototransduction  cascade  (Vihtelic  1993).    Further  evidence  suggests  that  rdgB  does  not  

function  directly  downstream  of  phospholipase  C,  but  instead  is  mediated  by  a  mechanism  

related  to  the  regeneration  of  phosphatidylinositol  4,5-­‐diphosphate  (PIP2)  (Vihtelic  1993).    The  

current  proposed  mechanism  involves  the  hydrolyzation  of  PIP2  into  inositol  1,4,5-­‐triphosphate  

(IP3)  and  diaglycerol  (DAG),  followed  by  a  multistep  process  that  results  in  DAG  being  converted  

back  into  PIP2  (Wang  and  Montell  2007).    During  this  multistep  process,  PITP  (encoded  by  rdgB)  

promotes  the  transfer  of  phosphoinoside  (PI)  from  the  SRC  back  into  the  rhabdomeres  for  

phosphorylation  of  PI  into  PIP2  (Wang  and  Montell  2007).    A  lack  of  being  able  to  transport  PI  

back  into  the  rhabdomere  for  phosphorylation  is  a  proposed  effect  of  the  rdgB  mutation  leading  

Page 4: Genetics lab paper
Page 5: Genetics lab paper

to  retinal  degeneration.    This  model  is  consistent  with  rdgB’s  localization  to  the  SRC  membrane,  

but  PI  transfer  has  not  been  proven  to  be  the  critical  activity  in  producing  rdgB-­‐type  retinal  

degeneration  (Paetkau  1999).  

Since  rdgB  encodes  an  integral  membrane  protein  that  may  bind  calcium  (Vihtelic  1993),  

it  has  been  proposed  that  the  gene  may  play  a  role  in  maintaining  the  functionality  of  the  

rhabdomere  by  transporting  membrane  proteins  to  the  rhabdomere  and  acting  as  a  source  of  the  

Ca2+  release  following  phototransduction  (Vihtelic  1993).    The  functionality  of  the  SRC  

membrane  as  an  intracellular  Ca2+  store  has  led  to  experimentation  that  suggests  that  either  the  

rdgB  protein  may  alter  intracellular  Ca2+  levels  or  is  regulated  by  Ca2+  (Paetkau  1999).      Further,  

a  mutation  to  the  light  activated  calcium  channel  called  trp  resulted  in  slowed  rdgB  degeneration  

(Paetkau  1999).      Another  study  showed  that  blocking  the  calcium  channels  slowed  the  rdgB-­‐type  

degeneration,  suggesting  that  an  increase  in  intracellular  Ca2+  via  the  calcium  channels  may  lead  

to  rdgB-­‐type  degeneration  (Sahly  1992).    This  is  in  contrast  to  inaC  (encoded  by  protein  kinase  C,  

PKC),  which  does  not  slow  rdgB-­‐type  retinal  degeneration  (Paetkau  1999).      This  data  supports  

that  PKC  is  not  directly  upstream  of  rdgB  and  that  Ca2+  entry  into  photoreceptors  stimulates  

rdgB  degeneration  (Paetkau  1999).    

               Our  study  aims  to  identify  and  characterize  the  function  of  an  EMS-­‐induced  mutant  

allele  of  rdgB,  rdgB205.      We  know  that  rdgB-­‐type  retinal  degeneration  is  involved  with  the  PITP  

domain,  so  we  targeted  that  area  of  the  rdgB  gene  for  examination.    PCR  ampliFication  of  a  567  

base  pair  fragment  of  the  PITP  domain  of  rdgB205  as  well  as  DNA  sequencing  allowed  for  

comparison  to  the  wild-­‐type  rdgB  gene  resulting  in  the  discovery  of  a  nonconservative  missense  

mutation  in  the  amino  acid  sequence.    The  mutation  was  compared  with  the  rat  brain  PITP  

domain  and  was  determined  to  be  not  evolutionarily  conserved.    Immunolocalization,  which  

showed  the  location  of  the  protein  expression  in  the  mutant  rdgB205  head  section  versus  a  wild  

Page 6: Genetics lab paper
Page 7: Genetics lab paper

type,    showed  that  the  rdgB205    protein  was  expressed  in  the  same  location  as  wild-­‐type,  but  

suggests  a  loss  of  functionality  due  to  the  mutation.    RdgB205’s  allelic  nature  to  rdgB  as  well  as  its  

sequence  identity  with  the  rat  brain  PITP  (Vihtelic  1993)  serve  to  suggest  its  function  as  a  PITP.  

 

MATERIALS  AND  METHODS  

Deep  Pseudopupil  Analysis:  By  placing  Flies  under  a  light  microscope,  it  is  possible  to  

fully  examine  the  individual  rhabdomeres  within  the  ommatidia  of  the  compound  eye.  The  deep  

pseudopupil  itself  represents  virtual  images  of  the  rhabdomere  patterns  from  several  ommatidia  

that  are  observed  head  on.  A  wild-­‐type  deep  pseudopupil  exhibits  a  trapezoidal  shape,  composed  

of    seven  dots  which  indicate  seven  of  the  eight  individual  rhabdomeres  of  the  ommatidia,  one  of  

which  always  being  distal  to  the  observer  and  therefore  unable  to  be  seen.  Deep  pseudopupils  

showing  signs  of  retinal  degeneration  have  blurry,  scattered,  dull,  or  fewer  than  seven  

rhabdomeres  visible.    

Chromosome  Mapping:  rdgB205  females  were  mated  to  balancer  males  (X/Y;  SM1/Sco;  

TM2/Sb).  After  14  days,  the  F1  generation  was  examined  for  phenotypic  markers  Scutoid  (Sco)  

and  Stubble  (Sb),  which  were  then  examined  for  retinal  degeneration  via  deep  pseudopupil  

analysis.    

Deletion  Mapping:    rdgB205  males  were  mated  to  deFicient  bar  eye  females  (Df/FM6;  

+/+;  +/+).  Four  different  deFiciencies  were  utilized:  Df  1-­‐  966,  breakpoints  11C  –  11F;  Df  2-­‐  967,  

breakpoints  11D  –  12A;  Df  3-­‐  968,  breakpoints  12A  -­‐12D;  Df  4-­‐  969,  breakpoints  12D  –  12F.  After  

14  days,  the  female  F1  progeny  of  each  deletion  mapping  cross  were  examined  for  the  phenotypic  

Page 8: Genetics lab paper
Page 9: Genetics lab paper

marker  heart  eye,  those  of  which  were  then  examined  for  retinal  degeneration  via  deep  

pseudopupil  analysis.    

Complementation:    rdgB205  females    were  crossed  with  males  containing  known  retinal  

degeneration  mutations  (  rdgB,  rdgB/y;  +/+;  +/+).    After  14  days,  the  F1  Flies  were  examined  for  

retinal  degeneration  via  deep  pseudopupil  analysis.    

Epistasis:    rdgB205  Flies  were  crossed  with  ninaE  and  norpA  mutant  Flies  in  order  to  

create    rdgB205,  ninaE  (  rdgB205/ninaE;  +/+;  +/+)  and    rdgB205,  norpA  (rdgB205/rdgB205;  +/+;  

norpA/norpA)  double  mutants.  These  double  mutants  were  obtained  and  then  examined  for  

retinal  degeneration  via  deep  pseudopupil  analysis  after  3-­‐5  days  of  incubation  under  constant  

light.  

Genomic  DNA  Isolation  and  Ampli'ication:  Genomic  Drosophila  DNA  was  isolated  

following  standard  protocol  (Whaley  2014).  Primers  for  PCR  were  designed  using  the  DNA  

sequence  of  the  rdgB  gene  and  were  ordered  from  the  NCBI  website.  The  forward  primer  used  

had  the  sequence  5’-­‐AAAAGAGTCGCGAGGAGAGC-­‐3’  and  the  reverse  primer  had  the  sequence  

5’-­‐TTGTCTGCATGCCCCAGTAG-­‐3’.  Standard  PCR  via  Taq  Polymerase  was  carried  out  using  the  

designed  primers  in  order  to  amplify  a  567  base  pair  portion  of    the  PITP  region  of  the  rdgB205  

gene.  The  PCR  cycling  consisted  of  30  total  cycles:  a  six  minute  initial  denaturing  step  at  95o  C  and  

35  cycles  of  30  seconds  at  95oC,  60  seconds  at  52oC,  and  60  seconds  at  65oC,  followed  by  a  ten  

minute  cycle  at  65oC  and  then  a  Final  24  hour  cycle  at  4oC.  The  PCR  product  was  then  

electrophoresed  on  an  1%  agarose  gel.    

DNA  Ligation  and  E.  Coli  Transformation:  After  determining  the  concentration  of  the  

PCR  product  from  the  gel  electrophoresis,  a  ligation  reaction  was  set  up  using  a  mixture  of  1μl  of  

the  fresh  PCR  product,  2.1  TOPO  vector  (Invitrogen),  and  distilled  ddH2O.    After  Five  minutes  the  

Page 10: Genetics lab paper
Page 11: Genetics lab paper

recombinant  plasmid  DNA  was  plated  on  LB/Amp-­‐agar  plates  following  standard  procedure  

(Whaley  2014).      Two  methods  were  used  to  select  colonies  that  had  been  transformed  and  

contained  the  PCR  product  DNA  insert:  First,  colonies  were  selected  for  ampicillin  resistance.  The  

other  selection  process  utilized  the  blue/white  system  of  the  LacZ  gene  in  the  presence  of  X-­‐gal  

media.  One  blue  colony  and  three  white  colonies  were  selected  and  then  run  on  a  1%  agarose  gel.    

DNA  Digest  via  ECOR1  Enzyme:  Standard  procedures  were  followed  using  the  QIAprep®  

Spin  Miniprep  Kit.  Plasmid  DNA  was  cut  by  mixing  isolated  plasmid  DNA,  EcoR1  10X  buffer,  

EcoR1  restriction  enzyme,  and  distilled  water  and  then  incubating  at  37oC  for  45  minutes.  Cut  

plasmid  DNA  and  lambda  DNA  standards  were  electrophoresed  on  a  1%  agarose  gel  using  1X  TBE  

buffer  for  55  minutes  at  100V.    

DNA  Capillary  Sequencing:  Cells  from  white  colony  2  were  DNA  sequenced  via  standard  

automated  capillary  sequencing  protocol  using  an  ABI  3700  Prism  sequencer  (Whaley  2014).  

Genomic  DNA  was  then  aligned  with  and  compared  to  wild-­‐type  DNA  at  the  nucleotide  level  via  

the  NCBI  website.  Both  sequences  were  then  translated  and  compared  at  the  amino  acid  level.  

Immunolocalization  of  the  rdgB  Protein:  Flies  were  decapitated  and  the  heads  were  

placed  in  Fix  (4%  paraformaldehyde,  5%  sucrose)  overnight  at  4°C.  18  hours  later,  the  Fix  was  

removed  and  the  heads  were  suspended  in  5%  sucrose  for  4  hours.  Next,  the  5%  sucrose  was  

removed  and  the  heads  were  suspended  in  30%  sucrose  for  48  hours.  The  30%  sucrose  was  then  

removed  and  replaced  with  1:1  30%  sucrose:  OCT.  Standard  cryosectioning  procedures  were  then  

followed.  Standard  procedures  for  Immunolocalization  via  GFP  were  followed  afterwards,  and  the  

stained  heads  were  examined  under  a  Leica  400DM  Fluorescence  microscope  (Whaley  2014).  

 

Page 12: Genetics lab paper
Page 13: Genetics lab paper

RESULTS  

Chromosome  Mapping:  In  order  to  determine  which  chromosome  rdgB205  was  located  

on,  rdgB205  females  were  crossed  with  balancer  males  (X/Y;  SM1/Sco;  TM2/Sb)  and  the  F1  

generation  was  examined  for  phenotypic  markers  Stubble  (Sb)  and  Scutoid  (Sco),  and  those  that  

had  those  markers  were  examined  for    signs  of  retinal  degeneration  via  deep  pseudopupil  

analysis.  Only  F1  males  showed  signs  of  retinal  degeneration,  thus  indicating  that  the  rdgB205  

gene  maps  to  the  X  chromosome.  

Deletion  Mapping:  :  In  order  to  narrow  down  the  rdgB205  locus  to  a  small  region  along  

the  X  chromosome,  rdgB205  males  were  crossed  with  deFicient  bar  eye  females  (Df/FM6;  +/+;  

+/+).  A  total  of  four  deFiciencies  were  analyzed  (Containing  breakpoints  as  mentioned  in  

Materials  and  Methods).  Of  the  four  deFiciency  crosses  analyzed,  only  the  cross  between  rdgB205  

males  and  Df  3-­‐968  bar  eye  females  (Df3/FM6;  +/+;  +/+)  yielded  Heart  Eye  females  phenotypic  

for  retinal  degeneration.  Therefore,  the  rdgB205  gene  should  be  located  on  the  X  chromosome  

between  breakpoints  12B  -­‐  12C.    

Complementation:  In  order  to  examine  whether  the  rdgB205  gene  was  allelic  to  rdgB  

since  it  maps  to  the  same  region,  rdgB205  females  were  mated  to  rdgB  males,  and  the  F1  

generation  was  examined  for  signs  of  retinal  degeneration  via  deep  pseudopupil  analysis.  F1  Flies  

yielded  offspring  phenotypic  for  retinal  degeneration,  indicating  that  the  two  genes  were  

non-­‐complementary,  and  therefore  allelic.  

Epistasis:  In  order  to  map  rdgB205  within  the  phototransduction  cascade,  rdgB205  Flies  

were  crossed  with  ninaE  and  norpA  mutant  Flies  in  order  to  create    rdgB205,  ninaE  

(rdgB205/ninaE;  +/+;  +/+)  and    rdgB205,  norpA  (rdgB205/rdgB205;  +/+;  norpA/norpA)  double  

mutants.  These  double  mutants  were  obtained  and  then  examined  for  signs  of  retinal  

Page 14: Genetics lab paper
Page 15: Genetics lab paper

degeneration  via  deep  pseudopupil  analysis.  Neither  set  of  double  mutants  displayed  any  signs  of  

retinal  degeneration,  providing  evidence  that  both  ninaE  and  norpA  are  epistatically  dominant  to  

rdgB205.  This  also  suggests  that  rdgB205  is  located  downstream  of  both  ninaE  and  norpA  within  

the  phototransduction  cascade,  which  allows  us  to  map  rdgB205  downstream  of  Phospholipase  C  

and  Rhodopsin.  

Genomic  DNA  Isolation  and  Ampli'ication:  The  ampliFied  567  base  pair  portion  of  the  

PITP  region  of  our  genomic  rdgB205  DNA,  was  run  on  an  agarose  gel  in  order  to  conFirm  proper  

ampliFication.  In  Figure  1,  lane  205  shows  clear  banding  of  DNA  at  approximately  the  anticipated  

567  base  pair  length.  This  suggests  that  we  have  correctly  ampliFied  the  desired  567  base  pair  

portion  of  the    PITP  region  of  the  rdgB205  gene,  however  until  sequencing  data  is  obtained  there  

is  no  way  to  conclude  that  this  is  in  fact  the  correct  region.  

 

 

 

 

 

 

 

 

 

Page 16: Genetics lab paper
Page 17: Genetics lab paper

 

 

 

Figure  1.  -­‐-­‐  Ampli'ied  rdgB205  DNA  run  on  1%  agarose  gel  showing  ampli'ication  of  

a  567  base  pair  region  of  rdgB205.  Lane  205  shows  a  single  clear  band  at  approximately  600  

base  pairs.  Our  desired  region  of  the  PITP  region  is  567  base  pairs  long.  This  would  suggest  that  

the  desired  portion  of  the  PITP  region  of  the  rdgB205  gene  was  correctly  ampliFied,  however  

without  sequencing  data  there  is  no  way  guarantee  that  this  ampliFied  DNA  is  the  intended  region  

of  rdgB205.  

 

 

DNA  Ligation  and  E.  Coli  Transformation:  We  performed  DNA  ligation  into  the  TOPO  

vector  (Invitrogen)  in  order  to  insert  the  ampliFied  567  base  pair  portion  of  the  PITP  domain  of  

our  rdgB205  gene  into  plasmid  DNA.  Cell  colonies  that  were  successfully  transformed  were  

ampicillin  resistant,  allowing  them  to  survive  on  the  media  containing  ampicillin.  Cell  colonies  

that  had  been  ligated  correctly  due  to  lacZ  inactivation  showed  up  as  white  on  the  agar  gel  plates,  

whereas  those  cells  that  had  not  been  ligated  successfully  showed  up  as  blue  on  the  plate.  3  white  

colonies  and  1  blue  colony  were  selected  for  gel  electrophoresis  on  a  1%  agarose  gel.    Blue  colony  

1,  as  expected,  showed  to  be  smaller  in  base  pair  length  than  white  colonies  1  and  2  (Fig.  2.).  This  

is  because  plasmids  not  containing  the  DNA  insert  (blue  colonies)  would  be  shorter  in  length  than  

plasmids  containing  the  insert  (white  colonies).  Therefore,  we  can  conclude  that  our  ampliFied  

portion  of  the  rdgB205  gene  was  successfully  inserted  into  the  plasmid  DNA  within  white  

Page 18: Genetics lab paper
Page 19: Genetics lab paper

colonies  1  and  2.  Since  the  white  colony  3  electrophoresed  identically  to  the  blue  colony,  we  can  

also  conclude  that  this  colony  was  a  false  white,  meaning  that  the  ampliFied  rdgB205  DNA  was  not  

successfully  inserted  into  the  plasmid  DNA  within  that  colony.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20: Genetics lab paper
Page 21: Genetics lab paper

 

 

 

 

 

Figure  2.-­‐-­‐  1%  agarose  gel  electrophoresis  of  transformed  E.  Coli  DNA  showing  

successful  ligation  of  the  PCR  insert.with  2.1  TOPO  vector.  (From  left  to  right):  lambda  

standard,  blue  colony  1,  white  colony  1,  white  colony  2,  white  colony  3.  The  selected  colonies  

were  run  on  an  agarose  gel  to  ensure  that  the  rdgB205  DNA  insert  had  been  correctly  ligated  into  

the  TOPO  vector.  Blue  colony  1,  as  expected,  is  smaller  in  base  pair  length  than  white  colonies  1  

and  2  due  to  the  fact  that  it  does  not  contain  the  DNA  insert.  We  can  conclude  that  our  desired  

portion  of  the  rdgB205  gene  was  successfully  inserted  into  the  plasmid  DNA  within  white  

colonies  1  and  2.  White  colony  3  is  anomalous  because  it  is  identical  in  size  to  Blue  colony  1,  

providing  evidence  that  White  colony  3  is  a  false  white,  and  does  not  contain  the  rdgB205  DNA  

insert.    

   

 

DNA  Digest  via  ECOR1  Enzyme:  Plasmid  DNA  from  all  four  selected  colonies  was  

digested  via  the  EcoR1  enzyme  in  order  to  cut  the  rdgB205  DNA  insert  out  of  the  plasmid  DNA.  

The  digested  fragments  were  then  electrophoresed  on  an  agarose  gel  to  ensure  proper  fragment  

length.  Fig.  3  shows  two  sets  of  bands  in  each  lane,  with  one  band  being  much  larger  at  

approximate  5,000  in  base  pair  length  and  the  other  much  smaller  at  approximately  1,000  base  

Page 22: Genetics lab paper
Page 23: Genetics lab paper

pairs  in  length.  The  larger  band  represents  the  plasmid  DNA  size  and  the  smaller  band  

corresponds  to  the  size  of  the  rdgB205  DNA  insert,  providing  evidence  that  the  rdgB205  DNA  

insert  was  successfully  cloned  and  digested  from  plasmid  DNA,  and  is  ready  for  sequencing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 24: Genetics lab paper
Page 25: Genetics lab paper

 

 

 

Figure  3.-­‐-­‐  1%  agarose  gel  electrophoresis  of  EcoR1-­‐digested  plasmid  DNA  showing  

that  the  desired  portion  of  the  PITP  region  of  rdgB205  was  successfully  inserted  and  

cloned  within  E.  coli  plasmids.  All  four  colonies  were  digested  via  EcoR1  enzyme.  Blue  colony  1  

contains  only  one  band  of  approximately  4,000  base  pairs  because  it  did  not  contain  an  insert,  

and  therefore  was  only  cut  once.  White  colonies  1-­‐3  each  contain  two  bands  of  approximately  

4,000  base  pairs  and  600  base  pairs  respectively,  one  representing  the  plasmid  DNA  and  the  other  

corresponding  to  the  rdgB205  DNA  insert,  From  this  we  can  conclude  that  the  rdgB205  DNA  was  

successfully  cloned  and  digested  out  of  the  plasmid  DNA.  

 

DNA  Capillary  Sequencing:  In  order  to  compare  mutant  rdgB205  DNA  and  wild-­‐type  

DNA  of  the  567  base  pair  portion  of  the  PITP  domain,  cells  from  white  colony  2  were  sequenced  

using  standard  automated  capillary  sequencing.  The  mutant  rdgB205  DNA  was  aligned  with  and  

compared  to  corresponding  wild-­‐type  DNA,  and  both  sequences  were  compared  in  order  to  

detect  mutations  within  that  region.  We  found  one  point  mutation  at  base  pair  175(adenine  

changed  to  guanine)[Fig.  4.].  In  order  to  further  examine  the  effects  of  this  point  mutation,  each  

sequence  was  translated  and  compared  at  the  amino  acid  level.  The  mutation  at  base  pair  175  

resulted  in  a  nonconservative  missense  mutation  at  amino  acid  58  (glutamic  acid  changed  to  

glycine),  which  could  result  in  a  loss  of  function  due  to  improper  protein  folding  because  glutamic  

acid  contains  a  negatively  charged  side  chain,  whereas  glycine  is  a  special  case  amino  acid  (Fig.  5.)  

This  mutation  does  not  seem  to  be  evolutionarily  conserved,  as  the  corresponding  amino  acid  

Page 26: Genetics lab paper
Page 27: Genetics lab paper

within  the  PITP  domain  of  rats  is  a  histidine  as  opposed  to  the  mutant  rdgB205  glycine  (Vihtelic  

1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RdgB205  Mutant  DNA  

AAAAGAGTCGCGAGGAGAGCCATGGCGAGGGCAGTGGCGTTGAGATAATCATCAATGAGCCGTACAAGGATGGACCCGGCGGTAATGGTCAATACACAAAGAAGATCTATCACGTGGGCAATCATCTGCCTGGCTGGATTAAAAGTCTCTTGCCGAAAAGCGCTTTAACCGTGGGGGAGGAGGCATGGAATGCCTATCCGTATACCAGGACTCGCTACACCTGTCCGTTTGTGGAGAAATTCTCGCTGGATATTGAGACATACTATTATCCGGACAATGGCTATCAGGACAATGTCTTCCAGCTGTCCGGAAGCGATTTGCGTAATCGGATCGTAGACGTAATTGACATTGTCAAGGATTAGCTGTGGGGCGGTGACTATGTGAAGGAGGAGGATCCCAAGCACTTTGCGTCGGACAAGACGGGCCGTGGACCCTTGGCCGAGGATTGGCTGGAGGAGTATTGGCGCGAAGTGAAGGGCAAAAAGCAACCGACACCGCGCAACATGTCCCTGATGACCGCCTACAAGATCTGCCGCGTGGAGTTTCGCTACTGGGGCATGCAGACAAA  

   

Wild-­‐Type  DNA  

AAAAGAGTCGCGAGGAGAGCCATGGCGAGGGCAGTGGCGTTGAGATAATCATCAATGAGCCGTACAAGGATGGACCCGGCGGTAATGGTCAATACACAAAGAAGATCTATCACGTGGGCAATCATCTGCCTGGCTGGATTAAAAGTCTCTTGCCGAAAAGCGCTTTAACCGTGGAGGAGGAGGCATGGAATGCCTATCCGTATACCAGGACTCGCTACACCTGTCCG

Page 28: Genetics lab paper
Page 29: Genetics lab paper

TTTGTGGAGAAATTCTCGCTGGATATTGAGACATACTATTATCCGGACAATGGCTATCAGGACAATGTCTTCCAGCTGTCCGGAAGCGATTTGCGTAATCGTATCGTAGACGTAATTGACATTGTCAAGGATCAGCTGTGGGGCGGTGACTATGTGAAGGAGGAGGATCCCAAGCACTTTGTGTCGGACAAGACGGGCCGTGGACCCTTGGCCGAGGATTGGCTGGAGGAGTATTGGCGCGAAGTGAAGGGCAAAAAGCAACCGACACCGCGCAACATGTCCCTGATGACCGCCTACAAGATCTGCCGCGTGGAGTTCCGCTACTGGGGCATGCAGACAAA  

Figure  4.-­‐-­‐  Point  mutations  within  the  DNA  sequence  of  the  ampli'ied  567  base  pair  region  

of  the  PITP  domain  of  the  rdgB205  gene  as  compared  to  wild-­‐type  DNA.  One  point  mutation  

within  the  rdgB205  DNA  was  discovered  after  comparison  to  wild-­‐type  DNA.    The  point  mutation  

occurs  at  base  pair  175  and  resulted  in  an  adenine  changed  to  a  guanine.    

 

 

 

 

 

 

 

 

RdgB205  mutant    

K  S  R  E  E  S  H  G  E  G  S  G  V  E  I  I  I  N  E  P  Y  K  D  G  P  G  G  N  G  Q  Y  T  K  K  I  Y  H  V  G  N  H  L  P  G  W  I  K  S  L  L  P  K  S  A  L  T  V  G  

E  E  A  W  N  A  Y  P  Y  T  R  T  R  Y  T  C  P  F  V  E  K  F  S  L  D  I  E  T  Y  Y  Y  P  D  N  G  Y  Q  D  N  V  F  Q  L  S  G  S  D  L  R  N  R  I  V  D  V  I  D  

I  V  K  D  Stop  L  W  G  G  D  Y  V  K  E  E  D  P  K  H  F  A  S  D  K  T  G  R  G  P  L  A  E  D  W  L  E  E  Y  W  R  E  V  K  G  K  K  Q  P  T  P  R  N  

Met  S  L  Met  T  A  Y  K  I  C  R  V  E  F  R  Y  W  G  Met  Q  T  

 Wild-­‐type  

Page 30: Genetics lab paper
Page 31: Genetics lab paper

K  S  R  E  E  S  H  G  E  G  S  G  V  E  I  I  I  N  E  P  Y  K  D  G  P  G  G  N  G  Q  Y  T  K  K  I  Y  H  V  G  N  H  L  P  G  W  I  K  S  L  L  P  K  S  A  L  T  V  E  

E  E  A  W  N  A  Y  P  Y  T  R  T  R  Y  T  C  P  F  V  E  K  F  S  L  D  I  E  T  Y  Y  Y  P  D  N  G  Y  Q  D  N  V  F  Q  L  S  G  S  D  L  R  N  R  I  V  D  V  I  D  

I  V  K  D  Q  L  W  G  G  D  Y  V  K  E  E  D  P  K  H  F  V  S  D  K  T  G  R  G  P  L  A  E  D  W  L  E  E  Y  W  R  E  V  K  G  K  K  Q  P  T  P  R  N  Met  S  

L  Met  T  A  Y  K  I  C  R  V  E  F  R  Y  W  G  Met  Q  T  

Figure  5.-­‐-­‐  Amino  acid  sequence  of  the  ampli'ied  567  base  pair  portion  of  the  PITP  region  

of  the  rdgB205  gene  compared  to  wild-­‐type  amino  acid  sequence  showing  missense  

mutation  of  glutamic  acid  to  glycine  at  base  pair  58.  One  missense  mutations  (glutamic  acid  to  

glycine,  amino  acid  58)  was  discovered  after  comparison  of  mutant  rdgB205  amino  acid  sequence  

to  wild-­‐type  amino  acid  sequence.  This  mutation  corresponds  to  the  point  mutation  within  the  

DNA  sequence  at  base  pair  175,  which  resulted  in  an  adenine  replaced  with  a  guanine.  This  

missense  mutation  at  amino  acid  58  suggests  a  loss  of  function  mutation  due  to  improper  protein  

folding  because  glutamic  acid  contains  a  negatively  charged  side  chain,  whereas  glycine  is  a  

special  case  amino  acid.  

 

Immunolocalization  of  the  rdgB205  Protein:    In  order  to  make  Fly  tissue  more  dense  for  

cryosectioning,  decapitated  Fly  heads  were  placed  in  Fix  and  varying  concentrations  of  sucrose.  We  

then  performed  standard  immunolocalization  via  GFP  in  order  to  compare  rdgB  protein  

expression  in  both  wild-­‐type  and  mutant    rdgB205  Flies,  which  contain  a  missense  mutation  at  

amino  acid  58.    Both  the  wild-­‐type  and  mutant  rdgB205  Flies  showed  similar  immunolocalization  

patterns  of  rdgB  protein  (Fig.  6.).  This  provides  evidence  that  the  missense  mutation  located  at  

amino  acid  58  causes  a  loss  of  function  within  the  rdgB  protein,  because  both  images  show  the  

protein  is  being  equally  expressed,  so  therefore  the  problem  must  be  due  to  a  lack  of  function  

rather  than  expression.  

Page 32: Genetics lab paper
Page 33: Genetics lab paper

 

 

 

 

 

 

Figure  6.-­‐-­‐  Immunolocalization  of  rdgB  protein  expression  in  wild-­‐type  and  rdgB205  

mutant  Drosophila  showing  a  loss  of  function  due  to  missense  mutation.  Decapitated  Fly  

heads  were  cryosectioned  and  immunoFluoresced  via  GFP  for  rdgB  protein  expression.  Both  the  

wild-­‐type  and  mutant  rdgB205  Flies  showed  similar  immunolocalization  patterns  of  rdgB  protein.  

This  provides  evidence  that  the  missense  mutation  located  at  amino  acid  58  causes  a  loss  of  

function  because  both  images  show  that  the  protein  is  being  expressed  equally  by  location,  

therefore  the  mutant  must  be  defective  due  to  a  loss  of  function.  

 

 

DISCUSSION  

Genetic  and  molecular  analysis  of  the  rdgB205  gene  resulted  in  the  identiFication  and  

characterization  of  a  possible  function  of  the  allele  as  it  relates  to  retinal  degeneration.    The  First  

goal  was  to  establish  a  connection  between  the  new,  EMS  generated  mutant  gene  (rdgB205)  and  

an  existing  gene  (rdgB).    Through  chromosome  and  deletion  mapping,  it  was  determined  that  the  

mutation  in  rdgB205  was  on  the  X  chromosome  in  the  12B-­‐C  region.    The  gene  rdgB  is  known  to  

Page 34: Genetics lab paper
Page 35: Genetics lab paper

map  to  the  12C1  salivary  region  of  the  X  chromosome  (Vihtelic  1991),  which  suggests  that  the  

known  gene  rdgB  and  rdgB205  might  be  allelic.      A  complementation  experiment  conFirmed  that  

the  two  genes  were  allelic,  resulting  in  the  ability  to  apply  the  information  previously  known  

about  rdgB  to  our  new  mutant  rdgB205.  

RdgB  encodes  the  PITP  domain  and  a  mutation  to  this  region  is  known  to  produce  retinal  

degeneration  consistent  with  the  rapid  light-­‐induced  retinal  degeneration  observed  in  rdgB205  

mutants  (Vihtelic  1991).    This  suggests  that  the  PITP  domain  is  of  interest  in  determining  the  

characterization  and  possible  function  of  the  rdgB205  gene.  

In  order  to  provide  more  evidence  that  the  rdgB  and  rdgB205  genes  are  allelic,  an  

epistasis  experiment  was  conducted  to  determine  rdgB205’s  relative  location  in  the  

phototransduction  cascade.    NorpA  and  ninaE  are  two  genes  known  to  be  epistatic  over  retinal  

degeneration  caused  by  rdgB  mutants  (Vihtelic  1991).    Results  conFirm  that  ninaE  and  norpA  are  

also  epistatic  toward  rdgB205  mutants,  suggesting  that  rdgB205    functions  similarly  to  rdgB  in  

the  phototransduction  cascade.  

PCR  was  used  to  amplify  the  PITP  domain  which  was  suspected  to  contain  the  region  of  

the  mutation  that  characterized  rdgB205.    Following  the  PCR  reaction,  ligation  was  conducted  in  

order  to  clone  the  PCR  fragment  into  the  plasmid  vector.      Miniprep  was  then  performed  to  obtain  

isolated  plasmid  DNA,  free  from  contaminants.      Electrophoresis  on  the  restriction  cut  fragment  

was  carried  out  and  the  fragment  was  found  to  be  567  bp  in  length,  identical  to  the  expected  

length  of  567.    These  results  suggest  that  the  correct  fragment  of  the  PITP  domain  speciFied  by  

the  primers  was  ampliFied.    

DNA  sequencing  allowed  the  comparison  of  wild-­‐type  and  rdgB205  sequences  for  the  

fragment  and  a  point  mutation  was  found  at  base  pair  175  (adenine  to  guanine).    This  resulted  in  

Page 36: Genetics lab paper
Page 37: Genetics lab paper

a  missense  mutation  at  the  58th  amino  acid  where  glutamic  acid  was  replaced  by  glycine.    Since  

glutamic  acid  has  a  negatively  charged  side  chain  and  glycine  lacks  a  side  chain,  the  mutation  is  

considered  to  be  non-­‐conservative,  which  is  important  because  a  change  in  the  amino  acid  side  

chain  will  likely  result  in  a  change  in  the  secondary  structure  of  the  produced  protein.    A  result  of  

this  structural  change  could  be  the  inactivation  or  degradation  of  the  protein,  inducing  

rdgB205-­‐type  retinal  degeneration.  

Additionally,  Immunolocalization  showed  that  rdgB205  mutants  expressed  their  protein  

product  in  the  same  location  as  wild-­‐type  Drosophila.    Wild-­‐type  rdgB  proteins  are  known  to  be  

located  in  the  retina,  optic  lobes,  ocelli,  central  brain,  and  the  antennal  segments  of  the  adult  

Drosophila  (Vihtelic  1993).    Since  the  location  of  protein  expression  is  retained,  the  functionality  

of  the  protein  must  be  affected  due  to  the  amino  acid  secondary  structure  that  is  suspected  to  

have  changed  following  the  non-­‐conservative  change.    This  result  differs  from  previous  research,  

where  immunolocalization  showed  that  mutant  rdgB  protein  was  not  present  in  the  same  

locations  as  wild-­‐type  (Vihtelic  1993).    Previous  studies  also  concluded  that  the  gene  product  

must  be  present  in  photoreceptors  to  prevent  degeneration  (Vihtelic  1993),  to  which  we  now  can  

add  that  the  gene  product  must  be  present  and  functional  for  rdgB205-­‐type  retinal  degeneration.  

In  the  future,  we  will  conduct  a  PITP  assay  as  an  experiment  to  examine  the  function  of  

the  rdgB205  transfer  protein.    We  hypothesize  that  the  mutation  observed  to  the  PITP  domain  is  

the  cause  of  rdgB205-­‐type  retinal  degeneration.    A  dephosphorylation  assay  (Vihtelic  1993)  will  

allow  us  to  link  the  mutation  via  biochemical  activity  back  to  the  retinal  degeneration  phenotype  

that  was  observed  in  this  experiment.    

We  also  hypothesize  that  rdgB205  has  a  second  function  as  a  calcium  transporter,  

independent  of  PI  transfer  (Paetkau  1999).      Testing  this  would  allow  us  to  better  understand  the  

function  of  rdgB205  as  an  integral  membrane  protein  in  phototransduction  as  well  as  provide  

Page 38: Genetics lab paper
Page 39: Genetics lab paper

clariFication  in  regards  to  rdgB’s  unique  location  in  the  SRC,  which  stores  intracellular  Ca2+  and  

contains  a  proposed  Ca2+  binding  site  (Paetkau  1999).    To  achieve  this  end,  we  will  stain  calcium  

and  see  if  rdgB205  mutants  have  a  higher  level  of  Ca2+  inside  the  SRC  than  wild-­‐type.    This  would  

suggest  that  the  retinal  degeneration  observed  is  due,  at  least  in  part,  to  increased  intracellular  

Ca2+  levels.  

Third,  we  propose  to  examine  the  PIP2  regeneration  cycle,  which  is  required  for  

photoresponse  in  Drosophila.    RdgB  is  a  proposed  component  of  the  pathway,  so  we  suggest  the  

overexpression  of  the  gene  Laza,  which  may  bypass  rdgB  in  this  proposed  PIP2  cycle.  

Deep-­‐pseudopupil  analysis  can  be  used  to  score  the  Drosophila  for  this  experiment.  The  rescue  or  

lack-­‐of-­‐rescue  of  the  mutant  rdgB205  phenotype  when  exposed  to  this  will  allow  us  to  learn  more  

about  the  pathway  to  elucidate  the  function  of  the  protein.    

   

APPENDIX  

Chromosome  mapping;  successful  Deletion  mapping;  successful  Complementation;  successful  

Epistasis;  successful.  PCR;  successful.    Ligation,  transformation,  miniprep;  incubated  the  colonies  

for  ~28  hours  instead  of  ~14  hours.    Colonies  appeared  as  larger  dots.    Lane  4  in  Figure  2  

represents  a  false  white.    Restriction  cut  and  gel;  used  class  data  of  proper  migration  because  

ours  showed  only  one  size  band  and  they  were  all  the  same  length.    We  had  three  mutations  in  

our  sequence,  but  only  examined  the  First  missense  mutation  and  did  not  discuss  the  other  two.  

Used  picture  of  immunolocalization  results  from  LabArchives  (missense).  

LITERATURE  CITED  

Page 40: Genetics lab paper
Page 41: Genetics lab paper

Milligan,  J.G.  Alb,  Jr.,  R.B.  Elagina,  V.A.  Bankaitis,  D.R.  Hyde.  1997.  The  Phosphatidylinositol  

Transfer  Protein  Domain  of  Drosophila  Retinal  Degeneration  B  Protein  Is  Essential  for  

Photoreceptor  Cell  Survival  and  Recovery  from  Light  Stimulation  

 

Paetkau,  D.W.,  A.E.  Vecheslav,  L.M.  Sendi,  D.R.  Hyde.  1999.  Isolation  and  Characterization  of  

Drosophila  retinal  degeneration  B  Suppressors.  

 

Sahly,  I.,  S.  Bar  Nachum,  E.  Suss-­‐Toby,  A.  Rom,  A.  Peretz,  T.  Byk,  Z.  Selinger,  B.  Minke.  1992.  

Calcium  channel  blockers  inhibit  retinal  degeneration  in  the  retinal-­‐degeneration-­‐B  mutant  of  

Drosophila.  

 

Vihtelic,  T.S.,  D.R.  Hyde,  and  J.E.  O’Tousa.  1991.  Isolation  and  characterization  of  the  Drosophila  

retinal  degeneration  B  (rdgB)  gene.  

 

Vihtelic,  T.S.,  M.  Goebl,  S.  Milligan,  J.E.  O’Tousa,  and  D.R.  Hyde.  1993.  Localization  of  Drosophila  

retinal  degeneration  B,  a  membrane-­‐associated  phosphatidylinositol  transfer  protein.  

 

Wang,  T.,  C.  Montell.  2007.  Phototransduction  and  retinal  degeneration  in  Drosophila.  

 

Whaley,  M.  2014.  Laboratory  Manual:  Classical  and  Molecular  Genetics  

                   

                                                           

Page 42: Genetics lab paper
Page 43: Genetics lab paper

 

Page 44: Genetics lab paper
Page 45: Genetics lab paper

Grant:  Link  more  experiments  into  the  discussion  and  in  future  experiments.  Beefs  it  up  and  gives  it  validity.  

 

1) Abstract  -­‐  molecular  defects  -­‐  nucleotide  changes  in  the  PITP  domain?,  Amino  acid  changes?  Non-­‐conservative  changes?  Characterize  by  what  our  mutant  actually  is.  

 

2) USE  missense  -­‐  its  there  it  just  cant  carry  out  function,  loss  of  function.  

3) ASK:  Abstract:  molecular  defects:  nucleotide  changes  in  the  PITP  domain  that  would  

result  in  alterations  to  the  amino  acid  sequence,  causing  conservative/non-­‐conservative  

changes  to  the  protein.  Conservative  is  more  important?  Should  we  only  be  looking  for  

conservative  since  it  is  the  part  that  clearly  has  a  close  like  to  effect?  

4) We  know  that  the  mutation  doesn’t  affect  expression  location  due  to  IF  just  the  function.  

Propose  that  the  folding  is  changed?  Glutamic  acid  →  glycine  (negative  to  polar  

uncharged)  base  pair  175.  Altering  the  binding  of  PI  or  active  site  of  transfer.  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

Identi'ication  and  Characterization  of  the  Drosophila  retinal  degeneration  B  205  (rdgB205)  

Gene  as  a  Phosphoinositol  Transfer  Protein.  

ABSTRACT  

 The  retinal  degeneration  B  205  (rdgB205)  gene  in  Drosophila  causes  retinal  degeneration  

of  photoreceptor  cells  in  the  eye  in  response  to  light.    We  aimed  to  identify  and  characterize  a  

mutation  in  the  phosphatidylinositol  transfer  protein  (PITP)  domain  as  a  factor  resulting  in  

retinal  degeneration  in  rdgB205  mutants.    Chromosome  and  deletion  mapping  resulted  in  the  

determination  of  the  rdgB205  gene  being  located  in  the  12B-­‐C  region  of  the  X  chromosome.    A  

complementation  test  resulted  in  the  identiFication  of  rdgB205  as  an  allele  of  the  known  gene  

rdgB.    Mutations  to  the  genes  norpA  and  ninaE    caused  the  suppression  of  the  rdgB205  phenotype,  

Page 46: Genetics lab paper
Page 47: Genetics lab paper
Page 48: Genetics lab paper
Page 49: Genetics lab paper
Page 50: Genetics lab paper