91
IN THE FIELD OF TECHNOLOGY DEGREE PROJECT CIVIL ENGINEERING AND URBAN MANAGEMENT AND THE MAIN FIELD OF STUDY THE BUILT ENVIRONMENT, SECOND CYCLE, 30 CREDITS , STOCKHOLM SWEDEN 2019 Geographically Weighted Regression as a Predictive Tool for Station-Level Ridership The Case of Stockholm KARIM OUNSI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT

Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

  • Upload
    others

  • View
    27

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

IN THE FIELD OF TECHNOLOGYDEGREE PROJECT CIVIL ENGINEERING AND URBAN MANAGEMENTAND THE MAIN FIELD OF STUDYTHE BUILT ENVIRONMENT,SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Geographically Weighted Regression as a Predictive Tool for Station-Level RidershipThe Case of Stockholm

KARIM OUNSI

KTH ROYAL INSTITUTE OF TECHNOLOGYSCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT

Page 2: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

1

Abstract

English/ Engelska/ Anglais

This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict ridership at the station level for future stations. The case study of Stockholm’s blue line is used as new stations will be built by 2030. This paper is written in English.

Historically, linear regression methods, independent of the geographical location of the

observations, was and is still used as the Ordinary Least Square regression method. With the rise of GIS-softwares these last decades, geographically dependent regression can be used and previous preliminary studies have shown a dependency between ridership and location of the station within the network.

GWR equations for new stations are determined and used to predict their respective

ridership. GIS-data was collected using Geodata and Traffikverket (Traffic Authority) and ridership as well as socio-economic related material for the base year of 2016 was used in order to determine, first, significant variables from a group of candidate ones (Workers, number of bus lines and type of change were chosen) and, second the OLS and GWR equations. Significances of both models were compared and the OLS equation was used in order to determine the hypothetical ridership of the new stations if they were present in 2016. GWR equations were then determined using these calculated ridership of these new stations. Having all GWR equations (each station having its own equation), ridership was thus predicted for the new stations for 2030 using assumptions and planned, programmed development around the stations (population, apartment to be built…) and compared with the official predictions.

The results show that the GWR method, generally, overpredicts ridership when compared

to the official predictions. Many reasons can explain this overprediction like the assumptions made with regards to the number of buses as well as the method followed to calculate the number of workers around each station.

Three main conclusions were drawn for this case study. One main conclusion, specific for

this study and two other, more general, conclusions were deduced from this study. First, GWR is a good predicting tool for future stations that are close to most currently available stations. Second, GWR is a good predicting method for stations where limited changes in the future environment will occur.

Page 3: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

2

Sammanfattning

Swedish/ Svenska/ Suédois

Denna avhandling studerar en ny regressionsmetod, Geografically Weighted Regression (GWR) för att förutsäga antal resenärer på stationsnivå för framtida stationer. Fallstudien av Stockholms blå linje används eftersom nya stationer kommer att byggas år 2030. Denna rapport skrivs på engelska.

Historiskt används linjära regressionsmetoder oberoende av observationens geografiska

placering som den ordinarie Least Square-regressionsmetoden. Med ökningen av GIS-programvaror de senaste decennierna kan geografiskt beroende regression användas och tidigare preliminära studier har visat ett beroende mellan antal resenärer och plats för stationen i nätverket.

GWR-ekvationer för nya stationer bestäms och används för att förutsäga deras respektive

antal resenärer. GIS-data samlades in med hjälp av Geodata och Traffikverket och antal resenärer samt socioekonomiskt relaterat material för basåret 2016 användes för att först fastställa betydande variabler från en grupp kandidater (Arbetare, antal busslinjer och typ av förändring valdes) och för det andra OLS- och GWR-ekvationerna. Betydelsen av båda modellerna jämfördes och OLS-ekvationen användes för att bestämma det hypotetiska antal resenärer för de nya stationerna om de var närvarande 2016. GWR-ekvationerna bestämdes sedan med hjälp av dessa beräknade antal resenärer för dessa nya stationer. Med alla GWR-ekvationer (varje station har sin egen ekvation) förutsades således antal resenärer för de nya stationerna för 2030 med antaganden och planerad, programmerad utveckling runt stationerna (befolkning, lägenhet som ska byggas ...) och jämförs med de officiella förutsägelserna.

Resultaten visar att GWR-metoden generellt sett förutsäger antalet resenärer jämfört med

de officiella antalet resenärer. Många orsaker kan förklara denna överförutsägelse som antaganden om antalet bussar och metoden som följdes för att beräkna antalet arbetare runt varje station.

Tre huvudsakliga slutsatser drogs för denna fallstudie. En huvudsaklig slutsats, specifik för

denna studie och två andra, mer generella, slutsatser härleddes från denna studie. För det första är GWR ett bra förutsägningsverktyg för framtida stationer som ligger nära de flesta tillgängliga stationer. För det andra är GWR en bra förutsägningsmetod för stationer där begränsade förändringar i den framtida miljön kommer att inträffa.

Page 4: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

3

Résumé

French/ Franska/ Français

Cette thèse étudie une nouvelle méthode de régression, la régression géographiquement pondérée (GWR), pour prédire le nombre de voyageurs au niveau des stations pour de futures stations. L’étude de cas de la ligne bleue de Stockholm est prise vu que de nouvelles stations seront construites d’ici 2030. Cette thèse est rédigée en anglais.

Historiquement, les méthodes de régression linéaire, indépendantes de la localisation géographique de des observations, étaient et sont toujours utilisées comme méthode de régression des moindres carrés ordinaires (OLS). Avec le développement des logiciels SIG au cours des dernières décennies, l’utilisation de régression géographiquement dépendante devient plus accessible et des études préliminaires antérieures ont montré une dépendance entre le nombre de voyageurs et l'emplacement de la station dans le réseau.

Les équations GWR pour les nouvelles stations sont déterminées et utilisées pour prédire leurs nombres de voyageurs respectives. Les données SIG ont été collectées à l’aide de Geodata et de Traffikverket (Autorité des transports). Le nombre de passagers ainsi que les données socio-économiques pour l’année de référence de 2016 ont été utilisés afin de déterminer, en premier lieu, les variables significatives d’un groupe de candidats (travailleurs, nombre de lignes de bus type de changement ont été choisis) et, deuxièmement, les équations de OLS et de GWR. Les valeurs significatives des deux modèles ont été comparées et l'équation OLS a été utilisée afin de déterminer le nombre de voyageurs hypothétique des nouvelles stations si elles étaient présentes en 2016. Les équations GWR ont ensuite été déterminées à l'aide de ce nombre de voyageurs calculé de ces nouvelles stations. Disposant de toutes les équations GWR (chaque station ayant sa propre équation), le nombre de voyageurs des nouvelles stations pour 2030 a donc été prédite à l'aide d'hypothèses et de développements planifiés et programmés autour des stations (population, appartement à construire…) et comparés aux prévisions officielles.

Les résultats montrent que la méthode GWR surestime d’une façon générale le nombre de voyageurs par rapport aux prévisions officielles. Plusieurs raisons peuvent expliquer cette surestimation, telles que les hypothèses émises concernant le nombre d'autobus et la méthode suivie pour calculer le nombre de travailleurs autour de chaque station.

Trois principales conclusions ont été tirées pour cette étude de cas. Une conclusion principale, spécifique à cette étude et deux autres conclusions, plus générales, ont été déduites de cette étude. Premièrement, le GWR est un bon outil de prévision pour les futures stations proches de la plupart des stations actuellement présentes. Deuxièmement, le GWR est une bonne méthode de prévision pour les stations où des changements limités dans l’environnement futur auront lieu.

Page 5: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

4

Introduction

Background

According to the World Bank in 2018, more and more people are moving to cities leaving behind rural areas. In fact, since 2007, more people live in these cities than in rural areas for the first time in history. Even if the rate of urbanization is decreasing, it has constantly been positive with a value always superior than 1,9% since 1960. More people in cities means a higher number of people moving around during the day leading to an increase to the number of passengers within the public transportation network. SL, the region of Stockholm authority, quantifies this increase to more than 2 million passengers per day in 2013 from 1,6 million in 2003, a 20% increase in merely 10 years.

Figure 1: Diagram illustrates travelers per day by cars and public transportation in thousands (Trafikförvaltningen, n.d.)

Investing for a more efficient and demand-satisfying public transportation network is thus more important than ever. According to the American Public Transportation Association, “every $1 invested in public transportation generates $4 in economic returns” (American Public Transportation Association, 2019). Moreover, funding for public transportation is increasing from a bit over $40 billion to over $70 billion in 20 years in the United States of America.

Figure 2: Total Funding in Public Transportation in the USA (in billions of 2017 dollars)

This continuous increase is met with a growing concern within the transportation authorities, policymakers and even private firms demanding a more precise, detailed and accurate prediction of ridership in order to explain this never-reaching level of investment. Today’s models, mainly lineal regression models, are used in order to predicted ridership or the transit share for a specific region. However, the assumptions previously made in order to ease their use and limit their cost are leading to errors in predictions, creating uncertainties and

– 6 –

Stockholm is growing – and so is public transport Stockholm County is growing rapidly, in recent years by about 40,000 inhabitants every year. By 2030 the (county’s) population is expected to have increased to about 2.6 million (from just under 2.1 million in 2010). This will increase pressure on public transport services. Roads and railways are already congested, particularly in the central parts of the city and during peak traffic. In-commuting from other counties will also increase and accessibility to public transport will need to be adapted to the changing needs.

PUBLIC TRANSPORT should be perceived as the most attractive form of travel for every-one, including the elderly and travellers with disabilities. It is therefore crucial to the Stockholm region of the future that public transport develop at the same pace, at least, as the population increases and that the entire transport system be planned so as to facilitate public transport’s long-term expansion.

THE COUNTY COUNCIL invests billions in public transport every year. Over the coming years, the county council will be investing more than ever to meet the needs of a growing population. The biggest investments will be made in upgrading the infra-structure but to an increasing degree also new construction and expansion.

MAJOR INVESTMENTS over the next ten-year period include:

• extension of the metro

• the metro’s Red Line

• the Commuter Train programme

• extension of the Roslagen Line.

Public transport’s positive development from 2003 to 2013

The diagram illustrates travel per day by car ( ) and public transport ( ) in thousands.

0500

1000150020002500300035004000

1500

2000

2500

2,000

1,900

1,800

1,700

1,600

Sou

rce: Facts abo

ut SL an

d th

e cou

nty 2014

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013Year

Thousands

Public transport

Car 1,742

2,017

1,785

1,8481,907

1,663

Page 6: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

5

risks that are increasingly higher to bear for investors. One of these assumptions is space independency between the observations. In 2000, Fotheringham et al. proved that global regression models estimate a limited number of parameters between the dependent and independent variables with estimated parameters independently determined with regards to spatial characteristics. This lead to a huge disadvantage of this models with regards to observations that are geographically dependent. In fact, multiple studies like the one by Cordazo et al. in 2012, have proven a high correlation between transit use or ridership and geographic locations of the observation, with high spatial autocorrelation with closer observation having a higher influence than farther ones. This means that when using global, traditional regression models in order to predicted ridership, errors are generated due to the assumptions that observation are geographically independent while they are actually not. As explained above, taking into consideration geographic location of the observation at the time was both time and cost consuming. Today, with the development of GIS, Geographical Information System models and softwares during the last decade, makes these excuses obsolete. These new softwares can acknowledge the geographic locations of the observations while developing a regression model. The Geographically Weighted Regression is one of these new methods that can be used in order to explain and (maybe) predicted ridership.

Objectives and Goals

The objective of this thesis is to determine if Geographically Weighted Regression method can be used in order to predict the station-level ridership at future metro stations.

Three kind of stations are to be compared, stations with different geographic locations compared to the rest of the network and built in different changing environment: Stations close to the existing metro stations of the network that will not experience major changes in their surrounding environment, stations built close to the existing metro station that will, however, experience considerable change to their surrounding environment and, finally, stations that will be built far away from the actual network that will experience big change to their surrounding environment.

The comparison between these three types of station will determine if and/or when is are

predictions possible following the method use in this study. The case of Stockholm is studied here.

Thesis Structure and Flow

This paper is divided into seven parts. First, the literature review talks the way predictions were done until today, while introducing GWR, both theoretically and with regards to previous studies using it. Second, a methodology is presented in which detailed steps performed in this study are described in order to reach the results that are needed. Third, Stockholm as a city and its metro network is presented describing the extension of the metro network. This part also lists the candidate variables as well as the assumptions laid for this study. Fourth, results are presented (the models used, parameters, significance of the models and finally the ridership predictions). Fifth,

Page 7: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

6

the analysis of these results is done extensively dividing the analysis into general, regional and station-specific. Sixth, the limitations of the studies are described mainly in order to present what should be avoided for future similar studies that are to be performed. Finally, the conclusions are presented both case study specific and generally.

Page 8: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

7

ABSTRACT 1

English/ Engelska/ Anglais 1

SAMMANFATTNING 2

Swedish/ Svenska/ Suédois 2

RESUME 3

French/ Franska/ Français 3

INTRODUCTION 4

Background 4

Objectives and Goals 5

Thesis Structure and Flow 5

LITERATURE REVIEW 10

Old Forecasting Methods 10

Geographically Weighted Regression 11 Description 11 Difference between Spatial Autocorrelation and Spatial Non-Stationality: Accuracy of the model 14 Spatial Autocorrelation 15 Spatial Non-Stationality 16

Geographically Weighted Regression as Forecasting Method 17 Previous works and fields in use 17 Comparison between OLS and GWR 18 Predictions using GWR compared to other methods 18

METHODOLOGY 21

STOCKHOLM’S CASE STUDY AND DATA COLLECTION 24

Stockholm’s Metro System: Present Situation, Forecasting and Future Development 24 Stockholm today with ridership and population 24 Preliminary studies with Sampers for Stockholm’s new station 25 General idea with map of the planned extension 26 Transit-oriented development: Stockholm Case Study 28

Data and Candidate Variables 29 Line chosen 29 Candidate Variable 29 Prediction assumptions for the candidate variables 32

Page 9: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

8

RESULTS 32

GWR Equations with Existing Conditions 32

Predictions Using the Determined GWR Equations 41

ANALYSIS 45

Division between the North and the South 45

The Model in Numbers 45

General Reasons 48

Bus Assumptions and Effect on Predictions 48

Special Case of Sofia 48

LIMITATIONS OF THE STUDY 49

CONCLUSION 51

REFERENCES 52

APPENDIX 56

Appendix I: Method and Tools in Determining Data in ArcGIS (ArcMap) 56 Income, Workers, Population and Age 56 Road density (m/m2) 56 Number of bus lines at a 200-meter buffer around the entrances of the metro 56 Terminal Station 56 Type of change 57 Commuting distance 57

Appendix II: Table of GWR Equations and Predictions for the 2016 Situation 58

Appendix III: Table of GWR Equations and Predictions for the 2016 Situation with New Stations 73

Appendix IV: GWR Prediction by ArcGIS (ArcMap) 89

Page 10: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

9

FIGURE 1: DIAGRAM ILLUSTRATES TRAVELERS PER DAY BY CARS AND PUBLIC TRANSPORTATION IN THOUSANDS (TRAFIKFÖRVALTNINGEN, N.D.) 4

FIGURE 2: TOTAL FUNDING IN PUBLIC TRANSPORTATION IN THE USA (IN BILLIONS OF 2017 DOLLARS) 4 FIGURE 3:TRADITIONAL FOUR-STEP TRANSPORT MODEL (ADAPTED FROM WHITEHEAD & BUTTON, 1977, P.117) 10 FIGURE 4: DIFFERENT TYPES OF THE KERNEL FUNCTION (INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES

ECONOMIQUES, 2018) 13 FIGURE 5:100-METER SQUARES IN RENNES, SAMPLED IN RED (FLOCH, 2015) 20 FIGURE 6: BOX-PLOT OF THE RCEQMR FOR THE HORWITZ-THOMPSON (1), REPRESSION (2) AND GWR (3)

ESTIMATORS (FLOCH, 2016) 21 FIGURE 7: CATCHMENT AREA (SERVICE AREAS) FOR EACH STATION (OLD STATIONS IN BEIGE, NEW STATIONS IN

PURPLE). 22 FIGURE 8: SERVICE AREA FOR THE BLUE LINE STATION TO BE PREDICTED FOR 2030 24 FIGURE 9: METRO NETWORK WITH THE ADDITIONAL STATIONS IN DASHED LINE. 26 FIGURE 10: PROJECTED RIDERSHIP ON THE BLUE LINE DURING THE MORNING PEAK HOUR WITH A FOUR-MINUTE

HEADWAY (NYLÉN, 2017; HARDERS AND BJÖRKMAN, 2016) 27 FIGURE 11: PREDICTED RIDERSHIP ON THE YELLOW LINE DURING THE MORNING PEAK HOUR BY 2030. 28 FIGURE 12: RIDERSHIP VS. NUMBER OF WORKERS 36 FIGURE 13: OLS (UP) AND GWR (DOWN) STANDARD DEVIATIONS 37 FIGURE 14: GWR STANDARD DEVIATION WITH NEW STATIONS 40 FIGURE 15: THE DISTRIBUTION OF THE INTERCEPT OVER THE STUDIED AREA (FROM THE LOWEST IN BLUE TO THE

HIGHEST IN RED; THIS APPLIES TO ALL DISTRIBUTIONS TO FOLLOW) 45 FIGURE 16: THE DISTRIBUTION OF THE WORKER’S COEFFICIENTS OVER THE STUDIED AREA 46 FIGURE 17: THE DISTRIBUTION OF THE BUS’S COEFFICIENTS OVER THE STUDIED AREA 47 FIGURE 18: THE DISTRIBUTION OF THE CHANGE’S COEFFICIENTS OVER THE STUDIED AREA 47 TABLE 1: EQUIVALENT PRESENT STATIONS FOR FUTURE STATIONS (WSP ANALYS & STRATEGI, 2013) ..................... 26 TABLE 2: CANDIDATE VARIABLES EVALUATION AND SELECTION ................................................................................ 32 TABLE 3: SUMMARY OF MULTICOLLINEARITY ............................................................................................................. 33 TABLE 4: PERCENTAGE OF SEARCH CRITERIA PASSED ................................................................................................. 34 TABLE 5: MORAN’S I TESTS ON THE DEPENDENT AND CANDIDATE VARIABLES ......................................................... 34 TABLE 6: OLS EQUATION ............................................................................................................................................. 38 TABLE 7: GWR EQUATIONS ......................................................................................................................................... 38 TABLE 8: PREDICTED RIDERSHIP USING OLS EQUATION FOR NEW STATION IN 2016 ................................................ 39 TABLE 9: GWR EQUATIONS WITH THE NEW STATIONS ............................................................................................... 40 TABLE 10: NUMBER OF ADDITIONAL POPULATION AND WORKERS BY 2030 ............................................................. 41 TABLE 11: COEFFICIENTS AND GWR ESTIMATIONS FOR NEW STATIONS ................................................................... 43 TABLE 12: NUMBER OF ADDITIONAL POPULATION AND WORKERS BY 2030 FOR BARKARBYSTADEN AND BARKARBY

STATION ............................................................................................................................................................. 44 TABLE 13: COEFFICIENTS AND GWR ESTIMATIONS FOR NEW STATIONS AFTER THE CHANGE IN WORKERS ............. 44

Page 11: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

10

Literature Review

Having efficient and reliable ridership estimation is important for all stakeholders. Passengers can plan their trips by choosing confidently the time and route of their choice will be sure of their time of arrival to their destination. It can also create a routine when it comes to regular trips, mainly work-bound trips in the morning, increasing adequate planning and thus efficiency and productivity. Transit operators can plan efficiently for the needed capacities and frequencies by securing funds early on while spending them in the required areas and departments. Public authorities and operators can forecast resourcefully the funds needed for the future, the dispatching and evolution of jobs and population on the interested region as well as implementing policies and strategies in order to lead the region towards a more sustainable future.

Old Forecasting Methods

Transit ridership are usually estimated using comparison methods to equivalent situations, professional and elasticity analysis and travel demand models (Litman, 2004; Boyle, 2006). The first models are typically employed for route evaluation while the latter is used in assessing new amenities providing transit ridership only as a part of the prediction with no particular focus on transit ridership and public transportation travel that is treated as another mode (Zhang & Wang, 2014).

Transport forecasting and modelling took a serious turn in the fifties’ when the four-step

model, a method that predicts traffic patterns at an aggregate level, was created (Horowitz, 1984). It has since been the dominant model for transport modelling and was adopted for transit ridership as well over the years (McNally, 2007). The four-step model is characteristic by its four step process by first generating the demand for travel in specific region, second distributing this demand by creating Origin-Destination region pairs, third assigning a mode of transport the travelers are going to use (public transport, car, walking, biking, etc.), and finally by assigning a specific route to each trip.

Figure 3:Traditional four-step transport model (adapted from Whitehead & Button, 1977, p.117)

Page 12: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

11

Activity-based models are used for forecasting and prediction. This method focuses on predicting individual travel behavior at a disaggregated level (Hildebrand, 2003).

However, these overall travel demand forecasting methods require a huge number of

surveys, data collection and processing. These are only a couple of reasons why this method is costly to implement and maintain (Marshall & Grady, 2006). They also fail to capture subtle land-use characteristics in specific areas that might influence ridership more or less than in the other region (Cervero, 2006). For these reasons, other methods, such as regression models, were developed in order to have efficient and reliable forecasts and predictions of transit ridership. They are also faster and cheaper to develop. Creating a straight relationship between a couple of predefined factors (independent variables) with transit ridership (dependent variable), regression models are easy to use with less trouble in defining them providing a rapid alternative. According to consulted papers, these predefined factors are usually grouped in 4 categories: Demographic features, socio-economic indexes, land-use arrangement, geographic information.

Nevertheless, most current regression models accept spatial-independence in ridership estimation. The problem with this assumption is the fact that many (if not all) factors are spatially correlated (Zhang & Wang, 2014). New methods must then be utilized to acknowledge this spatial dependency between the different observations.

An Ordinary Least Squared regression (OLS) is a regression method that determines the

parameters of the linear regression model by minimizing the square of the errors. The following equation summarizes this regression.

Geographically Weighted Regression

In the following section, the technical information of the geographically weighted regression is described as well as the different ways to evaluate its significance. Description

Global calibrating models, using all the observations provided for a concerned region, predict global estimates for the whole interested region, while local models, using a handful of observation like GWR predict local models that for each interested observation. The main difference between the two methods is that the first emphasizes on the spatial similarities while the latter emphasizes on the spatial differences in the interested region.

As a reminder, the OLS equation is presented below:

! = # + #1'( + #2'*+. . . +#,'- +./

Where y is the dependent observed variable, xj is the j-th independent observations,

variables or predictors (j = 1, ..., p), βj is the j-th model parameters to be estimated (j = 0, 1, ..., p) and epsilon y is the error at for observation y. An Ordinary Least Squared regression (OLS) is a

Page 13: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

12

regression method that determines the parameters of the linear regression model by minimizing the square of the errors. The following equation summarizes this regression. It is important to note that OLS the βj are the same for all the studied region and do not change with space or dependent observation.

In fact, traditional global regression models, like OLS, assume that the whole studied

region can be explained and predicted using one common equation with common parameters on the whole region. This rational is easily discredited by local regression models, like GWR (Fotheringham, Brunsdon & Charlton, 2002). This has been explained in section SOMETHING with case study examples from previous studies.

An advantage of GWR over other spatial methods, like multi-level modelling is that each

calibration yields equations for each observation where each one of them is treated independently from the others, capturing geographic heterogeneity (Zhang et Wang, 2014).

The main idea behind the GWR method is the fact that each point i to be predicted is

surrounded by an area of influence that decreases the farther the sampled observations are from point i, thus creating as many regression equations as there are observations to predicted. This is done by incorporating the geographical coordinates of each observation in its equation.

As stated before, GWR is inspired by OLS. OLS can be, actually, seen as an exception of

GWR where all function is constant over space. Indeed, GWR uses a weighted least squares method to predict the parameters (Fotheringham and Charlton, 1998). The following function summarizes the GWR model:

!0 = #1(30, 50) +78

#8(30, 50)'08 + .0

Where !0 is the dependent observed variable at location (ui,vi), #1(30, 50) is the intercept parameter at location (ui,vi), #8(30, 50) are the independent parameters for observation (ui,vi), '08 are the observation k at (ui,vi) and .0 is the error term for observation (ui,vi). Beta best is thus equivalent to this equation:

#9(:) = (;<=(30, 50);)>(;<=(30, 50)? Where Wi (uivi) is the weighting function. This weighting function is spatially dependent providing a weight for the observation depending on its location from (and thus distance to) the observation that is to be predicted. It can be represented in a diagonal matrix where the primary diagonal line represents the weight function at location i (Fotheringham et al, 1998). Here is the weight matrix used:

Page 14: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

13

=(:) = @

A0( 0 … 00 A0* … 00 0 … 00 0 … A0D

E

Where A0F(G = 1, 2, … , H) is the weight given at location j

Coming back to the fact that OLS is an exception of GWR, it is clearer now that the weight function is introduced. In fact, one can assume that the weight function is equal to 1 for all points in the studied area.

These functions vary depending on the predicted information. There are several options from Gaussian, exponential, bi-square and kernel just to name the most used ones.

One can differentiate between continuous weight functions where a weighting value is given to each observation in the studied area from weight function with compact support where the latter tends to a zero-value reached at the determined bandwidth value and assigned to observations having a distance greater than this bandwidth (Institut national de la statistique et des études économiques, 2018). However, according to Brunsdon, Fotheringham, and Charlton in 1998, there are the choice weight function has no significant effect on the results.

Figure 4: Different types of the kernel function (Institut national de la statistique et des études économiques, 2018)

The following curves are written explicitly in the following equations, respectively uniform kernel, Gaussian kernel and Exponential kernel.

AIJ0FK = 1

AIJ0FK = L>(*(MNOP )Q

AIJ0FK = L>(*(RMNORP )

Page 15: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

14

Another way to differentiate them is by classifying them in either a fixed or adaptive weight function. The main difference between the two is observation density and sample size and whether the bandwidth is constant or variable. The first kind determines the spread of the weight function according to a fixed distance (bandwidth) identical in the whole studied area to be used when one has high density of observation and sample points. The second determined the spread of the weight function according to the number of neighboring observations a point of interest has led to a greater spread when the density is low and varying the distance (bandwidth) (Fotheringham et al., 2002). The changing function can also determine the optimal bandwidth for highly dense observations. In fact, this optimal value of bandwidth, that is a variable in the weight function equations with compact support, can be determined in other ways for a stated weighting function. The bandwidth value has the biggest influence on the results (Institut national de la statistique et des études économiques, 2018). Examples of these data-driven criteria are cross-validation (CV), generalized cross-validation (GCV), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The most in use are CV and AIC and are, thus, presented here (Fotheringham et al., 2002).

ST =7

D

0U(

[!0 − !XY0(ℎ)]*

Where !XY0(ℎ) is the value of y at i predicted where developing the model with all observation except !0. The optimum value of the bandwidth would be 0 if all the observations are used to estimate the model, meaning that the only available point in the model is !0, leading to !0 = !X. Generally, the bandwidth that minimizes CV is the one that maximizes the predictive capacity of the model.

\]S(ℎ) = 2H ^H ^H(_X) + H ^H ^H(2`) + H aH + (b)

H − 2 − (b)c

Where n is the sample size, _X the estimate of the standard deviation of the error term, (b) the trace of the projection matrix of the observed variable y on the estimated variable !X.

When using one of these two statistical criteria, the bandwidth is determined when minimizing their values. The main difference between the two is that CV maximizes the predictive power of the model while AIC compromises between this predictive power and the model’s complexity. The weaker the bandwidth, the more the global model is complex. In general, AIC determines larger bandwidth than CV. Difference between Spatial Autocorrelation and Spatial Non-Stationality: Accuracy of the model

The estimated GWR model needs to be evaluated and diagnosed passing by the same process of global models.

The estimated GWR can be evaluated thanks to coefficient of determination (R-Square), t-values and p-values.

Page 16: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

15

d* = 1 −∑0 .*

∑0 (!0 − !)*

Where . is the residual between the observed value and the predicted one by the model, !0 is the observed value i (or at location i if dealing with GWR) and ! is the average of the observed values. As stated before, the Akaike Information Criterion (AIC) can determine the optimal bandwidth for a given weighting function in the studied area. However, AIC can also evaluate the goodness-of-fit of the model. In general, an AIC value greater than 3 suggest a good fit of the model (Fotheringham et al, 2002).

In addition to these estimations and because local statistics are considered spatially disaggregated compared to global models, new evaluation statistics must also be performed to evaluate the model for local characteristics.

These characteristics can be classified into two categories: spatial autocorrelation and spatial

non-stationality (Anselin, 1999). They have been challenging issues to deal with according to Fotheringham in 2002 and GWR permits to consider while considering the coordinates of the observation for spatial autocorrelation when calculating the intercept and spatial non-stationality when estimating the parameters. On one hand, spatial autocorrelation refers to an interaction in space, in other words the value of a certain variable compared to the value of its neighbours. On the other hand, spatial non-stationality refers to the structure in space (Anselin, 1999).

Spatial Autocorrelation

Spatial autocorrelation can be tested using the error of the GWR model created. In fact, GWR

hypothesis that the error terms are identically distributed. Thus, a test for validating or not this independence of the distribution is the establishment of a hypothesis test (Leung, Mei and Zhang, 2000).

Ho: No spatial autocorrelation among the disturbance.

H1: There exists either positive or negative spatial autocorrelation among the disturbances with respect to a specific spatial weight matrix W.

In order to accept or reject the null hypothesis, the test statistics Moran’s I is used. The values

range between -1 and 1, where 0, theoretically, represent no spatial correlation (Rosenberg, 2010). However, for a defined sample size, the value representing no spatial correlation is -1/(N-1) where N is the number of spatial observations: it is the expected value. This value (or 0) is the expected value of the null hypothesis. Moran’s I is given as follows:

]1 =.̂<g<=g.̂.̂<g<g.̂

Page 17: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

16

Where W = a specific symmetric spatial weight matrix of order n; and N

g = ] − h = ] −

⎣⎢⎢⎡;(

<[;<=(1);]>(;<=(1);*<[;<=(2);]>(;<=(2)

…;D<[;<=(H);]>(;<=(H)⎦

⎥⎥⎤

A probability must be thus determined as well in order to accept or reject the null

hypothesis. The equation given below calculates theoretically this probability when the Moran’s I value is less than a given value p (Leung, Mei and Zhang, 2000).

o(]1 ≤ q) =12−1`rs

1

t:H t:H[u(v)]vw(v)

Jv

Where u(v) = (

*∑D0U( xqyvxH xqyvxH(z0v), w(v) = ∏D

0U( (1 + z0*v*)1,*| and z0 =

g<(= − q])g.

This equation can be simplified after multiple assumption to the following expression (Leung, Mei and Zhang, 2000):

r}

1

t:H t:H[u(v)]vw(v)

Jv

Spatial Non-Stationality

For GWR, the dependent and a given independent variable are linked geographically. In other

words, the hypothesis for GWR is that the variables are stationary in a given geographic area. In order to evaluate the efficiency of the model, it might be interesting to test the spatial non-stationality of the variables (Institut national de la statistique et des études économiques, 2018). Technically, the calculation of the variance of the variables for a given variable should be able to give a satisfying answer (Fotheringham et al, 2002):

Txq~#9(:)� = [(;<=(:);)>(;<=(:)][(;<=(:);)>(;<=(:)]<_*

Where _* = ∑0 (!0 − !X0)/(H − 25( + 5*)

However, the theoretical distribution of each variable is unknown leading to a difficulty in

using the above method. Thus, another method, the Monte Carlo Simulation, is used to help reject or accept the null hypothesis of the following hypothesis test:

H0 : ∀k, βk(u1,v1) = βk(u2,v2) = ... = βk(un,vn)

H1 : ∃k, all βk(ui,vi) are not equal.

Page 18: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

17

In fact, if there is spatial non-stationality in the studied area, the locations (coordinates) of the observations are irrelevant and changing them will yield the same value of the variance. When dealing with the Monte Carlo Simulation, the geographical coordinates of the observations are permuted n times, finding n spatial variance estimations of the observations. The p-value of the spatial variability of the coefficients is then estimated. This p-value can determine if the null hypothesis should be accepted or rejected (Institut national de la statistique et des études économiques, 2018). Finally, the bandwidth can give an indication of the efficiency and reliability of the model. Its value is very important and when compared with the extent of the studied area can give, even if not precise, important information about the model nay if GWR should be even used in the first place.

On one hand, if the bandwidth yields toward the maximum value possible (over the whole studied area), local autocorrelation and spatial stationality are weak and GWR should not be used. On the other hand, if the bandwidth is really small, it is important to check for randomness in the process (Gollini et al, 2015).

Geographically Weighted Regression as Forecasting Method

Geographically Weighted Regression or GWR, developed by Fotheringham and Charlton in 1998, is a new regression model inspired by the usual Ordinary Least Square (OLS) method regression that, however, takes into consideration spatial dependency when forecasting equations and its parameters. The authors refer to a family of “spatial adjusted” regression. Previous works and fields in use

Since its introduction as a spatial data analysis in the late 1990’s, GWR has been used in a large number of areas. From health and healthcare (Zhang, Wong, So & Lin, 2012) and forestry (Pineda, Bosque-Sendra, Gómez-Delgado & Franco, 2010) to real estate (Dimopoulos & Moulas, 2016; Institut national de la statistique et des études économiques, 2018), passing by land and urban space use (Luo & Wei, 2009; Tu & Guo, 2008) and poverty rates (Floch, 2016), GWR has been more and more present in transport science, mainly as an explanatory method.

The field of transportation was no exception. Determining the explanatory variables in order to identify potential causes and relations with transportation related issue is the main use today of this relatively new technique. Traffic accidents, average commute distances, transport-land use interaction and influence and public transport share (Chow et al, 2006) are only a couple of fields that were tackled by GWR over the years. In 2015, Qian and Ukkusuri evaluated after a comparison of the performances of the Ordinary Least Square (OLS) and GWR, the causes behind the taxi ridership in New-York city. Liu, Ji, Shi and Gao presented a research on the effect of the built environment on student’s metro commuting to their schools and back home in Nanjing, China.

However, ridership forecasting on a station-based level is not developed enough when it

comes to utilising the GWR method. A couple of preliminary studies in this field were, nevertheless, presented having mainly as the core subject the comparison of the level of efficiency and reliability between OLS and GWR. In 2015, Chiou, Jou and Yang determined the predictors

Page 19: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

18

for ridership data for the state of Taiwan with the help of both OLS and GWR. Another study conducted by Blainey and Mulley in 2013 also determines the predictors for ridership data for railway stations in the Sydney region of New South Wales by also comparing both OLS and GWR methods. Studies in Madrid, Spain, Sydney, Australia and Adelaide, Australia conduct similar studies by examining the local characteristics of their respectable studied areas. They also predict some ridership data with the models that they created (Cardozo, García-Palomares, Javier Gutiérrez, 2012; Somenahalli, 2011; Blainey, Mulley, 2013). Comparison between OLS and GWR

As stated above, global regression models, like OLS, assumes that the relationship between the dependent and independent variables are uniform over the study area, ignoring spatial characteristics such as distances to stations. OLS does not consider variations due to spatial autocorrelation (Fotheringham, Brunsdon and Charlton, 2000; Lloyd and Shuttleworth, 2005; Cardozo, 2012). In 2010, Harris et al. compared multiple methods, mainly variations of Kriging, multiple regression methods and GWR and concluded that GWR-based models out-performed MLR models.

Previous studies that have focused on comparing OLS and GWR methods have frequently

discovered that GWR provides more predictability than GWR due to this concern for spatial correlation.

In fact, according to Hadayeghi, Shalaby and Persaud, estimation errors are smaller in a

majority of cases when using GWR compared to OLS. They explain this result by claiming that the problem of spatial autocorrelation is reduced nay eliminated. This is the case for Cardozo, García-Palomares and Javier Gutiérrez when, in 2012 they compare station-level ridership forecasting between the OLS and GWR methods. Their analysis of the residuals proved better results with GWR than with OLS. In addition, when comparing Moran’s I values that were calculated, the one generated for GWR was closer to the expected value than the OLS one, concluding that spatial autocorrelation was reduced. In this same study, GWR performed better with p-values and z-values, describing less variance and greater likelihood for random distribution.

Another study, already presented above, compares a global regression model with GWR

in Taiwan and found an adjusted R-Squared for GWR more than 0,2 units higher than the traditional MLR model in addition to a better performance with regards to spatial autocorrelation for the GWR model (Chiou, Jou and Yang, 2015). Zhao et al. also, in 2005, found a better prediction performance with GWR with regards to OLS for the county of Broward, Florida.

Predictions using GWR compared to other methods

With the establishment of the formulas and equations for each observation, one can use the

calculated coefficients to analyze how relationships vary across the studied area and study any possible patterns they might create. These coefficients can provide local understanding of the observed dependent variable (Fotheringham et al, 2002). In fact, these coefficients, seeing that they are localized, can provide information on the influence of changes in the station’s direct

Page 20: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

19

environment will have on the dependent variable, in this case station-level ridership. Any evolution of population, jobs or even land use can provide detailed and specific information for the station.

This leads to a more accurate and detailed forecast, compared to a generalized forecast with

standardized coefficients for the whole studied region when dealing with global regression models (Lloyd, 2010). The model(s) can be evaluated over the whole studied area, determining the areas with better fits, variations of estimated coefficient and significance.

Any future development, such as new residential buildings or workplaces can be thus

evaluated independently for each station environment and area. In fact, for example, an increase in the number of jobs in one area can lead to an increase in ridership while in another it can have the opposite effect. This is where localized policies and plans, land-use for example, come in action and can be implemented, with more insurance and less risks with these more realistic predictions, in the area in order to improve ridership and/or the level of service of the station and/or public transport network. De Smith et al. (2009) call in “place-based” techniques.

GWR can also be used in predicting models in areas where dependent variable observations

are not available. The use of approaches based on the use of “Best Linear Unbiased Predictors (BLUP) estimators is more and more common nowadays (Chambers and Clark, 2012). This method is based on the replacement of non-observed dependent variables by predicted values thanks to a model where the parameters are estimated from observed dependent variables. Recent literature seems to prefer the use of GWR in estimation methods rather than methods originated from other methods. The fact that GWR considers spatial heterogeneity is regarded as theoretically improve the precision of the estimators.

Floch presented in 2016 at the JMS (Journée de Méthodologie Statistique) a study of

Rennes’ Iris zones where they wanted to predict the number of households with low incomes in areas of the city that was not observed. For that reason, and having the number of households beneficiation from free health care due to low incomes in all the studied area, they calculated first the GWR models for all the observed Iris zones determining the equations.

Page 21: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

20

Figure 5:100-meter squares in Rennes, sampled in red (Floch, 2015)

Each Iris zone is divided in 100-meter squares. Presenting the notation used, y represents the number of people with low income, x is the number of people having free health care. In U, all squares (N=2141) are assigned their coordinates, the number of low-income people, the number of people with free health care and the Iris it belongs to. A sample s of n/N=40% is selected. r is the complement of s in U where all yi’s are known in i ∈ s and xi are known for all squares in i ∈ U.

In order to determine the predicted number of households with low incomes, three different estimation methods (Horvitz-Thompson, the classic regression one and the GWR one respectively) were calculated.

Determining K=1000 estimators by Iris, the relative quadric average error of Monte Carlo

estimation is calculated before calculating its square root (RCEQMR).

ÑÖÜ áv/à (G)â = ä>(7ã

8U(

(v/à (G)8 − v/(G))*

dSÑÖÜd áv/à (G)â = åÑÖÜáv/à (G)â

v/(G)

Where v/à (G)8 is the estimator for the total of the variable y of the Iris j and the simulation k.

Page 22: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

21

Figure 6: Box-Plot of the RCEQMR for the Horwitz-Thompson (1), repression (2) and GWR (3) estimators (Floch, 2016)

One can realize that the best outcome was the GWR estimation. In fact, with a RCEQMR of 0.4, the Horwitz-Thompson estimator was the least performing of the three. The RCEQMR of both the “classic” regression and the GWR estimators are quite similar with 0,178 and 0,156 respectively. This is where the box-plot gives more information about these two RCEQMR showing a smaller spread regarding GWR.

It can be thus safely said that the results showed the GWR estimator as the best compared to the other methods.

Methodology A precise and extensive methodology was developed in order to determine the GWR

equations for each station, for present as well as future conditions. The software used is ArcGIS (ArcMap).

The first step is to choose a line to investigate thoroughly. In fact, even if evaluating the

whole network would also yield interesting findings, limited time and resources constrained to selecting one specific line.

The next step is to gather the data needed to produce the analysis, required by the candidate

variable such as population, income, age, type of station and distance to the center of the network. Having gathered all the data needed to create both OLS and GWR equations, catchment

areas (or service areas) around each metro station were defined. In fact, a catchment area is considered as the area around the station where the walking distance to the station is 800 meters or less, representing 10 minutes or less of walking time. This number was determined after previous literature and research review. It was evaluated that a station’s “neighborhood” or the

Page 23: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

22

willingness distance to walk to and from a rail (and thus a metro) station is 800 meters (O’Neill et al., 1992; Hsiao et al., 1997; Murray, 2001; Zhao et al., 2003; Kuby et al., 2004; Sallis, 2008; Gutiérrez et al., 2011). In 2008, Gutiérrez et al. proved that network distance provides better estimates than Euclidean distances. Following this reasoning, determining the 800-meter catchment area following the road network around the respective stations was executed. It was also proven that riders are more willing to walk a larger distance at end stations.

Figure 7: Catchment Area (Service areas) for each station (old stations in beige, new stations in purple).

New station names are also presented on this map.

T-Centralen is present here and on all following map by a black point for orientation.

At some locations, mainly in the central area of the urbanized region and of the network,

the dense metro network lead to stations being situated at less than 1600 meters, meaning that an overlap in catchment areas is unavoidable. Following the reasoning described above, possible riders have more than one station to choose from within walking distance in order to travel. In order to avoid double counting when determining the equations and forecasting the ridership and following the steps of various previous studies, Thiessen polygons as catchment areas were generated for these special cases, meaning that possible riders always choose the closest stations at walking distance (Cardozo et al., 2012; Zhang and Wang, 2014). This method is also reinforced by Wardman’s 2004 study in Manhattan that suggest that riders are more likely to choose the closest station due to a higher out-of-vehicle value a time compared with in-vehicle value of time.

The next step is to determine the significant variables from the previously presented

candidate variables as well as the best OLS equation. In fact, ArcGIS permits the evaluation candidate variables by creating OLS regression equation. The most significant equation is chosen in order to proceed with the analysis. The choice is made after comparing the significant indicators such as p-value, R-Squared, the variance inflation factor and the global Moran’s I p-value. Moran’s

Page 24: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

23

I is also performed individually on each candidate variable determining the most significant variables with regards to spatial correlation.

Using ArcGIS, the now determined OLS equation is used to forecast ridership for the whole

network, at the future stations that are being built, as if they were existent today. Even if these ridership computations are completely hypothetical, they are necessary in determining GWR equations for these stations (and all station more generally).

In order to formulate GWR equations, the weight function must be determined. Multiple

functions are adequate for the job, however, according to Zhao et al. in 2005, adaptive kernel does not have a limited number of observations meaning an advantage for observation on the limits of the study area.

Having the knowledge of all dependent and independent variables on the whole system for 2016 including the hypothetical ridership for the new stations on the blue line as well as the most adequate weighted function for the presented situation, GWR equations can be computed by ArcGIS for all stations on the blue line for current conditions. These different equations are then evaluated and compared with regards to significance and goodness-of-fit using R2, AIC, p-value and t-test methods with regards to the previously computed OLS equation.

Having the GWR equations for the whole network, the chosen line with its new stations is

isolated and updated with the predicted data for the time of prediction in question. Depending on the variables that were chosen, the data needed would be different. Some data might be lacking. Some assumptions can thus be made in order to remedy this. Population data, when detailed estimations are lacking, can be determined by multiplying the official number of apartments planned to be built by the average number of persons per household. When this is also lacking, the projected evolution of the population in the region can be used for the service areas. Regarding workers, they can be obtained by multiplying the population by a ratio Population to Workers determined by the stations’ equivalent stations (stations that are present today in the network with similar characteristics to a future stations). Regarding the median income, a trend line is determined from past statistics and interpolated into the time of prediction. The change in land use incorporated and updated to the state of the time of prediction should also be considered. Other information is assumed to remain unchanged from today.

Page 25: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

24

Figure 8: Service Area for the Blue Line Station to be predicted for 2030

Having determined the ridership according to GWR models, ridership is compared to official forecasts and analyzed.

Finally, each new station is evaluated with regards to its GWR model and the ridership it

forecasted with regards to the official forecast. The determined parameters can help determine policies that can be proposed. For instance, the choice of building new apartments in specific areas can also be analyzed and other areas, not considered, can be proposed.

Stockholm’s Case Study and Data Collection The following section presents the present metro situation in Stockholm as well as the plans for a future extension of this current network. It also presents the data collected through candidate variable that can explain the ridership for current and future states.

Stockholm’s Metro System: Present Situation, Forecasting and Future Development

Stockholm’s metro network developed over the years starting in the 1950’s to become a complex start network with T-Centralen in its core. Forecasting for the ridership has been done using a special model, Sampers, developed by Trafikverket, the transportation authority in Sweden. This model has been used in preliminary studies to forecast the ridership on stations and lines to be constructed by 2030.

Stockholm today with ridership and population

In the 1940s, Sweden decided to build a metro network in its capital, even if, at the time, the number of inhabitants of Stockholm did not technically require, this new form of public

Page 26: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

25

transportation. The green line in the 50s, the red one in the 60s and the blue one in the 70s were constructed with gradual extensions over time.

Today the system welcomes almost a million passengers every day (MTR, 2018). This

number is expected to increase by 170 000 in 2030 (Stockholms läns landsting, 2016). In fact, Stockholm is expected to welcome between 30 000 to 35 000 new residents every year until 2030, making it the fastest-growing European capital. The last seven years saw a growth by 250 000 people in Stockholm county. The current capacity of the network would not sustain this influx of new residents.

In addition, Stockholm is facing, with the rest of Sweden, a housing scarcity problem. The

official rent-controlled queue has around 500 000 people waiting in line for an accommodation. The average waiting time is nine years with some neighborhoods having an average time up to 20 years. For this reason, Stockholm’s city council is backing the construction of 40 000 new permanent homes by 2020 and 100 000 more by 2030. Movable modular homes and a big co-living space for global entrepreneurs are also considered to be adopted to ease the housing problem (Savage, 2016).

For these reasons, Stockholm has decided to expand and enlarge its public transportation

network, namely its metro network, constructing new housing next to these new stations. Preliminary studies with Sampers for Stockholm’s new station

Preliminary studies were done starting from 2007 and were updated continuously with the progression and direction the metro expansion project took.

The forecasting part and projection of ridership for the new completed network by 2030,

including these new stations were determined thanks to Sweden’s national model system, Sampers. According to Trafikverket’s website, updated in 2018, it uses a cross-sectional analysis for determining future passengers and traffic volumes for different scenarios. Its main variables are GDP, fuel prices, employment and population growth. In addition to forecasting new ridership or/traffic flows, Sampers provides impact assessments and investment calculations for land-use or transport changes such as new residential project or infrastructure project for possible transport policy measures.

According to Prognos över resandeutveckling for both the extension of the blue line and

the construction of the new yellow line, the traffic analysis for 2030 was executed using both PTV Visum and Sampers. Ridership was thus found using these methods. However, the report presenting the results for the yellow line presents limits for PTV Visum. In fact, “VISUM is a generalizing model that includes the whole Stockholm län and whose strength is, first, providing a general analysis”. It continues in warning that detailed analysis of the results should be done in caution.

Equivalent present stations to potential stations during the preliminary analysis has been

determined by WSP in its Effekter på värdet på handelsfastigheter vid etablering av nya

Page 27: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

26

tunnelbanelinjer i Stockholmsregionen report. The following table presents the equivalent station of the selected stations of the blue line:

Table 1: Equivalent Present Stations for Future Stations (WSP Analys & Strategi, 2013)

Station Equivalent Station

Station Equivalent Station

Kungträdgården (New)

Hötorget Järla Västra Skogen

Sofia Mariatorget Nacka Solna Centrum

Hammerby Kannal

Alvik Barkerbystaden Farsta strand

Sickla Järla Barkerby Station

Farsta Strand

General idea with map of the planned extension

As explained above, the new stations will be built on two different lines: the blue line and

a new yellow line.

Figure 9: Metro network with the additional stations in dashed line.

Notice that the current arm of the green line towards Hagsätra will be integrated to the blue line by 2030 (Stockholms läns landsting, 2016)

On one hand, the blue line, already existent, is facing an extension from both sides. In the

north, a small extension will see the line grow by two stations after Akalla, Barkarbystaden and Barkarby. It is in the south that the extension is going to be significant with the addition of five new stations: Sofia, Hammarby kanal, Sickla, Järla and Nacka. In addition, at Sofia, the blue line

Page 28: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

27

is splitting in two different branches, one that goes until Nacka passing by all the named stations and another that is connecting to the present green branch to Hagsätra at Gullmarsplan, turning it blue. The new station, Slackhusetområdet, is replacing the present Globen and Enskede gård stations (Nylén, 2017). The below figure XX presents the forecasted ridership on the whole line, with an obvious emphasis on the new parts of the line.

Figure 10: Projected ridership on the blue line during the morning peak hour with a four-minute headway (Nylén, 2017; Harders

and Björkman, 2016)

On the other hand, the yellow line is going to be built from scratch from Odenplan to Arenastaden, with two stations between them, Hagastaden and Södra Hagalund. After Odenplan the line is joining the green line continuing to either Farsta Strand or Snarpnäck. The figure below (Figure XX) present the ridership between Odenplan and Arenastaden. It is important to note however that the ridership presented here was determined with the assumption that Odenplan is the terminal station and with a line having only three stations instead of the current four (Harders and Björkman, 2016). In fact, the decision to change the initial assumptions was made in 2017.

Page 29: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

28

Figure 11: Predicted ridership on the yellow line during the morning peak hour by 2030.

The upper graph represents the ridership heading towards Odenplan and the lower one heading towards Arenastaden. Legend: Dark red: Boarding with a five-minute headway, Pink: Boarding with a 10-minute headway, Dark blue: Alighting with a five

minute headway, Light blue: Alighting with a 10 minute headway, Bold line: Load for a 5 minute headway, Light line: Load for a 10 minute headway (Harders and Björkman, 2016)

Transit-oriented development: Stockholm Case Study There have been multiple studies drawing a connection between transit use and Transit-Oriented Development (TOD). In Stockholm, the planned construction of multiple residences as well as workplaces around not only the new stations but current stations show the interest of Stockholm’s policy makers in TOD. By definition, TOS is the development of urbanized neighborhood where transit is easily accessible. Mixed land use as well as pedestrian oriented mobility in such regions is a core aspect in addition to a densely designed roads and buildings (Zhao et al., 2005).

Even if no clear conclusion can be drawn, some studies, like the one done by Parker et al in 2002, show transit ridership can be increased by up to 40% at individual stations after TOD was implemented around them. A case study of Portland asserts this finding after a survey in 1994 concluded that transit share is higher and car ownership lower in TOD in comparison to traditionally developed neighborhoods (Lawton, 1997).

Page 30: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

29

With regards to Stockholm län a goal of 140 000 new residences by 2030 is shared among the different municipalities, mainly Nacka, Järfalla and Solna as the latter will have the new stations built within their municipal boundaries. A total of 78 000 of these new residences will be built around these stations (Stockholms läns landsting, 2016). For example, around the future Hammerby Kannal station, around 2140 residences and a total of 73 000 square meters of new locals and offices will be built (Stockholm växer, 2018).

However, in order to strengthen and increase the share of transit in the region, existing

stations like Kista, Rinkeby and Kristineberg will also see a densification of their neighborhoods with additional residences and workplaces. As an example, the area around Kista will see the construction of a 1600 new residential building and a couple of new office buildings.

These projects are intended to densify and diversify, if not already present TOD’s, potential

one in order to increase the share of transit in the whole Stockholm region in general and more specifically, lead to relatively high transit use around future stations.

This is where GWR comes in. In fact, according to Somenahalli, in 2011, GWR were better

in developing the relationship between transit use and TOD’s.

Data and Candidate Variables

Line chosen

The blue line was selected to be investigated in this case. There are mainly two reasons behind this bias. On one hand, the fact that the blue line is indeed expanding greatly, will thus allow the careful analysis and discussion over both old and new stations, discarding both green and red lines. On the other hand, even if one can consider the newly constructed yellow line as part of the green line, the preliminary studies were conducted as if the line would end at Odenplan with a missing station leaving behind problematic results for this study. The complexity and uncertainty of the newly constructed green line regarding, for example, headway, the number of stations and the number of branches were also additional reasons that favored the use of the blue line for this study.

All stations, as explained in the methodology were assigned an 800-meter service area

each, except for terminal stations, in this case, Nacka Barkarby Station and Hjulsta where they were assigned a 1000-meter service area each.

Candidate Variable

The choice of candidate variables was established thanks to studies while insuring the logic

with the case in hand, i.e. Stockholm. The dependent variable will be the number of boarding passengers at each station during

the morning peak hour, meaning between 7:30 and 8:30. This criterion was selected as a simple goal to be able to compare predicted data from the model developed here with official predictions. The present (2016) data was available in the yearly published report by SL, AB Storstockholms

Page 31: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

30

Localtrafik: SL och ländet 2016. This data is the base for the OLS and GWR equations developed for forecasting and evaluation for 2030 situation.

Multiple independent variables were chosen in order to explain the ridership starting with

the socio-economic factors and ending with accessibility ones. Population, income, age distribution and workers for 2016 were all acquired from the

Läntmateriet and GeoData Portal website, respectively the official Swedish authority in gathering statistical and infrastructural information and the website where this information is published. Both these websites make this data public for research purposes. This data sets were already divided into small area, called SAMS in the data. The road network was found on NVDB website. It provided the road network for the whole Stockholm Län. Finally, the metro network for 2030 was provided by Torbjörn Ekerot and Henrik Sarri, respectively an IT-manager from SLL and Metria. The shape file had also the network of the other mode of public transport for the county, such as the bus network and stops as well as the commuter rail (pendeltåg) network and stops. It also assigned each station, present and future, if it is to be considered a significant changing point, a regional one, or not at all. The latter information was taken as a base to determine the type of change that takes place at each station. Unfortunately, detailed land use was only available for current state and only for the municipality of Stockholm. It was thus disregarded as a candidate variable.

The first explanatory variable is the density and size of the population living around the stations. According to Messenger and Ewing in 2007, the relationship between the public transport ridership and population density, even if not direct, exists and is regularly used a factor to justify transportation station expansion or upgrades. Multiple other authors have also asserted the existence of this relationship (Javier Gutiérrez et al, 2011; Sekhar Somenahalli, 2011). In 1996, Seskin et al. presented sufficient evidence to establish a positive relationship between the two.

The second potential explanatory variable is the number of workers around a station. In

fact, even if one can easily hypothesis and deduce it from what was explained with the population explanatory variable, Murray et al. (1998) discovered that the more workers live around a transit service the greater the probability of the latter will be used.

The third potential significant variable is the income of the population respectively to where they live. In fact, it was used in Chow et al., in 2006 and proven to be a significant variable. In addition, an increase of income in specific areas leads to a decrease in transit use for the benefit of the car (Gómez-Ibáñez, 1996; Wachs, 1989; Kitamura, 1989).

The fourth but last socio-economic variable considered is age. In fact, multiple previous

studies (Cristaldi, 2005) consider it and even incorporate it in their respective models like in Bernetti et al, in 2008. Age groups can be created, with the first one between 0 and 19 years old, representing mainly the minor, non-active and unlicenced population, the second between 20 and 64, representing the active population and possibly licenced population and the last third group from 64 onwards representing the retired population. These groups were defined accordingly given the available data for Stockholm and the way the age groups are defined in previous literature.

Page 32: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

31

The fifth candidate but first accessibility variable is road density. It was used in multiple previous studies such as Cardozo et al in 2012 and Zhao et al in 2005. In fact, road density can determine to a certain extent the accessibility of the metro station and consequently the number of alternatives to reach this station leading to a shorter and easier reach with high road density.

The sixth one would define the number of bus lines in a 200-meter radius around each

station. A study in 2004 by Kuby et al discovered a connection between feeder modes, for instance bus stops or bus lines accommodating a specific station and ridership at the station in question.

The seventh candidate variable is the type of station itself one is dealing with, mainly with

regards to terminal stations and change and transfer stations. The first type of stations tends to attract residents for larger areas than intermediate stations due to the fact that this station is the closest one to the network inclining riders to walk more than for other stations (O’Sullivan and Morral, 1996). The second type of stations attracts more riders than normal stations (Gutiérrez, Cardozo and García-Palomares, 2011). In fact, be it an interchange station or an intermodal one, they both usually have higher boarding than non-interchange non-intermodal stations. Dummy variables for both these kinds of stations can be used as it was done in Kuby et al, in 2004.

The last accessibility and eighth candidate variable is the commuting distance to the central

business district (CBD) or the central region of the network. In Stockholm case, T-centralen was assumed to be the central point of the network, being the start of the star network system of Stockholm and where all line meet. This was chosen after studying both the papers of Pushkarev and Zupan (1982) and Kuby et al (2004) where it was defined that passengers usually commute to the central part of the network, especially during the morning’s peak hour to reach their places of work.

Finally, the last candidate variable is the land use around the station. According to multiple

studies, such as the ones by Parsons Brinckerhoff in 1996, land use plays a role in transit ridership. In a study by Bhat and Gossen in 2004, an equation was developed in order to quantify the type of land use present in the area of interest, categorising land use in three different groups: residential, commercial/industrial/office and other types.

Page 33: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

32

The value ranges between 0 and 1 with 0 being no land use diversity and 1 being perfect land use diversity. This equation was used in the study as multinomial logit model variable for the San Francisco area. Prediction assumptions for the candidate variables

When the predictions are made, these assumptions are taken for the following independent variables. Regarding the population data, lacking detailed and precise number of inhabitants around the stations, except for Barkarbystaden and Barkarby Station where the exact number of inhabitants is known, the number of apartments planned to be built by 2030 are multiplied by the average number of persons per household. An increase in the population of 5% and this according to RUFS (Regional utvecklingsplan för Stockholmsregionen, 2010) is done on remaining stations where there is a lack of information with regards to specific population evolution and the number of apartments. Workers also lack detailed predictions. They are thus multiplied by a ratio Population to Workers determined by the stations’ equivalent stations, presented in an earlier part. Regarding the median income, a trend line is determined from past statistics and interpolated into 2030. Other information is assumed to remain unchanged from today.

Results The main results are split into two parts, the first being for present conditions where the GWR equations were determined for the blue line and the second presenting the results and ridership by station for 2030.

GWR Equations with Existing Conditions

The presented candidate variables were analyzed on ArcMap using a tool called Explanatory variables.

Table 2: Candidate variables evaluation and selection

(AdjR2 is Adjusted R-Squared, AICc the Akaike's Information Criterion, p- value the Koenker Statistic p-value, VIF the Max Variance Inflation Factor and the variable’s significance at 0,01 is in yellow)

Number of Variables

Highest AdjR2

AICc p-value

VIF Model

1 of 11 0,33 1552,13 0,01 1,00 Bus

0,23 1565,55 0,10 1,00 Workers

0,22 1566,38 0,09 1,00 Age 2

2 of 11 0,47 1530,64 0,01 1,04 Workers Bus

Page 34: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

33

0,46 1531,71 0,01 1,04 Age 2 Bus

0,45 1534,35 0,01 1,04 Pop Bus

3 of 11 0,52 1522,11 0,00 1,33 Workers Bus Change

0,51 1524,02 0,00 150,46 Pop Age 2 Bus

0,51 1524,07 0,00 1,32 Age 2 Bus Change

4 of 11 0,56 1515,00 0,00 150,49 Pop Age 2 Bus Change

0,54 1518,24 0,00 7,65 Age 1 Age 2 Bus Change

0,54 1518,46 0,00 38,62 Pop Workers Bus Change

5 of 11 0,56 1514,84 0,00 152,03 Pop Income Age 2 Bus Change

0,56 1514,89 0,00 162,54 Pop Age 2 Buses Change Dist

0,56 1516,48 0,00 308,66 Pop Workers Age 2 Bus Change

Table 2 presents ArcGIS’s explanatory variable analysis in which the software analyses all

giving variables, in this case all candidate variables. The analysis presents each possible equation for a specific number of variables in these equations in function of the three highest adjusted R-Squared. It also provides a multicollinearity table in which it presents each candidate variable’s covariates. The table goes even forward in explicitly stating that a combination of variables was not possible due to perfect multicollinearity.

Table 3: Summary of Multicollinearity

Variable VIF Violations

Covariates

Pop 577,62 321 Workers (98,47), Age 1 (93,13), Age 2 (93,13), Age 3(93,13)

Worker 222,84 309 Age 2 (98,47), Age 3(98,47), Pop (98,47), Age 1 (54,96)

Inc 3,44 0

Page 35: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

34

Age 1 46,83 201 Pop (93,13), Age 2 (77,10), Workers (54,96), Age 3 (38,93)

Age 2 770,17 312 Workers (98,47), Age 3 (93,13), Pop (93,13), Age 1 (77,10)

Age 3 31,80 279 Workers (98,47), Age 2 (93,13), Pop (93,13), Age 1 (38,93)

Road density

1,09 0

Buses 1,55 0

Terminal 1,14 0

Change 1,40 0

Distance 3,35 0

The following table presents the number and percentage of equations generated and passed according the presented criteria.

Table 4: Percentage of Search Criteria Passed

Search Criterion

Cutoff Trials # Passed % Passed

Min Adjusted R-Squared

> 0,50 1015 115 11,33

Max Coefficient p-value

< 0,05 1015 69 6,80

Max VIF Value < 7,50 1015 417 41,08

Moran’s I test was also done in order to evaluate autocorrelation with regards to ridership. The following table presents the outcomes as well as the estimated Moran’s I value.

Table 5: Moran’s I tests on the Dependent and Candidate Variables

Variable Moran's Index

Expected Index

Variance

z-score p-value Pattern

Ridership 0,019397 -0,010204

0,00308 0,533356 0,593787 Clustered

Population 0,513214 -0,010204

0,00463 7,69199 0 Clustered

Page 36: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

35

Age 1 0,375009 -0,010204

0,005029 5,435004 0 Clustered

Age 2 0,548009 -0,010204

0,004924 7,957756 0 Clustered

Age 3 0,675734 -0,010204

0,003933 10,929235 0 Clustered

Workers 0,551187 -0,010204

0,004596 8,28109 0 Clustered

Med Inc 0,659357 -0,010204

0,004869 9,5952 0 Clustered

Road Density

0,268342 -0,010204

0,004724 4,052722 0,000051 Clustered

Buses 0,149382 -0,010204

0,004242 2,450214 0,014277 Clustered

Change -0,08105 -0,010204

0,004801 -1,022436 0,306575 Random

Terminal 0,009537 -0,010204

0,004629 0,290162 0,771692 Mixed

Distance 0,872311 -0,010204

0,005166 12,281491 0 Clustered

The best fit was determined to include the number of workers in the station’s proximity,

the type of station when it comes to changes and the number of bus lines in a 200-meter radius. However, the initial equation presented both the p-value and the t-value of the number of

workers insignificant. Plotting the ridership as a function of the number of workers, it was shown that T-Centralen, Slussen and Gullmarsplan were in all of them huge outliers and when out of the data, the worker variable is significant with an R-Squared of 0,02166 before removing them and 0,23722 after removing them. It was thus decided not to include these three stations in future studies both for OLS and GWR.

Page 37: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

36

Figure 12: Ridership vs. Number of Workers

(R-Squared values show a better fit when T-centralen, Slussen and Gullmarsplan are taken out of the expression)

After taking these outliers out, both OLS and GWR analysis were executed again leading to the following residual maps.

y = 0,1758x + 1006,7R² = 0,0283

y = 0,2083x + 619,99R² = 0,236

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000

Ride

rshi

p

WorkersRidership with Outliers Ridership without outliers

Linear (Ridership with Outliers) Linear (Ridership without outliers)

Page 38: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

37

Figure 13: OLS (up) and GWR (down) Standard Deviations

Page 39: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

38

The significance of the OLS parameters as well as for both equations are presented in the following tables.

Table 6: OLS Equation

Variables Coefficients Standard Error

t-Statistic Probability VIF

Intercept -552,050799 351,437275 -1,570837 0,119624 -

Workers 0,311537 0,054621 5,703612 0,000000 1,044079

Buses 88,258312 18,137573 4,866049 0,000005 1,327416

Change 1038,326730 283,930296 3,656978 0,000429 1,277995

Number of Observation

97

Number of Variables

4

Adj R-Squared

0,546342

Residual Square

33224590,808728

AICc 1631,798893

Table 7: GWR Equations

Variables Minimum Maximum Mean Standard Deviation

Intercept -2446,301797 657,6131415 -563,7553011 716,045689

Workers -0,004097741 0,258132412 0,149459243 0,050484

Buses -2,954762007 88,47400346 39,9531998 23,725989

Change -130,9206048 2793,393959 883,5952445 738,663661

Number of Variables

4

Number of Neighbors

42

Page 40: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

39

Adj R-Squared

0,683548

Residual Square

16766876,5866

AICc 1500,09803 Looking at the maps, one can see different cluster in the OLS residual map that were reduced nay sometimes corrected in the GWR residual map. Looking closely at the value, one can safely say that the GWR has a higher predictability with an overall adjusted R-Squared of 0,68 compared to 0,55 for the normal OLS model. In addition, the residual square is almost half for the GWR model compared with the OLS one. It is important to specify that when the OLS equation was determined, ArcGIS launched a warning stating that the model should be checked for spatial autocorrelation, hinting that a spatial independent model might not be the best fit. This was proven with both Moran’s I test as well as the comparison between the OLS equation and GWR ones. The OLS equation was thus used in order to predict the ridership at the new stations for current situation. The following table presents the predicted ridership.

Table 8: Predicted Ridership using OLS Equation for New Station in 2016

Station Predicted Ridership

Nacka 2940

Järla 1053

Sickla 1118

Hammarby Kannal 1854

Sofia 2026

Barkarbystaden 265

Barkarby Station 608 The following map show the overall standard deviation of residual when GWR equations are calibrated for the new stations with this OLS estimated ridership.

Page 41: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

40

Figure 14: GWR Standard Deviation with New Stations

The coefficients of the GWR equations as well as their significances are presented bellow.

Table 9: GWR Equations with the New Stations

Variables Minimum Maximum Mean Standard Deviation

Intercept -2367,47257 625,462321 -570,298174 670,481597

Workers 0,009195 0,24977 0,151743 0,043329

Buses 7,585861 86,22674 42,060432 19,308832

Change -120,334075 2667,703535 873,7549 688,076229

Page 42: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

41

Number of Variables

4

Number of Neighbors

46

Adj R-Squared

0,69915

Residual Square

17569889,2664

AICc 1600,959011

Predictions Using the Determined GWR Equations

Having determined the GWR equations, future ridership can be thus determined. The future number of workers in the respective station’s service area should be thus determined. For the presented stations, the number of planned residences has been multiplied by the average number of persons per household. The average number of persons per household depends on the municipality and is respectively 2,12 and 2,47 for Stockholm and Nacka in 2018 (Statistiska centralbyrån (SCB), n.d.). Each new station’s equivalent station is also presented as well as the ratio Population to Workers. Finally, this ratio is multiplied to the number of people living in the area, leading to the additional number of workers living in the area. Adding these numbers to the current number of workers in the area gives the information needed to input into the equation.

Table 10: Number of Additional Population and Workers by 2030

(*Note: For Barkarbystaden and Barkarby Station, the total population and the number of workers is presented)

Station Number of residences

Household

Additional Population

Equivalent Station

Ratio Pop/Wor

Additional Workers

Nacka 6500 2,47 16055 Solna Centrum

0,540875 8684

Järla 950 2,47 2347 Västra Skogen 0,462653 1086

Sickla 2000 2,47 4940 Liljeholmen 0,555743 2746

Hammerby Kannal

2140 2,12 4537 Alvik 0,577865 2622

Sofia 155 2,12 329 Mariatorget 0,580132 191

Page 43: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

42

Kungträd- gården

0 2,12 0 Hötorget 0,563254 0

Fridhems- plan

134 2,12 285 - 0,612255 174

Stadshagen

1975 2,12 4187 - 0,630363 2640

Rinkeby 1100 2,12 2332 - 0,294039 686

Tensta 1030 2,12 2184 - 0,347523 759

Kista 1600 2,12 3392 - 0,467844 1587

Akalla 1000 2,12 2120 - 0,443841 941

Barkarby- Staden*

- - 4946 Farsta Strand 0,462653 2288

Barkarby Station*

- - 1755 Farsta Strand 0,462653 811

Regarding Barkarbystaden and Barkarby Station, the future number of residences is already known by SAM. Adding the population to each service area by proceeding in the same manner done for the current situation, one can proceed in multiplying this population data by the ratio Population to Workers and getting the number of workers in the service area. Remaining stations on the blue line where no significant information has been found saw an increase of 5% of its worker’s population and this according to RUFS’ estimated increase of the population by 2030. T-Centralen’s service area remained untouched, however. Using the GWR equations, the ridership of the chosen blue line stations is predicted. The following table presents the GWR equation for each station as well as the final determined ridership. Having all the needed data and statistics, a deep analysis and discussion of these results is discussed in the following section.

Page 44: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

43

Table 11: Coefficients and GWR Estimations for New Stations

Name Intercept Worker Coeff.

Bus Coeff.

Change Coeff.

Predicted by GWR

Predicted by SLL

Nacka -587,71361

32 0,13881581 36,517037

07 949,625133

7 4200

3000

Järla -514,98852

84 0,14376295

6 38,812961

65 844,623781

4 1169

600

Sickla -628,53274

11 0,15307304

8 36,370452

15 942,764456

8 1444

800

Hammarby Kanal

-1667,6785

14 0,17223955

6 21,962985

43 2007,36610

6 2298

1200

Sofia -1487,5451

22 0,16621622

7 18,791536

61 1860,82295

4 1632

1600

Barkarbystaden

-6,7022540

07 0,12151317

6 52,664246

18 282,178624

6 554

2300

Barkarby station

-28,110621

92 0,11704238

7 54,708347

43 306,278404

3 701

1200

After looking at the results, one can see that the ridership predicted for Barkarbystaden and Barkarby Station were very much under predicted, less than a quarter of the official prediction for Barkarbystaden. For this reason, the way the workers were determined for these two stations was reevaluated and calculated the same way it was done for other stations with information about the number of planned residences to be built by 2030. The following table shows the newly calculated additional workers.

Page 45: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

44

Table 12: Number of Additional Population and Workers by 2030 for Barkarbystaden and Barkarby Station

Station Number of residences

Household

Additional Population

Equivalent Station

Ratio Pop/Wor

Additional Workers

Barkarbystaden

16593 2,42 40156 Farsta Strand 0,46265 18578

Barkarby Station

5078 2,42 12289 Farsta Strand 0,46265 5686

Recalculating the ridership for these two stations, the final ridership predictions for all stations new stations are as presented below.

Table 13: Coefficients and GWR Estimations for New Stations after the change in workers

Name Intercept Worker Coeff.

Bus Coeff.

Change Coeff.

Predicted by GWR

Predicted by City

Nacka -587,71361

32 0,13881581 36,517037

07 949,62513

37 4200

3000

Järla -514,98852

84 0,14376295

6 38,812961

65 844,62378

14 1169

600

Sickla -628,53274

11 0,15307304

8 36,370452

15 942,76445

68 1444

800

Hammarby Kanal

-1667,6785

14 0,17223955

6 21,962985

43 2007,3661

06 2298

1200

Sofia -1487,5451

22 0,16621622

7 18,791536

61 1860,8229

54 1632

1600

Barkarbystaden

-6,7022540

07 0,12151317

6 52,664246

18 282,17862

46 2566

2300

Barkarby station

-28,110621

92 0,11704238

7 54,708347

43 306,27840

43 1342

1200

Page 46: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

45

Analysis Analyzing the predicted ridership for the new stations, one can see that they are, generally overestimated compared to official results, thus with regards to the Sampers model used in Vissum. This can be explained by multiple reasons both general, regional and station specific and the assumptions behind them.

Division between the North and the South

One can see a clear schism between the north stations (Barkarbystaden and Barkarby Station) and the south stations (Sofia, Hammerby Kannal, Sickla, Järla and Nacka). The first mentioned have ridership estimates that are close to the estimations made by SLL, even if slightly over estimated.

However, it is important to stress that the models of the northern stations has been developed with only one ridership that was predicted by the OLS model while in the southern station’s models, this number is definitely higher, especially when moving further away from the center of the study area towards Nacka.

The Model in Numbers

The model’s coefficients are very broad and different. Looking into the intercepts, stations like Sofia and Hammerby Kannal have values well

below the average of -570 with -1487,54 and -1667,67 while the stations in the north (Barkarbystaden and Barkarby Station).

Figure 15: The distribution of the intercept over the studied area (from the lowest in blue to the highest in red; this applies to all

distributions to follow)

Page 47: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

46

Looking into the workers coefficients, these values seem to decrease the further one moves away from the city center towards the end of the lines. This means that, at least for the blue line, the further one goes from the city center, the less workers use the metro to get to their respective places of work.

Figure 16: The distribution of the worker’s coefficients over the studied area

Looking into the bus coefficient, south stations have values below the average of 42,06 with respectively from Sofia to Nacka, 18,79, 21,96, 36,37, 38,81 and 36,52. With regards to northern stations, they are slightly above average with respectively 52,66 and 54,70 for Barkarbystaden and Barkarby Station. The same pattern can be observed than the one observed for workers, yet inversely. In fact, the farther the station is compared to the central area the greater the bus coefficient influences the estimated ridership. This is quite common for metro network, especially star network like the one in Stockholm: in central area the dense metro stations presents does not present the need to use buses to get to a specific station while the further one goes from the center, the lower the density of metro stations, leading to the use of buses to reach these stations.

Page 48: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

47

Figure 17: The distribution of the bus’s coefficients over the studied area

Looking into the change coefficient, the station in the north have coefficients that are below average while the south stations have coefficient above the 873-mean value. The same pattern can also be deduced. The change coefficient in stations in the central part of Stockholm increase the number of passengers in each specific station compared to stations outside of the city center.

Figure 18: The distribution of the change’s coefficients over the studied area

Page 49: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

48

General Reasons

In general, this might be due to the use of the average number of persons per household. In fact, even if these new station with the exception of Sofia and Hammerby Kannal are outside of municipal Stockholm, they are relatively close to it. This means that the average number of persons per household in this area might be closer and thus lower than their average municipal one, i.e. Nacka and Järfalla.

The major change of the areas between 2016 and 2030 might affect the way the GWR

equations are predicted leading to a change in the calibration of the variables that are geographically dependent. The GWR equations were estimated for a spatial area that is different in 2030 than it is today, like Sickla, Järla and Nacka. Sofia are predicted relatively accurately due to the fact that the environment has not changed much.

Bus Assumptions and Effect on Predictions

Looking closer into the difference between the north and south stations in the first place might explain the difference seen between GWR values and the one by SLL: this is mainly due to the assumption taken with regards to the number of bus lines. In fact, the number of buses in the areas of interests were left as is. Although, in 2030, with new development and metro stations built, the current state will definitely evolve. On one hand, the stations in the north of the blue line see a slight overprediction of respectively 11,6% and 11,8% for Bakarbystaden and Barkarby Station compared to SLL estimations. This is mainly due to the fact that a limited number of bus lines were found around the future stations, none for Barkarbystaden and six for Barkarby Station. An increase in the number of residence and two new metro stations will definitely lead to new lines stopping in the area, especially in Barkarbystaden. On the other hand, the stations in the south and in municipal Nacka are overwhelmingly overestimated. In fact, the predicted ridership at Järla by the GWR model is almost twice as the ridership predicted by SLL. Here, a huge number of bus lines that pass in the region that lead to Nacka and beyond east will be removed by 2030. Today, these lines mainly start at Slussen. In 2030, it is planned that the lines that lead to Nacka will drastically decrease and the ones that leads farther east moved to Nacka’s bus terminal. This means that a lot of the buses accounted for when doing the predictions will be gone in the future and thus should not be accounted for in order to get a closer projected ridership to the SLL one.

Unfortunately, no data is available today on the number of bus lines that are planned to cover both areas.

Special Case of Sofia

Sofia is the only station that has an estimation that is almost identical to the one predicted by SLL.

Page 50: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

49

A simple explanation might be the fact that the region barely changes with regards to the socio-economic dynamic as well as the transit characteristic with regards to 2016. In fact, hardly any residence will be built in the area, only 155, a thin increase of less than 200 workers. The area has already a high-service when it comes with bus stops and bus lines that pass through it. A change in the number of lines will thus be limited in the area.

Limitations of the Study Multiple limitations can be drawn in this study dipping a toe into the multiple defects of the model and the study itself.

First, land use variables are, according to preliminary studies an important component that can explain a part of ridership. However, accurate land use data was not available for the whole study area. Only municipal Stockholm had land use data with the required accuracy. For this reason, land use was disregarded when calculation both OLS and GWR equations. Lack of land use data and variable automatically puts limits for this study as it is a crucial information to incorporate in the study, especially when debating on a subject that has the change of land use for the future service areas of the new stations in its core.

Second, when service areas were drawn on ArcGIS, three main critics can be said. First, when Thiessen polygons were used for close stations, the latter assumes, at least in the central part of Stockholm that people always choose the closest station independently of the type of station. Behavioral studies show that this is not always the case. Second, problems with generating the service area on ArcGIS led to having some stations with either service areas way bigger or way smaller than 800 meters road length wise and the fix was thus done manually and might not be precis. Third, the network layer used in order to create the service areas had missing pedestrian tracks for some regions, meaning that some service areas might have been created with flawed road and pedestrian network especially at the outskirts of the metro network where the problem was considerable. Manual fixes were thus undertaken in order to resolve the problem.

Third, assumptions and hypotheses taken in order to be able to pursue the study can definitely be questioned.

The way the GWR equations for the new stations were determined is completely problematic. Determining ridership for stations that do not yet exist in a year they definitely will never do can never be observed. This hypothetical situation has led to error being included and dragged in the study that can never be identified.

The assumption about the population and workers being homogeneously distributed over the multiple SAMS is far from the situation on the ground and can lead to inaccuracy and misrepresentation, especially in relatively large zones (which are mainly clustered in the outskirts of the metro network) where irregularities can be more pronounced. As already discussed above, the unchanged bus network between 2016 and 2030 is a huge drawback for accurate prediction at the new stations.

Finally, the choice of the number of persons per household and of the equivalent stations while calculating the number of workers in service areas is unrealistic. First, the exact number of persons per household cannot be known and the value that was used was for the current state of 2018. Second, to assume that the ratio of workers to population in new stations is identical to their

Page 51: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

50

chosen current equivalent station cannot be proven yet and is totally hypothetical done for the purpose of easing the calculation of the potential number of workers in the service areas.

The ridership predicted by SLL was assumed to be correct and unfaulty, However , this

predictions cannot be observed yet. Comparing the GWR predictions with other predictions cannot prove for sure how GWR performs with regards to the situation on the ground.

In future studies, these limits should be considered and tackled in order to improve the

potential predictiveness of the model.

Page 52: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

51

Conclusion

After going through the analysis of these results, one case-specific conclusion and two

main conclusions were deduced from this study.

In this case, GWR equations overpredicted the ridership for future stations with regards to the official predictions. However, a generalization of this results cannot be drawn due, first, the many case-specific assumptions taken here and, second, the lack of other studies available today using the same process.

The general conclusion are as follows. First, GWR is a good predicting tool for future

stations that are closely located from most present stations. Second, GWR is a good predicting method for stations where limited changes in the future environment will occur.

These conclusions help in realizing when to use GWR. In fact, according to these results

the conclusion determined, Geographically Weighted Regression can be used as both an explanatory and predictive tool but in limited cases. With regards to its explanatory power, the model can help explaining in details and area specific the current situation or the possibility of building one or more stations for a given area which will not change drastically. This can also be taken further in determining the ridership using the GWR equation.

GWR is thus performs good for a limited number of stations built next to an existing, stable

environment. For example, densely populated cities with an existing but limited public transportation or metro network are ideal cases for the use of this method. In addition, developed countries with limited funds are good situation where an area/station-specific equation explains and predicts the ridership reassuring policymakers and investors. The determined parameters can also help determine area-specific and thus more accurate and precise policies that can be proposed. For instance, the choice of building new apartments in specific areas can also be analyzed and other areas, not considered, can be proposed.

However, this study is still preliminary and experimental in the field of the

predictive power of GWR with regards to new metro stations. More studies should be performed for different contexts, tackling the limitations in order to get more accurate and significant results.

Page 53: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

52

References American Public Transportation Association. (2019). Public Transportation Facts - American Public Transportation

Association. [online] Available at: https://www.apta.com/news-publications/public-transportation-facts/ [Accessed 5 Sep. 2019]. Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. Longley, P., Goodchild, M., Maguire, D., Rhind, D. (Eds.), Geographical Information Systems, second ed. John Wiley, pp.252–264. Bernetti, G., Longo, G., Tomasella, L. and Violin, A. (2008). Sociodemographic Groups and Mode Choice in a Middle-Sized European City. Transportation Research Record: Journal of the Transportation Research Board, 2067(1), pp.17-25. Bhat, C. and Gossen, R. (2004). A mixed multinomial logit model analysis of weekend recreational episode type choice. Transportation Research Part B: Methodological, 38(9), pp.767-787. Blainey, S. and Mulley, C. (2013). Using Geographically Weighted Regression to forecast rail demand in the Sydney Region. Australasian Transport Research Forum 2013. Brisbane. Boyle, D. (2006). Fixed-route Transit Ridership Forecasting and Service Planning Methods. Transportation Research Board Reports, 66. Cardozo, O., García-Palomares, J. and Gutiérrez, J. (2012). Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34, pp.548-558. Cervero, R. (2006). Alternative Approaches to Modeling the Travel-Demand Impacts of Smart Growth. Journal of the American Planning Association, 72(3), pp.285-295. Chambers, R. and Clark, R. (2019). An introduction to model-based survey sampling with applications. Oxford University Press. Chiou, Y., Jou, R. and Yang, C. (2015). Factors affecting public transportation usage rate: Geographically weighted regression. Transportation Research Part A: Policy and Practice, 78, pp.161-177. Chow, L., Zhao, F., Liu, X., Li, M. and Ubaka, I. (2006). Transit Ridership Model Based on Geographically Weighted Regression. Transportation Research Record: Journal of the Transportation Research Board, 1972(1), pp.105-114. Cristaldi, F. (2005). Commuting and Gender in Italy: A Methodological Issue. The Professional Geographer, 57(2), pp.268-284. Data.worldbank.org. (2019). Urban population growth (annual %) | Data. [online] Available at: https://data.worldbank.org/indicator/SP.URB.GROW [Accessed 5 Sep. 2019]. De Smith, M., Goodchild, M. and Longley, P. (n.d.). Geospatial analysis. A comprehensive guide to principles, techniques and software tools. Dimopoulos, T. and Moulas, A. (2016). A Proposal of a Mass Appraisal System in Greece with CAMA System: Evaluating GWR and MRA techniques in Thessaloniki Municipality. Open Geosciences, 8(1). Floch, J. (2016). Prendre en compte l’hétérogénéité spatiale pour calculer des estimateurs : l’apport de la geographically weighted regression.

Page 54: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

53

Fotheringham, A., Charlton, M. and Brunsdon, C. (1998). Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environment and Planning A: Economy and Space, 30(11), pp.1905-1927. Fotheringham, A., Brunsdon, C. and Charlton, M. (2000). Quantitative geography. Los Angeles: Sage Publications. Fotheringham, A., Brunsdon, C. and Charlton, M. (2002). Geographically weighted regression. Chichester: Wiley. Geodata.se. (2019). Startsida. [online] Available at: https://www.geodata.se [Accessed 20 May 2019]. Gollini, I., Lu, B., Charlton, M., Brunsdon, C. and Harris, P. (2015). GWmodel: AnRPackage for Exploring Spatial Heterogeneity Using Geographically Weighted Models. Journal of Statistical Software, 63(17). Gómez-Ibáñez, J. (1996). Big-City Transit Rider snip, Deficits, and Politics: Avoiding Reality in Boston. Journal of the American Planning Association, 62(1), pp.30-50. Gutiérrez, J., Cardozo, O. and García-Palomares, J. (2011). Transit ridership forecasting at station level: an approach based on distance-decay weighted regression. Journal of Transport Geography, 19(6), pp.1081-1092. Hadayeghi, A., Shalaby, A. and Persaud, B. (2010). Development of planning level transportation safety tools using Geographically Weighted Poisson Regression. Accident Analysis & Prevention, 42(2), pp.676-688. Harders, C. and Björkman, J. (2016). Prognos över resandeutveckling. Stockholms läns landsting. Harris, P., Fotheringham, A., Crespo, R. and Charlton, M. (2010). The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets. Mathematical Geosciences, 42(6), pp.657-680. Hildebrand, E. (2003). Dimensions in elderly travel behaviour: A simplified activity-based model using lifestyle clusters. Transportation, 30(3), pp.285-306. Horowitz, A. (1984). Simplifications for single-route transit-ridership forecasting models. Transportation, 12(3), pp.261-275. Hsiao, S., Lu, J., Sterling, J. and Weatherford, M. (1997). Use of Geographic Information System for Analysis of Transit Pedestrian Access. Transportation Research Record: Journal of the Transportation Research Board, 1604(1), pp.50-59. Institut national de la statistique et des études économiques (2018). Handbook of Spatial Analysis. Montrouge: Jean-Luc Tavernier, pp.231-254. Kitamura, R. (1989). A causal analysis of car ownership and transit use. Transportation, 16(2), pp.155-173. Kuby, M., Barranda, A. and Upchurch, C. (2004). Factors influencing light-rail station boardings in the United States. Transportation Research Part A: Policy and Practice, 38(3), pp.223-247. Lantmateriet.se. (2019). Lantmäteriet – vi känner till varenda plats i Sverige.. [online] Available at: https://www.lantmateriet.se [Accessed 22 May 2019]. Lawton, K. (1997). Metro 1994 Travel Behavior Survey. Portland: Portland Metro. Leung, Y., Mei, C. and Zhang, W. (2000). Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression. Environment and Planning A: Economy and Space, 32(5), pp.871-890. Litman, T. (2004). Transit Price Elasticities and Cross - Elasticities. Journal of Public Transportation, 7(2), pp.37-58.

Page 55: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

54

Liu, Y., Ji, Y., Shi, Z. and Gao, L. (2018). The Influence of the Built Environment on School Children’s Metro Ridership: An Exploration Using Geographically Weighted Poisson Regression Models. Sustainability, 10(12), p.4684. Lloyd, C. (2010). Local models for spatial analysis. Lloyd, C. and Shuttleworth, I. (2005). Analysing Commuting Using Local Regression Techniques: Scale, Sensitivity, and Geographical Patterning. Environment and Planning A: Economy and Space, 37(1), pp.81-103. Luo, J. and Wei, Y. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), pp.51-64. Marshall, N. and Grady, B. (2006). Sketch Transit Modeling Based on 2000 Census Data. Transportation Research Record: Journal of the Transportation Research Board, 1986(1), pp.182-189. McNally, M. (2007). The four step model. Handbook of transport modeling, pp. 35-52. MTR (2018). Hållbarhetsredovisning 2017. Hållbarhetsredovisning. Murray, A. (2001). Strategic analysis of public transport coverage. Socio-Economic Planning Sciences, 35(3), pp.175-188. Nylén, A. (2017). Prognos över resandeutveckling Akalla Barkarby. Stockholm: Stockholms läns landsting. O’Neill, W., Ramsey, R. and Chou, J. (1992). Analysis of transit service areas using geographic information systems. Transportation Research Record, (1364), pp.131-138. O'Sullivan, S. and Morrall, J. (1996). Walking Distances to and from Light-Rail Transit Stations. Transportation Research Record: Journal of the Transportation Research Board, 1538(1), pp.19-26. Parker, T., McKeever, M., Arrington, G. and Smith-Heimer, J. (2002). Statewide Transit-Oriented Development Study – Factors for Success in California. Sacramento: Business, Transportation and Housing Agency and California Department of Transportation. Parsons Brinckerhoff, 1996. Transit and Urban Form, TCRP Report 16, vol. 1. Transportation Research Board, National Research Council, Washington, DC. Pineda Jaimes, N., Bosque Sendra, J., Gómez Delgado, M. and Franco Plata, R. (2010). Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 30(4), pp.576-591. Pushkarev, B.S., Zupan, J.M., 1982. Where transit works: urban densities for public transportation. Levinson, H.S., Weant, R.A. (Eds.), Urban Transportation: Perspectives and Prospects. Eno Foundation, Westport, CT. Qian, X. and Ukkusuri, S. (2015). Spatial variation of the urban taxi ridership using GPS data. Applied Geography, 59, pp.31-42. Regional utvecklingsplan för Stockholmsregionen (2010). RUFS 2010. Stockholm. Rosenberg, M. (2010). The Bearing Correlogram: A New Method of Analyzing Directional Spatial Autocorrelation. Geographical Analysis, 32(3), pp.267-278. Sallis, J. (2008). Angels in the details: Comment on “The relationship between destination proximity, destination mix and physical activity behaviors”. Preventive Medicine, 46(1), pp.6-7.

Page 56: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

55

Savage, M. (2016). The city with 20-year waiting lists for rental homes. [online] Bbc.com. Available at: https://www.bbc.com/worklife/article/20160517-this-is-one-city-where-youll-never-find-a-home [Accessed 19 Apr. 2019]. Somenahalli, S. (2011). Stop-level Urban Transit Ridership Forecasting – A case Study. Journal of the Eastern Asia Society for Transportation Studies, 9, pp.422-436. Statistiska centralbyrån (SCB). (n.d.). Antal personer och hushåll samt antal personer per hushåll efter region.. [online] Available at: http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START__BE__BE0101__BE0101S/HushallT09/table/tableViewLayout1/ [Accessed 13 Aug. 2019]. Stockholms läns landsting (2016). Everything you need to know about Stockholm’s new Metro. Stockholm. Trafikverket. (2019). Nationell vägdatabas, NVDB. [online] Available at: https://www.trafikverket.se/tjanster/system-och-verktyg/data/Nationell-vagdatabas/ [Accessed 1 May 2019]. Trafikverket. (2018). Sampers. [online] Available at: https://www.trafikverket.se/tjanster/system-och-verktyg/Prognos--och-analysverktyg/Sampers/ [Accessed 12 Apr. 2019]. Trafikförvaltningen (n.d.). Procurement of public transport in Stockholm. Stockholm: Stockholms Läns Landsting. TU, J. and XIA, Z. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Science of The Total Environment, 407(1), pp.358-378. Vaxer.stockholm. (2018). Omvandling av industribyggnader i Hammarby Sjöstad - Stockholm växer. [online] Available at: https://vaxer.stockholm/projekt/omvandling-av-industribyggnader-i-hammarby-sjostad/ [Accessed 8 Jul. 2019]. Vaxer.stockholm. (n.d.). Start - Stockholm växer. [online] Available at: https://vaxer.stockholm [Accessed 8 Jul. 2019]. Wachs, M. (1989). U.S. Transit Subsidy Policy: In Need of Reform. Science, 244(4912), pp.1545-1549. Wardman, M. (2004). Public transport values of time. Transport Policy, 11(4), pp.363-377. Whitehead, C. and Button, K. (1977). Urban Economics: Theory and Policy. Economica, 44(175), p.313. WSP Analys & Strategi (2013). Effekter på värdet på handelsfastigheter vid etablering av nya tunnelbanelinjer i Stockholmsregionen. Stockholm: WSP. Zhang, D. and Wang, X. (2014). Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC. Journal of Transport Geography, 41, pp.107-115. Zhang, P., Wong, D., So, B. and Lin, H. (2012). An exploratory spatial analysis of western medical services in Republican Beijing. Applied Geography, 32(2), pp.556-565. Zhao, F., Chow, L., Li, M. and Liu, X. (2005). A Transit Ridership Model Based on Geographically Weighted Regression and Service Quality Variables. Miami: Lehman Center for Transportation Research. Zhao, F., Chow, L., Li, M., Ubaka, I. and Gan, A. (2003). Forecasting Transit Walk Accessibility: Regression Model Alternative to Buffer Method. Transportation Research Record: Journal of the Transportation Research Board, 1835(1), pp.34-41.

Page 57: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

56

Appendix

Appendix I: Method and Tools in Determining Data in ArcGIS (ArcMap)

Income, Workers, Population and Age

All of the above was done by a method of intersect and dissolve like in NYC. The service area was divided on the given SAM’s areas. The proportional population (with the respective age groups) and workers were then added to each division that fell within each respective SAM’s area. It was assumed that the population and the number of workers were homogeneously distributed on the SAM’s area and thus on the division of the service area that fell in each SAM area.

A step further was taken in calculating the median income. A weighted average in function of the number of workers was done. The following equation explains how the median income was determined for each service area.

∑=çqéLqt_ê!_ë:5:t:çH ∗ ÜLJ]Hy∑=çqéLqt_ê!_ë:5:t:çH

Where the Workers_by_Division was calculated as explained above.

Road density (m/m2) The layer was intersected using the tool “Intersect” then the summation of the length of roads was done in the area, the all divided by the area of the service area.

Number of bus lines at a 200-meter buffer around the entrances of the metro

The number of buses located at a 200-meter radius was considered. The buffer tool was used. Some adjustments were done manually in order to correct any mistakes. The number of bus lines were finally divided by 2 in order to account for only the feeder type of the buses in the morning leading to the station.

Terminal Station

Terminal station were added regarding their respective years. In 2016, Akalla, Hjulsta and Kungsträdgården on the blue line, Hässelby Strand, Hagsätra, Farsta Strand and Skarpnäck on the green line and Mörby Centrum, Ropsten, Norsborg and Fruängen on the red line were assigned the dummy value of 2 while all other stations were assigned 1. In 2030, Kungsträdgården is replaced by Nacka and Akalla by Barkarby. All other stations remain the same.

Page 58: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

57

Type of change

The type of station was just translated to a dummy variable using the “bytespunkt” column from SLL of future stations.

Commuting distance

The point to distance tool was used to determine the distance from a station to T-centralen. Euclidian distances were used as the Stockholm metro network has a star shape and limited curves in its network.

Page 59: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

58

Appendix II: Table of GWR Equations and Predictions for the 2016 Situation

Stat

ion

Obs

erve

d

Loca

l R2

Pred

icte

d

Inte

rcep

t

Wor

kers

Bus

Chan

ge

Resid

ual

Std

Erro

r

Std

Err_

Int

Std

Err

Wor

kers

St

d Er

r Bus

Std

Err

Chan

ge

StdR

esid

Äng

bypl

an

400,

0000

0000

0000

000

0,74

5808

5427

3200

0 59

5,87

4423

8949

9995

0 - 57

,098

7578

9659

9999

- 0,

0040

9774

1460

700

71,1

2596

8780

4000

01

514,

8025

9472

6000

050

- 195,

8744

2389

5000

010

440,

9814

5246

6000

010

381,

0086

0604

3999

980

0,08

2431

8699

9290

0 27

,907

9925

6609

9999

31

9,18

3645

8380

0002

0 - 0,

4441

7837

2581

000

Aka

lla

800,

0000

0000

0000

000

0,67

1086

8392

7900

0 93

3,80

5454

0240

0003

0 44

,963

6597

0650

0003

0,

1150

8926

5256

000

51,5

2738

5300

7999

99

249,

9766

1361

1999

990

- 133,

8054

5402

4000

000

390,

0152

8203

1000

030

302,

6912

2643

2000

010

0,05

9364

5491

7470

0 11

,278

7089

5919

9999

22

9,47

4690

8640

0000

0 - 0,

3430

7746

4369

000

Fittj

a

600,

0000

0000

0000

000

0,06

7274

1394

5750

0 91

3,86

1968

7460

0000

0 59

5,27

1498

8180

0005

0 0,

1173

6388

3033

000

21,4

9569

4744

4000

01

- 105,

8248

0043

0000

000

- 313,

8619

6874

6000

000

426,

6336

1665

2000

000

415,

9698

4168

0999

990

0,13

9072

9690

1400

0 36

,149

3607

5380

0003

30

4,26

7640

4229

9999

0 - 0,

7356

7097

5037

000

Brom

map

lan

3000

,000

0000

0000

0000

0,

6896

8980

3382

000

2594

,867

6502

7999

9900

- 48

6,80

5166

8219

9999

0 0,

0969

5239

9292

300

54,6

5231

8977

1000

02

831,

2969

5161

8999

970

405,

1323

4971

8000

000

166,

4111

4393

5000

010

382,

8379

8985

4999

990

0,06

1248

8680

1600

0 28

,419

4697

4320

0001

35

0,35

5978

8910

0001

0 2,

4345

2655

9560

000

Lilje

holm

en

4200

,000

0000

0000

0000

0,

8292

7186

9873

000

3755

,908

7095

8000

0000

- 22

79,9

4394

0149

9999

00

0,15

5161

9448

8700

0 37

,011

1633

7999

9999

26

42,3

2660

0120

0000

00

444,

0912

9042

4000

020

203,

5263

5604

2000

000

363,

3476

5862

9000

020

0,05

0474

9233

0690

0 27

,175

9831

9360

0000

34

2,91

8497

3170

0000

0 2,

1819

8418

6520

000

Page 60: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

59

Örn

sber

g

900,

0000

0000

0000

000

0,75

0006

1087

9600

0 80

4,33

3990

0229

9996

0 - 14

35,5

2524

8859

9999

00

0,17

2199

0080

1700

0 73

,274

2496

7349

9995

16

73,4

8241

4460

0000

00

95,6

6600

9977

2000

05

438,

8380

2864

2999

970

384,

6743

9868

3999

980

0,05

8211

1461

4880

0 30

,089

8171

4140

0001

31

9,91

4168

8880

0001

0 0,

2179

9844

9845

000

Kär

rtorp

900,

0000

0000

0000

000

0,49

6910

9286

1900

0 65

2,07

0832

7229

9997

0 - 78

,980

2940

9580

0005

0,

1510

3419

2061

000

34,4

9912

6787

5999

98

396,

4958

0479

9999

970

247,

9291

6727

7000

000

450,

8317

2477

8000

020

367,

2393

1636

8000

000

0,06

1071

0451

8290

0 26

,322

7332

7100

0001

28

7,48

6143

4050

0001

0 0,

5499

3726

8499

000

Stur

eby

500,

0000

0000

0000

000

0,43

8176

8446

7900

0 66

1,16

4172

2509

9997

0 - 24

1,95

6260

9360

0001

0 0,

1445

6254

8257

000

59,0

2243

5228

5000

01

503,

3231

5617

6000

000

- 161,

1641

7225

1000

000

449,

2946

1506

4000

030

346,

2971

2979

2000

020

0,06

5277

5087

6440

0 28

,539

7469

6699

9999

27

5,96

5378

8439

9999

0 - 0,

3587

0488

2826

000

Glo

ben

300,

0000

0000

0000

000

0,60

2723

7730

7900

0 55

0,35

2684

1719

9995

0 - 10

93,4

9460

7679

9999

00

0,15

6560

1973

7600

0 40

,755

0528

0210

0003

13

45,9

2159

1990

0000

00

- 250,

3526

8417

2000

010

458,

2904

1066

5000

020

359,

4516

8974

0000

010

0,06

2474

3132

5000

0 28

,705

3812

9879

9999

28

5,98

7991

0729

9999

0 - 0,

5462

7519

6569

000

Huv

udsta

600,

0000

0000

0000

000

0,63

1011

1965

7000

0 92

6,23

8926

6249

9998

0 - 77

0,26

1623

8099

9995

0 0,

1936

6421

3989

000

30,6

8981

6188

1999

98

928,

3731

7775

0999

960

- 326,

2389

2662

4999

980

448,

4876

0379

9000

000

328,

1205

7522

7000

020

0,03

9174

7078

1510

0 20

,981

5975

9949

9999

29

6,87

3984

7019

9997

0 - 0,

7274

2016

4706

000

Uni

vers

itete

t

500,

0000

0000

0000

000

0,59

7904

8678

4400

0 82

2,45

7341

4369

9997

0 - 75

4,89

3479

6590

0004

0 0,

1456

0841

2684

000

33,0

7125

7853

2000

02

1061

,770

4260

0000

0000

- 32

2,45

7341

4370

0003

0 42

9,22

3630

4269

9999

0 28

2,02

0067

7340

0001

0 0,

0342

2284

9464

000

11,9

6863

9394

2000

00

257,

3876

2027

0000

010

- 0,75

1257

1968

9700

0

Ham

mar

byhö

jde

n 90

0,00

0000

0000

0000

0 0,

5605

2280

1223

000

988,

6445

0089

1000

010

- 558,

0317

1047

1000

000

0,15

8867

3267

6700

0 32

,349

9297

5929

9997

84

9,76

1543

5879

9999

0 - 88

,644

5008

9049

9998

46

0,33

7759

2919

9999

0 36

9,98

9969

1730

0002

0 0,

0579

7470

5077

500

26,7

3637

8512

0000

02

292,

3979

0117

4000

030

- 0,19

2564

0447

7200

0

Page 61: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

60

Joha

nnel

und

200,

0000

0000

0000

000

0,64

0398

6013

4900

0 49

9,50

3251

4120

0000

0 67

,535

0184

4340

0006

0,

0621

5205

2741

000

71,5

7583

5008

9000

00

254,

3221

7367

9999

990

- 299,

5032

5141

2000

000

431,

6275

9706

0000

030

372,

7506

0285

0000

010

0,08

5770

0649

7600

0 25

,259

0797

9370

0000

30

2,57

1291

7180

0000

0 - 0,

6938

9272

9410

000

Hag

sätra

1200

,000

0000

0000

0000

0,

3862

2809

6510

000

676,

4634

4108

4000

010

- 112,

0135

4510

6000

000

0,24

5129

7689

3300

0 66

,796

5999

2480

0006

24

7,35

6807

5990

0001

0 52

3,53

6558

9159

9999

0 44

0,89

9094

6920

0001

0 37

7,71

3177

6389

9998

0 0,

0879

7411

8596

600

33,1

7154

7694

2000

01

301,

2679

3064

8999

990

1,18

7429

4259

6000

0

Mäl

arhö

jden

700,

0000

0000

0000

000

0,59

1631

5791

4000

0 84

2,25

4058

6970

0000

0 - 75

6,55

7067

2400

0004

0 0,

2223

8022

7498

000

61,5

0530

5715

6999

97

975,

1882

7678

2999

990

- 142,

2540

5869

7000

000

450,

1293

6263

0000

000

398,

5358

2521

2000

020

0,06

0560

8743

5650

0 26

,617

5537

5150

0001

34

0,10

5192

4720

0000

0 - 0,

3160

2928

0707

000

Isla

ndsto

rget

800,

0000

0000

0000

000

0,73

7669

6804

9100

0 65

1,84

3732

7159

9998

0 - 9,

3220

0403

0680

001

0,00

4697

7212

5907

0 75

,088

3297

7170

0003

43

0,01

9200

4150

0000

0 14

8,15

6267

2839

9999

0 45

2,24

9941

5880

0001

0 38

0,76

0145

6049

9999

0 0,

0851

5253

3152

700

27,4

6532

0656

3000

01

320,

5244

6289

0999

980

0,32

7598

2010

4000

0

Berg

sham

ra

1100

,000

0000

0000

0000

0,

6004

3372

3983

000

881,

9106

3576

3999

950

- 451,

5865

0102

1999

990

0,15

7550

4087

9300

0 46

,272

0497

5779

9998

62

6,46

3725

5960

0002

0 21

8,08

9364

2359

9999

0 44

0,65

8763

2839

9997

0 29

4,61

0310

5440

0001

0 0,

0350

2860

9122

800

12,0

0177

2224

3000

00

244,

6588

2296

1999

990

0,49

4916

6620

7000

0

Skan

stull

2200

,000

0000

0000

0000

0,

8114

3694

1582

000

1765

,562

6392

7000

0100

- 24

46,3

0179

7000

0001

00

0,18

3633

7602

4000

0 7,

9875

0168

4050

000

2793

,393

9585

8999

9800

43

4,43

7360

7279

9999

0 39

1,82

7655

6060

0001

0 37

4,22

2224

1540

0000

0 0,

0473

7066

5587

000

25,1

4669

1876

9999

99

382,

6324

4440

8000

030

1,10

8746

0379

9000

0

Hök

arän

gen

1000

,000

0000

0000

0000

0,

3892

8858

3502

000

1029

,237

1728

9999

9900

80

,839

6649

9000

0003

0,

1636

2916

9078

000

40,7

4980

3809

2999

98

228,

7396

4856

6999

990

- 29,2

3717

2903

0000

01

390,

8668

4041

1000

000

343,

4460

4783

0999

990

0,06

7499

2722

1130

0 30

,265

2233

7910

0000

27

1,53

7452

5249

9999

0 - 0,

0748

0085

2567

300

Page 62: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

61

Mas

mo

200,

0000

0000

0000

000

0,08

3483

1172

4680

0 50

9,47

6224

3810

0001

0 54

1,50

9618

9930

0000

0 0,

1531

7899

3087

000

17,4

5271

8908

2000

01

- 70,9

0715

0568

0999

93

- 309,

4762

2438

1000

010

273,

3393

8040

4999

990

410,

8456

5528

0000

020

0,13

3257

7566

6200

0 36

,835

2035

1939

9997

29

9,15

3271

2210

0001

0 - 1,

1322

0504

0940

000

Frid

hem

spla

n

5700

,000

0000

0000

0000

0,

6663

4433

4885

000

4208

,887

3744

9000

0200

- 13

50,1

6061

6590

0000

00

0,19

4762

8960

8300

0 5,

0839

5325

0760

000

1677

,082

3235

8000

0100

14

91,1

1262

5510

0000

00

346,

5620

0091

6999

980

305,

5899

1338

7000

020

0,03

6604

3898

3010

0 19

,167

4191

2159

9998

27

1,90

6498

3530

0002

0 4,

3025

8545

8200

000

Väs

terto

rp

700,

0000

0000

0000

000

0,49

1330

4378

2300

0 10

59,1

2492

4700

0001

00

- 562,

7378

7546

7999

970

0,21

5492

4289

5000

0 68

,419

0258

5459

9994

80

0,83

5927

2190

0004

0 - 35

9,12

4924

7010

0000

0 45

2,74

5656

5449

9997

0 45

0,73

0805

5199

9999

0 0,

0798

7705

7606

200

32,1

5520

4800

1000

02

371,

0645

0334

4000

000

- 0,79

3215

6156

7600

0

S:t E

riksp

lan

2500

,000

0000

0000

0000

0,

6433

2856

4656

000

1932

,574

6979

2000

0100

- 11

57,4

3066

3079

9999

00

0,19

0841

4393

3600

0 7,

0729

2396

0580

000

1477

,790

8623

5000

0000

56

7,42

5302

0840

0001

0 38

8,09

7128

3090

0003

0 29

4,84

3901

9809

9999

0 0,

0351

0352

6465

900

18,8

2842

1751

4000

01

265,

6807

3801

8999

990

1,46

2070

3444

9000

0

Med

borg

arpl

atse

n 14

00,0

0000

0000

0000

00

0,73

3958

9552

7200

0 15

14,6

1706

4780

0000

00

- 1853

,530

8792

5999

9900

0,

1802

9045

6263

000

0,56

6547

3646

7300

0 22

64,7

4579

2679

9998

00

- 114,

6170

6477

6000

010

417,

5447

7483

4000

010

329,

7309

8872

8999

990

0,04

0793

8139

2130

0 22

,230

3613

6800

0001

34

8,40

8574

1330

0000

0 - 0,

2745

0245

2633

000

Tallk

roge

n

400,

0000

0000

0000

000

0,42

9981

0130

6300

0 65

2,34

0974

5510

0004

0 - 2,

4700

6563

3230

000

0,15

1186

4304

6000

0 43

,373

4863

6230

0000

30

1,82

4763

4190

0002

0 - 25

2,34

0974

5509

9999

0 45

6,27

6065

2189

9997

0 34

9,30

9235

6899

9998

0 0,

0661

7163

6248

100

28,8

6297

7895

8999

99

274,

4862

7283

5000

020

- 0,55

3044

5135

9000

0

Gam

la st

an

800,

0000

0000

0000

000

0,68

2681

8835

0500

0 78

9,45

7852

5050

0001

0 - 15

39,9

3719

6180

0000

00

0,17

3117

0632

9700

0 - 1,

1926

6970

3250

000

1991

,201

6753

7000

0000

10

,542

1474

9540

0000

44

6,78

6228

7739

9999

0 32

5,11

0693

3899

9999

0 0,

0376

2659

6004

900

20,7

8133

2843

3000

00

325,

5149

2999

3000

010

0,02

3595

5067

9150

0

Page 63: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

62

Kar

lapl

an

900,

0000

0000

0000

000

0,64

2292

4919

5600

0 88

3,79

9495

0779

9995

0 - 13

17,6

4404

6570

0000

00

0,13

3094

5795

6000

0 - 2,

9547

6200

6600

000

1929

,611

6710

7000

0100

16

,200

5049

2200

0000

45

5,63

6586

2870

0000

0 32

9,90

5841

5939

9998

0 0,

0357

1895

7838

800

20,8

3672

9038

3000

00

341,

7842

4538

5000

020

0,03

5555

7595

8910

0

Ensk

ede

Går

d

300,

0000

0000

0000

000

0,55

6628

3665

9000

0 49

1,52

3876

5060

0002

0 - 83

1,98

0303

4980

0001

0 0,

1485

0654

6788

000

48,5

4254

7944

1000

01

1078

,952

0831

4999

9900

- 19

1,52

3876

5059

9999

0 45

6,17

6692

5680

0002

0 35

5,42

9116

2409

9997

0 0,

0635

6034

4701

200

29,0

1608

1353

2999

99

283,

4826

3484

4000

020

- 0,41

9845

8176

9700

0

Soln

a str

and

300,

0000

0000

0000

000

0,60

6490

6666

5900

0 64

6,57

6918

0830

0001

0 - 51

7,27

8313

8139

9994

0 0,

1643

9450

1222

000

45,9

9407

9434

5000

01

675,

6210

7330

5999

970

- 346,

5769

1808

3000

010

444,

0319

1135

4999

980

331,

6748

1975

4000

000

0,04

1360

2214

7470

0 19

,916

8004

5909

9999

28

1,84

5395

3179

9999

0 - 0,

7805

2254

6287

000

Rågs

ved

800,

0000

0000

0000

000

0,37

2720

4580

1400

0 68

3,73

6196

4169

9997

0 - 55

,356

2952

6470

0002

0,

2141

6002

3184

000

55,3

5556

7651

1999

98

264,

2166

3197

9999

990

116,

2638

0358

3000

000

429,

3414

9354

8000

020

355,

0990

0310

1999

980

0,07

5373

2544

2780

0 31

,200

0023

7620

0000

28

0,59

4341

2390

0002

0 0,

2707

9563

7809

000

Hal

lonb

erge

n

1000

,000

0000

0000

0000

0,

6191

6785

9742

000

905,

0584

7614

8999

940

- 155,

1842

0301

0000

000

0,14

2157

6634

9400

0 50

,761

209 8

1630

0003

35

7,60

1190

6310

0001

0 94

,941

5238

5079

9996

44

4,64

4807

2019

9998

0 28

7,11

1511

0200

0002

0 0,

0417

8824

2271

300

10,8

9299

9018

2999

99

225,

3909

3778

3000

000

0,21

3522

1694

1000

0

Skär

mar

brin

k

1200

,000

0000

0000

0000

0,

6064

1997

1857

000

487,

9943

8567

8000

010

- 1022

,411

7719

0000

0000

0,

1624

1728

6180

000

35,2

1323

2194

6999

98

1283

,702

9449

7000

0100

71

2,00

5614

3220

0004

0 44

5,59

1825

0180

0001

0 34

7,34

7431

0400

0000

0 0,

0572

4866

1050

800

26,7

4310

9434

6000

01

272,

9692

5251

4999

990

1,59

7887

5157

6000

0

Hju

lsta

300,

0000

0000

0000

000

0,62

7908

1661

0200

0 68

4,64

7146

7320

0001

0 14

,031

0835

3280

0000

0,

1045

0301

4549

000

53,9

6024

9604

9000

00

293,

4902

1923

3000

000

- 384,

6471

4673

2000

010

451,

0624

7093

7999

990

312,

2835

4249

0999

990

0,06

5401

1438

8840

0 12

,431

9061

5860

0000

23

3,83

2270

9599

9999

0 - 0,

8527

5803

5783

000

Page 64: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

63

Zink

ensd

amm

800,

0000

0000

0000

000

0,73

3892

8462

3200

0 12

45,3

3463

1290

0001

00

- 1897

,091

3488

3000

0000

0,

1742

3203

2490

000

6,02

1349

6488

8000

0 23

13,2

4975

2759

9999

00

- 445,

3346

3129

0000

000

461,

1714

8034

5000

020

328,

6251

0933

9999

990

0,04

0306

6239

2920

0 20

,934

8729

6140

0000

32

7,98

8444

6919

9997

0 - 0,

9656

5952

2044

000

Hus

by

1100

,000

0000

0000

0000

0,

6711

2589

5414

000

810,

3657

8627

6999

980

46,2

4468

6972

4999

98

0,11

3087

3431

7300

0 51

,399

7137

1250

0002

24

8,37

5657

0810

0001

0 28

9,63

4213

7230

0002

0 44

8,08

2918

7159

9999

0 29

8,63

8869

9490

0002

0 0,

0576

9778

5725

000

11,2

0379

5838

4000

00

226,

9760

1918

0000

010

0,64

6385

3042

0400

0

Tele

fonp

lan

2400

,000

0000

0000

0000

0,

6730

7590

1797

000

1195

,448

8602

5000

0100

- 11

90,6

5843

3580

0001

00

0,14

1858

7724

0600

0 88

,474

0034

6230

0004

14

59,5

7328

6289

9999

00

1204

,551

1397

4999

9900

44

8,48

3774

7049

9997

0 39

2,90

7068

8620

0002

0 0,

0720

3341

5731

500

40,1

7040

0242

6000

03

336,

3780

9314

3999

990

2,68

5829

9178

0000

0

Band

hage

n

900,

0000

0000

0000

000

0,40

7945

7669

2500

0 85

7,23

6786

5400

0003

0 - 12

8,73

2604

9700

0001

0 0,

1605

2239

6335

000

55,1

8735

1483

6999

99

391,

2028

0211

4000

010

42,7

6321

3459

9000

01

458,

8593

9131

2000

010

341,

5204

7364

9999

990

0,06

5777

3722

1450

0 28

,765

3955

2699

9999

27

0,70

2483

3859

9998

0 0,

0931

9459

1348

800

Gub

bäng

en

600,

0000

0000

0000

000

0,40

3440

1567

7300

0 72

5,69

1115

6290

0002

0 36

,851

4265

1129

9998

0,

1586

8701

3575

000

42,6

8728

1261

4000

03

265,

4603

6385

1000

010

- 125,

6911

1562

9000

000

462,

1414

8677

8000

000

344,

1422

6395

9999

980

0,06

6346

4045

0760

0 29

,401

0037

3840

0000

27

1,24

4421

2660

0002

0 - 0,

2719

7539

9797

000

Thor

ildsp

lan

800,

0000

0000

0000

000

0,68

1898

0270

8000

0 59

2,18

5158

6020

0000

0 - 14

05,7

3642

6400

0000

00

0,19

8137

7222

2000

0 10

,531

2397

8030

0000

17

04,0

2346

1940

0001

00

207,

8148

4139

8000

000

436,

0171

7102

1000

020

308,

4896

8736

4000

020

0,03

7927

5520

6910

0 19

,995

1533

6509

9998

27

8,38

5205

4430

0002

0 0,

4766

2077

3700

000

Väl

lingb

y

1900

,000

0000

0000

0000

0,

6503

0087

0163

000

1505

,400

0363

0999

9900

59

,790

0463

1210

0003

0,

0511

2025

6270

600

71,9

8751

9605

0000

03

280,

3797

6409

4000

000

394,

5999

6368

8999

990

403,

6503

7259

3999

980

365,

5056

1171

3000

010

0,08

2238

0394

9570

0 25

,263

4383

1020

0002

30

0,01

8889

0179

9998

0 0,

9775

7859

3953

000

Page 65: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

64

Skar

pnäc

k

1000

,000

0000

0000

0000

0,

4417

7639

3381

000

941,

1941

8006

5999

940

109,

1349

5601

1000

000

0,15

4234

2235

9300

0 32

,898

1035

2469

9998

23

1,49

6159

7610

0000

0 58

,805

8199

3380

0002

34

7,47

4097

0849

9998

0 35

7,32

6723

1930

0002

0 0,

0658

5474

2075

700

28,9

9987

4585

8999

99

281,

0703

4063

4999

980

0,16

9237

9962

3400

0

Kist

a

1200

,000

0000

0000

0000

0,

6755

5854

3280

000

1519

,245

7378

3999

9900

50

,124

2709

6100

0001

0,

1113

0190

7593

000

51,2

4187

8409

9999

98

241,

5173

3168

1999

990

- 319,

2457

3783

8000

030

423,

7988

7683

7000

020

296,

7883

9275

0000

010

0,05

5877

6784

9660

0 11

,146

1023

5920

0000

22

5,26

3483

2400

0000

0 - 0,

7532

9538

4406

000

Abr

aham

sber

g

1000

,000

0000

0000

0000

0,

6830

4213

8419

000

729,

2630

2882

1000

030

- 788,

4619

6097

4000

020

0,15

7739

5583

8400

0 46

,116

5846

5659

9997

10

46,7

0250

7190

0000

00

270,

7369

7117

9000

020

452,

5035

9347

5000

000

365,

5407

6469

7999

980

0,05

0356

2000

6370

0 27

,431

3092

0660

0002

35

0,25

5940

8290

0000

0 0,

5983

0899

7062

000

Kun

gsträ

dgår

den

50

0,00

0000

0000

0000

0 0,

6630

3481

9765

000

593,

0563

5542

0000

050

- 1424

,335

2154

7000

0100

0,

1616

1166

0971

000

- 1,42

1472

2853

8000

0 19

19,1

2102

6060

0001

00

- 93,0

5635

5420

1000

04

384,

7587

5872

7999

980

325,

2912

0876

1000

010

0,03

6347

8291

4010

0 20

,684

9987

0939

9999

32

4,61

3638

4370

0002

0 - 0,

2418

5636

6643

000

Björ

khag

en

700,

0000

0000

0000

000

0,52

4346

8813

4700

0 72

1,14

4402

2099

9995

0 - 16

9,06

1344

4910

0000

0 0,

1558

5358

1528

000

28,8

7600

5512

1999

99

497,

0137

3529

7999

970

- 21,1

4440

2209

5000

01

457,

1814

1953

4999

970

390,

4389

1385

7999

980

0,05

8442

4835

2050

0 26

,094

8518

2750

0001

31

1,88

3102

6909

9998

0 - 0,

0462

4947

8447

800

Hor

nstu

ll

2100

,000

0000

0000

0000

0,

7693

3980

3491

000

1652

,329

8697

2000

0000

- 20

46,3

1632

1230

0001

00

0,16

0295

7035

9500

0 21

,587

0928

8060

0000

24

36,9

4963

5999

9998

00

447,

6701

3028

3999

980

396,

9650

7086

2000

000

342,

8834

6423

3999

970

0,04

3563

5202

7500

0 22

,323

4481

2410

0000

32

2,68

6971

2779

9999

0 1,

1277

3179

0890

000

Vår

by g

ård

500,

0000

0000

0000

000

0,12

0337

9638

2200

0 77

7,30

9754

2440

0003

0 41

4,48

2591

1649

9997

0 0,

1624

5196

3342

000

34,2

1107

1513

5000

02

- 32,0

8699

9973

7000

03

- 277,

3097

5424

3999

980

449,

4829

5913

4999

990

396,

9569

0904

4999

970

0,12

2342

5389

3400

0 31

,523

2419

8730

0000

29

2,74

5306

9289

9998

0 - 0,

6169

5276

4522

000

Page 66: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

65

Rådm

ansg

atan

1500

,000

0000

0000

0000

0,

6354

4591

1403

000

1406

,805

3608

4999

9900

- 12

26,2

3188

7520

0001

00

0,16

1028

8144

2300

0 4,

6481

9248

6900

000

1679

,811

5963

8000

0100

93

,194

6391

5369

9995

43

3,70

2479

9420

0002

0 30

5,85

0051

3020

0000

0 0,

0346

2502

7870

000

18,8

9791

6822

1000

01

281,

5518

0899

4999

990

0,21

4881

4993

3100

0

Mör

by

cent

rum

20

00,0

0000

0000

0000

00

0,62

4791

8185

1000

0 18

59,2

1131

7000

0000

00

- 215,

5682

6809

6000

000

0,15

1602

3847

4800

0 51

,592

2960

4080

0001

38

1,27

3326

9039

9999

0 14

0,78

8682

9970

0000

0 33

2,88

0547

4509

9998

0 31

7,19

9125

9889

9998

0 0,

0356

1571

7966

700

11,8

4814

7422

5000

00

233,

7430

0795

9000

010

0,42

2940

5535

2600

0

Axe

lsber

g

500,

0000

0000

0000

000

0,70

0621

1144

2000

0 73

5,47

8601

7530

0002

0 - 11

94,2

2763

1329

9999

00

0,20

0347

9839

3500

0 66

,752

4391

6319

9995

14

08,6

9179

3310

0001

00

- 235,

4786

0175

2999

990

445,

8762

6471

5999

980

392,

6047

1810

7000

000

0,05

6338

2976

1320

0 26

,915

1099

6639

9999

32

8,60

9790

6649

9999

0 - 0,

5281

2544

7320

000

Dan

dery

ds

sjukh

us

2800

,000

0000

0000

0000

0,

6056

5299

2824

000

2916

,349

2811

0000

0100

- 31

4,10

0111

8209

9998

0 0,

1489

4615

5225

000

49,1

1135

2470

5000

02

500,

0500

4856

5000

000

- 116,

3492

8110

0000

000

277,

5945

7805

3000

020

319,

3815

3943

6000

030

0,03

6088

4421

8560

0 12

,351

6435

5000

0000

24

9,69

3068

7329

9999

0 - 0,

4191

3383

8695

000

Alb

y

1000

,000

0000

0000

0000

0,

0558

8146

0074

800

839,

9106

0331

0000

060

657,

6131

4151

2999

960

0,09

7681

2289

8210

0 18

,129

0395

3229

9998

- 13

0,92

0604

8220

0000

0 16

0,08

9396

6900

0000

0 34

2,65

3564

4910

0000

0 42

4,24

9319

2920

0000

0 0,

1460

3021

3308

000

37,6

3459

9602

1999

98

308,

7095

1645

7000

010

0,46

7204

8193

2700

0

Näc

kros

en

1100

,000

0000

0000

0000

0,

6177

4243

0975

000

1243

,325

7538

5000

0000

- 36

6,68

9053

1110

0002

0 0,

1724

2812

0435

000

48,2

0034

9746

2999

99

483,

2498

0355

2000

000

- 143,

3257

5384

5000

010

419,

4136

0731

3999

990

303,

6644

2080

7999

990

0,03

6456

8340

5290

0 11

,051

4748

6810

0000

23

6,95

2014

8930

0001

0 - 0,

3417

2890

7565

000

Rink

eby

1000

,000

0000

0000

0000

0,

6331

6677

9528

000

977,

9547

4881

4000

030

- 23,2

1540

1972

7999

99

0,11

7597

1897

3600

0 52

,190

5823

6890

0003

30

5,72

4158

0900

0000

0 22

,045

2511

8610

0000

40

6,45

8201

5259

9998

0 28

7,14

8214

2489

9998

0 0,

0535

5232

9012

600

11,3

2652

7368

3000

01

221,

9714

4196

4000

010

0,05

4237

4372

1570

0

Page 67: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

66

Riss

ne

900,

0000

0000

0000

000

0,60

5641

0105

2300

0 12

21,9

8273

4170

0000

00

- 59,4

0676

2512

9000

02

0,10

8503

1384

1000

0 53

,086

9703

7470

0002

34

6,91

5261

4650

0001

0 - 32

1,98

2734

1690

0003

0 41

6,42

0265

6609

9997

0 28

7,97

4917

1170

0002

0 0,

0533

1397

4660

000

12,2

6747

7916

2000

01

225,

8127

8756

8999

990

- 0,77

3215

8127

7500

0

Gär

det

1100

,000

0000

0000

0000

0,

6349

1064

7325

000

729,

8201

9431

1000

020

- 1265

,311

3791

5999

9900

0,

1237

5681

3877

000

- 2,42

8856

7278

6000

0 19

07,1

7167

6519

9999

00

370,

1798

0568

8999

980

391,

5896

2541

1999

980

333,

9916

5367

1999

980

0,03

5733

4392

2240

0 19

,436

7091

9399

9999

34

8,07

1722

2179

9999

0 0,

9453

2587

6035

000

Häs

selb

y gå

rd

900,

0000

0000

0000

000

0,65

2056

8142

3900

0 68

5,47

5127

4010

0001

0 57

,456

1728

5310

0000

0,

0654

6239

1076

800

73,5

1811

2400

8999

94

258,

3412

9047

2000

030

214,

5248

7259

8999

990

433,

1878

4009

9000

030

377,

9364

3674

7000

020

0,08

8088

4263

4960

0 25

,628

9925

8010

0000

30

6,68

4217

2199

9999

0 0,

4952

2367

1445

000

Rådh

uset

1000

,000

0000

0000

0000

0,

6754

3340

4266

000

1210

,704

1577

6000

0000

- 14

84,5

4407

7609

9999

00

0,18

1313

9904

0600

0 2,

6348

3549

3130

000

1881

,368

3457

4000

0000

- 21

0,70

4157

7560

0000

0 46

2,59

3480

3470

0002

0 31

9,09

2095

1560

0003

0 0,

0373

8232

6200

400

19,5

6152

1195

2000

01

291,

7235

4606

0999

980

- 0,45

5484

4949

3400

0

Kris

tineb

erg

1100

,000

0000

0000

0000

0,

6982

0055

5401

000

1354

,258

1557

0000

0100

- 13

51,5

6860

6170

0001

00

0,19

9061

7186

0500

0 20

,894

3680

6390

0000

16

08,4

2084

4369

9999

00

- 254,

2581

5570

2000

010

406,

5484

2431

9999

980

327,

7684

8696

8999

980

0,04

0694

1304

0420

0 22

,430

7539

2349

9999

30

4,82

3742

2440

0002

0 - 0,

6254

0681

6241

000

Hög

dale

n

1000

,000

0000

0000

0000

0,

3827

1581

8095

000

1357

,863

8938

3000

0100

- 54

,161

5567

0879

9999

0,

1823

5871

6736

000

53,4

7779

8853

1999

99

299,

8720

9499

4000

010

- 357,

8638

9383

4000

010

351,

3720

8787

7000

010

349,

6717

4465

6999

980

0,06

9977

4109

2540

0 30

,309

5275

6180

0000

27

6,84

7060

6550

0001

0 - 1,

0184

7558

8080

000

Alv

ik

2100

,000

0000

0000

0000

0,

7071

3817

5110

000

2072

,576

8252

3999

9800

- 12

33,4

9705

7200

0000

00

0,19

6079

9048

6800

0 29

,841

1756

8850

0002

14

63,8

4381

2679

9999

00

27,4

2317

4761

3999

99

235,

0801

4513

0000

010

354,

8642

9502

8000

020

0,04

4752

7382

2610

0 25

,579

9076

1570

0002

34

1,94

5324

3080

0001

0 0,

1166

5457

6448

000

Page 68: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

67

Blås

ut

600,

0000

0000

0000

000

0,53

2092

7067

6400

0 67

3,42

5759

1069

9998

0 - 39

7,08

2289

1259

9998

0 0,

1463

8760

9063

000

41,0

1774

3950

2000

00

680,

5317

7823

6000

040

- 73,4

2575

9107

1000

06

454,

6266

3597

8000

020

364,

0224

8547

2000

030

0,06

1923

5150

7050

0 27

,574

7192

0849

9999

28

3,41

1733

0070

0001

0 - 0,

1615

0782

4875

000

Höt

orge

t

500,

0000

0000

0000

000

0,64

7984

9880

9000

0 75

0,25

2931

1920

0001

0 - 13

21,2

7422

7140

0000

00

0,16

3042

7052

0700

0 1,

6552

4606

6950

000

1790

,218

1634

2000

0100

- 25

0,25

2931

1920

0001

0 45

2,21

4145

6990

0003

0 31

3,84

1218

8950

0000

0 0,

0353

0847

7255

500

19,5

5383

0174

4000

02

293,

3310

2328

0000

010

- 0,55

3394

7435

5700

0

Baga

rmos

sen

1100

,000

0000

0000

0000

0,

4612

8435

1609

000

702,

8904

1280

7999

950

56,3

4777

3490

1000

03

0,15

3108

5533

0500

0 32

,325

5333

1770

0000

28

0,26

7722

6710

0000

0 39

7,10

9587

1919

9999

0 44

9,37

2364

9890

0000

0 35

9,92

3517

0719

9998

0 0,

0624

2623

6952

700

27,2

0641

2238

1000

00

282,

2313

3316

3999

980

0,88

3698

2826

0800

0

Sand

sbor

g

700,

0000

0000

0000

000

0,49

6369

0024

1000

0 40

5,06

3923

3289

9998

0 - 24

0,82

0095

2320

0000

0 0,

1428

0533

9955

000

44,5

4452

9705

8000

02

526,

2346

1640

0000

050

294,

9360

7667

1000

020

447,

5850

7703

7000

020

355,

9756

5532

3000

010

0,06

2275

1254

3780

0 26

,966

5394

1320

0000

27

7,02

6952

7610

0002

0 0,

6589

4975

4588

000

Sätra

800,

0000

0000

0000

000

0,33

5085

9182

8300

0 60

7,80

5541

8679

9998

0 - 22

,957

6845

6349

9999

0,

2581

3241

1632

000

58,7

1683

5610

8999

99

220,

4866

2224

8000

000

192,

1944

5813

1999

990

419,

1426

9541

8000

020

441,

1052

5263

4000

010

0,10

9618

7322

2500

0 26

,932

5834

9110

0001

32

1,03

3321

9639

9998

0 0,

4585

4182

8912

000

Fars

ta

1200

,000

0000

0000

0000

0,

3754

1773

0892

000

1024

,581

7853

7000

0000

13

8,03

0743

4339

9999

0 0,

1676

2843

4815

000

38,1

6107

6433

2000

02

183,

6035

5974

6000

000

175,

4182

1462

6000

010

309,

3195

9797

2000

000

345,

6227

6719

8000

020

0,06

9781

3410

4490

0 31

,574

6529

8929

9999

27

4,76

0177

6970

0002

0 0,

5671

0992

7001

000

Fruä

ngen

1800

,000

0000

0000

0000

0,

3924

6150

9290

000

1905

,784

5264

6999

9900

- 30

6,27

4415

9389

9999

0 0,

2349

0979

9387

000

61,2

6044

4889

5000

00

548,

4402

0356

2999

950

- 105,

7845

2647

3000

000

279,

9935

3354

5999

980

448,

9628

1957

3999

980

0,09

2025

7868

3400

0 36

,669

9310

4619

9999

37

3,01

5693

2690

0000

0 - 0,

3778

1060

5601

000

Page 69: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

68

Duv

bo

600,

0000

0000

0000

000

0,59

6077

6887

9100

0 99

6,11

8595

5680

0005

0 - 19

9,28

1545

8840

0000

0 0,

1354

8263

8000

000

50,9

2788

8303

8999

98

419,

8163

7323

7999

980

- 396,

1185

9556

7999

990

426,

2139

8529

7000

020

291,

1977

9820

7000

010

0,04

3367

8445

2250

0 11

,841

1486

1049

9999

23

1,83

1583

1470

0000

0 - 0,

9293

8901

4046

000

Soln

a ce

ntru

m

1600

,000

0000

0000

0000

0,

6258

5369

6892

000

1954

,171

8613

9000

0000

- 53

4,39

4878

0619

9998

0 0,

1905

2300

6555

000

40,7

8159

1501

1000

03

634,

6324

9951

7000

040

- 354,

1718

6139

0999

990

399,

2983

0639

1999

970

311,

5335

8747

3000

010

0,03

5995

2077

6770

0 12

,322

3951

8510

0000

25

8,90

6398

9840

0002

0 - 0,

8869

8563

3850

000

Ode

npla

n

2100

,000

0000

0000

0000

0,

6294

1536

2418

000

3753

,596

0217

1000

0100

- 11

27,0

7904

4740

0000

00

0,17

0892

2608

4200

0 9,

2039

3238

0120

000

1506

,544

1289

4000

0100

- 16

53,5

9602

1710

0001

00

376,

6129

1069

9999

990

296,

9431

2837

6999

990

0,03

4166

1561

9490

0 17

,678

7249

9610

0001

26

9,58

4777

4669

9998

0 - 4,

3907

0455

2950

000

Öste

rmal

msto

rg 80

0,00

0000

0000

0000

0 0,

6470

6971

2298

000

1381

,977

9862

5000

0000

- 13

34,0

0684

0940

0001

00

0,15

1357

6683

7500

0 - 0,

1382

8457

9452

000

1860

,610

3508

3999

9900

- 58

1,97

7986

2460

0000

0 44

0,49

1250

5479

9998

0 31

6,37

3822

9400

0003

0 0,

0352

0405

0758

500

19,9

1592

8182

9000

00

308,

4746

0624

2999

980

- 1,32

1202

1476

5000

0

Stad

shag

en

700,

0000

0000

0000

000

0,67

3518

9274

0500

0 10

43,6

0550

9120

0001

00

- 1273

,859

9671

5000

0100

0,

2134

5029

1695

000

6,90

6748

5433

7000

0 15

22,1

3412

2080

0000

00

- 343,

6055

0911

8999

980

440,

6945

9321

8000

020

313,

1008

9751

1000

030

0,03

7937

0926

5410

0 20

,354

5415

7559

9999

28

2,45

0160

3659

9998

0 - 0,

7796

9077

5442

000

Tekn

iska

högs

kola

n 20

00,0

0000

0000

0000

00

0,62

4253

2855

9500

0 27

85,3

9694

7790

0000

00

- 1162

,273

4856

8000

0000

0,

1442

8047

6550

000

6,66

3985

4240

9000

0 16

62,4

2796

5509

9999

00

- 785,

3969

4779

0000

010

369,

1189

5173

9000

010

310,

0142

1823

5999

980

0,03

4220

3902

5360

0 16

,724

3808

5690

0002

29

3,93

2742

6070

0002

0 - 2,

1277

6110

2730

000

Sund

bybe

rg

1500

,000

0000

0000

0000

0,

5935

5462

1426

000

2113

,684

1935

6000

0000

- 34

9,83

6604

2000

0001

0 0,

1540

6081

6299

000

48,8

0956

1265

7999

99

520,

0809

6552

2000

040

- 613,

6841

9356

4000

000

400,

8963

7748

0000

010

311,

9165

7746

9000

000

0,04

0106

4207

8610

0 13

,199

0997

6410

0000

24

7,36

8569

9670

0001

0 - 1,

5307

8009

1910

000

Page 70: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

69

Åke

shov

500,

0000

0000

0000

000

0,71

0611

1012

3600

0 58

1,86

0181

3620

0005

0 - 17

5,30

1210

1180

0000

0 0,

0287

9733

6472

600

64,8

4085

7528

3000

06

600,

8421

4018

6000

050

- 81,8

6018

1362

0000

06

436,

0845

9174

2999

980

377,

2296

2683

9999

980

0,07

2810

0863

3230

0 27

,776

7244

1820

0001

32

1,78

9331

1620

0000

0 - 0,

1877

1628

9252

000

Sved

myr

a

400,

0000

0000

0000

000

0,45

1790

6354

8900

0 64

1,67

2465

7390

0002

0 - 20

9,28

1569

5220

0001

0 0,

1408

8003

0524

000

54,1

5733

7540

2999

99

479,

2972

4570

5000

020

- 241,

6724

6573

8999

990

438,

7935

0462

0000

020

349,

8867

1455

8999

980

0,06

4577

2159

1700

0 28

,063

3116

7830

0000

27

6,26

5738

1760

0001

0 - 0,

5507

6582

3092

000

Fars

ta st

rand

700,

0000

0000

0000

000

0,36

9912

5191

5600

0 10

20,8

7316

1870

0000

00

155,

1699

4445

3999

990

0,16

9378

8682

8900

0 37

,454

0626

5679

9998

17

0,02

7653

7860

0000

0 - 32

0,87

3161

8709

9998

0 34

5,17

0703

3710

0000

0 34

6,27

6223

0089

9998

0 0,

0706

1912

2909

800

32,0

232 7

0303

4999

99

275,

9345

3968

5000

000

- 0,92

9607

1733

1400

0

Sock

enpl

an

500,

0000

0000

0000

000

0,49

1468

8287

9200

0 58

1,14

3183

8610

0001

0 - 37

4,94

9291

1510

0001

0 0,

1335

6366

2847

000

55,8

0957

8995

8000

03

636,

8018

5336

8000

020

- 81,1

4318

3860

7000

06

461,

9641

4607

8000

000

357,

0885

9251

8999

970

0,06

5957

0629

1710

0 29

,079

5765

3260

0001

28

2,03

0503

4819

9997

0 - 0,

1756

4822

8439

000

Bred

äng

1100

,000

0000

0000

0000

0,

4419

9738

9828

000

1076

,979

6052

6000

0000

- 22

3,70

4196

2479

9999

0 0,

2357

9020

6964

000

67,4

5337

4499

6000

02

432,

6531

7313

8000

000

23,0

2039

4736

8000

00

445,

4306

1250

0999

980

429,

6112

6843

5000

000

0,08

6332

4378

2030

0 27

,336

0487

8479

9999

34

1,91

2517

3560

0002

0 0,

0516

8121

3842

700

Skog

skyr

kogå

rde

n 40

0,00

0000

0000

0000

0 0,

4665

5515

7685

000

741,

6258

0585

9000

020

- 101,

9519

9617

1000

000

0,14

7651

9894

1700

0 41

,736

1158

1899

9998

40

0,47

4721

3570

0002

0 - 34

1,62

5805

8590

0002

0 46

0,52

1819

8499

9999

0 35

1,17

6656

7970

0002

0 0,

0618

4739

1114

100

26,5

8259

4784

2000

01

273,

8246

1389

5000

030

- 0,74

1823

2777

1200

0

Mid

som

mar

kran

sen

900,

0000

0000

0000

000

0,76

3772

7983

7500

0 88

6,38

5013

8999

9999

0 - 17

95,8

9534

8380

0001

00

0,15

2855

6614

7000

0 65

,085

9725

1320

0005

20

95,0

3945

0190

0000

00

13,6

1498

6100

1999

99

374,

5766

0104

1999

990

382,

6848

4910

7999

980

0,06

6216

4951

0140

0 36

,614

4113

6599

9999

33

1,39

2967

7159

9999

0 0,

0363

4766

8440

500

Page 71: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

70

Tens

ta

900,

0000

0000

0000

000

0,63

0302

7641

0500

0 70

8,47

1445

9450

0003

0 13

,064

5065

5670

0000

0,

1057

1943

1990

000

53,1

4901

1678

9999

97

292,

4380

5827

0999

990

191,

5285

5405

5000

000

455,

0566

5826

6999

990

304,

2419

1955

9000

000

0,06

2207

4865

1610

0 11

,953

7810

5330

0000

22

9,54

9677

5180

0001

0 0,

4208

8946

6345

000

Stor

a m

osse

n

500,

0000

0000

0000

000

0,68

9576

4162

7800

0 59

9,83

4146

0399

9995

0 - 10

11,6

6904

5660

0001

00

0,18

1706

0148

7300

0 37

,727

4445

6299

9999

12

42,0

0107

7550

0000

00

- 99,8

3414

6039

4999

98

442,

6444

7279

6000

000

356,

9096

7013

5000

000

0,04

6169

8214

7990

0 26

,446

9982

6890

0000

34

6,24

5833

5200

0002

0 - 0,

2255

4025

2223

000

Stad

ion

700,

0000

0000

0000

000

0,63

5028

6707

6000

0 11

10,8

2656

2120

0001

00

- 1261

,170

1128

8999

9900

0,

1396

8471

3089

000

0,83

8112

5463

8100

0 18

24,2

9288

0840

0000

00

- 410,

8265

6211

8000

030

462,

3062

3559

6000

020

317,

9646

2515

7999

990

0,03

4812

7206

1840

0 18

,876

1427

0199

9999

31

2,78

4702

5739

9999

0 - 0,

8886

4594

6098

000

Skär

holm

en

800,

0000

0000

0000

000

0,22

2348

2304

9300

0 12

55,3

8527

3680

0000

00

169,

4783

0307

9999

990

0,22

6824

5455

8500

0 45

,939

0767

9969

9997

96

,406

7294

0189

9995

- 45

5,38

5273

6760

0000

0 34

9,02

9954

1320

0000

0 39

8,75

6201

6410

0002

0 0,

1105

3916

3734

000

27,5

8571

1070

3999

99

288,

2830

0686

7999

970

- 1,30

4716

8825

6000

0

Vår

berg

1100

,000

0000

0000

0000

0,

1686

0012

4614

000

526,

0413

0552

5999

970

326,

6084

8999

9000

030

0,17

6835

6165

4600

0 44

,198

5566

0780

0001

1,

7512

9128

6740

000

573,

9586

9447

4000

030

398,

1110

4286

6999

980

395,

0872

5776

4000

010

0,11

7854

8832

8800

0 28

,577

2395

0540

0001

29

0,43

6883

5889

9999

0 1,

4417

0503

3700

000

Häs

selb

y str

and

700,

0000

0000

0000

000

0,67

4047

4395

1500

0 71

6,33

3303

7260

0005

0 46

,333

7686

9290

0001

0,

0672

5061

5545

600

76,8

5473

5540

9999

97

262,

1754

2385

8999

980

- 16,3

3330

3725

4999

99

451,

9986

0165

5000

020

388,

9909

5735

6000

020

0,09

4088

9903

5150

0 26

,098

0883

6630

0001

31

5,10

6225

2460

0001

0 - 0,

0361

3573

9503

900

Häg

erste

nsås

en 10

00,0

0000

0000

0000

00

0,59

7229

9785

7800

0 79

6,12

1720

1040

0002

0 - 89

7,01

5075

5670

0005

0 0,

1782

1895

6362

000

80,1

8026

6424

3000

01

1135

,526

2090

9000

0100

20

3,87

8279

8960

0001

0 44

0,01

3351

7169

9998

0 41

0,36

4521

1269

9999

0 0,

0686

7531

4011

400

35,5

2756

6082

6999

98

347,

6052

1554

7999

990

0,46

3345

6668

9900

0

Page 72: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

71

Väs

tra sk

ogen

1300

,000

0000

0000

0000

0,

6459

0222

8646

000

600,

7215

1355

9999

950

- 897,

5524

7891

0999

980

0,21

3675

1157

9900

0 16

,091

1945

0620

0001

10

79,2

0852

2220

0001

00

699,

2784

8644

0000

050

443,

0670

1547

7999

970

315,

3539

7270

9000

000

0,03

7702

5212

1500

0 19

,955

9913

5450

0000

29

3,37

9526

3289

9999

0 1,

5782

6798

6580

000

Mar

iato

rget

1900

,000

0000

0000

0000

0,

7393

5191

5749

000

1756

,509

7653

6000

0100

- 19

24,5

9825

5950

0001

00

0,17

8761

5085

1500

0 2,

1592

2020

9290

000

2334

,935

2874

4000

0100

14

3,49

0234

6410

0000

0 40

2,72

2681

5240

0000

0 33

5,93

9103

6719

9999

0 0,

0410

2789

3464

900

21,9

8474

2328

5000

01

349,

7227

7308

8999

990

0,35

6300

3556

1500

0

Blac

kebe

rg

500,

0000

0000

0000

000

0,72

3517

9132

0600

0 56

5,56

3354

0159

9995

0 9,

5658

4797

3550

000

0,01

7669

9300

7300

0 76

,242

3953

8999

9999

38

2,98

0256

5179

9998

0 - 65

,563

3540

1619

9995

44

9,98

4071

5870

0002

0 38

0,32

5816

8699

9998

0 0,

0864

1032

4258

000

27,0

3241

8951

8999

99

320,

1894

6008

5000

010

- 0,14

5701

4995

7800

0

Råck

sta

1100

,000

0000

0000

0000

0,

6749

2348

0757

000

629,

9899

6982

6999

980

42,1

8093

4125

5999

97

0,03

4374

8337

6040

0 73

,023

1463

6229

9997

32

5,56

4805

4120

0000

0 47

0,01

0030

1730

0002

0 45

6,74

6585

5560

0001

0 36

4,04

1598

1040

0000

0 0,

0814

5529

5604

100

25,6

0122

3515

8999

99

302,

5591

8535

0000

010

1,02

9038

9573

5000

0

Asp

udde

n

1000

,000

0000

0000

0000

0,

7768

7771

2488

000

1053

,380

7790

5000

0000

- 16

78,9

0187

6680

0000

00

0,14

8994

2297

8100

0 73

,704

3187

0439

9995

19

50,4

5106

8800

0000

00

- 53,3

8077

9053

6000

01

453,

0881

5845

2000

020

374,

2404

7 716

7999

980

0,06

3776

9112

8500

0 35

,170

1655

3999

9999

31

2,97

2036

3910

0002

0 - 0,

1178

1543

6263

000

Rops

ten

3800

,000

0000

0000

0000

0,

6216

4459

2548

000

2664

,041

7735

8000

0200

- 11

06,7

0397

4340

0001

00

0,11

2785

5568

8600

0 10

,618

8913

6289

9999

16

97,7

6131

2760

0000

00

1135

,958

2264

2000

0100

34

2,73

9677

7110

0001

0 32

0,10

4193

3560

0000

0 0,

0352

8835

7934

900

14,1

5582

1723

7000

01

319,

3052

1740

0000

000

3,31

4347

0111

5000

0

Nor

sbor

g

400,

0000

0000

0000

000

0,06

5499

4193

8290

0 77

5,04

5439

2310

0005

0 62

3,28

7192

7899

9995

0 0,

0634

9577

1962

700

31,2

5174

0709

6000

00

- 129,

7298

1167

3000

000

- 375,

0454

3923

0999

990

259,

9591

5393

0000

010

414,

7859

1884

5000

030

0,14

6985

2282

5200

0 34

,235

9850

7919

9999

31

0,83

1266

1769

9997

0 - 1,

4427

0910

8570

000

Page 73: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

72

Hal

lund

a

300,

0000

0000

0000

000

0,06

1613

7368

9130

0 89

2,98

0589

6530

0004

0 62

5,46

5650

4700

0001

0 0,

0790

2522

6269

800

27,5

6382

2097

3000

01

- 127,

9415

0668

6000

000

- 592,

9805

8965

3000

040

418,

0844

7536

5000

000

417,

0960

7203

7000

000

0,14

5125

9733

4300

0 35

,000

0691

4490

0003

30

9,27

4601

4269

9999

0 - 1,

4183

2721

5180

000

Page 74: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

73

Appendix III: Table of GWR Equations and Predictions for the 2016 Situation with New Stations

Stat

ion

Obs

erve

d

Loca

lR2

Pred

icte

d

Inte

rcep

t

Wor

kers

Bus

Chan

ge

Resid

ual

Std

Erro

r

Std

Err I

nt

Std

Err

Wor

kers

St

d Er

r Bus

Std

Err

Chan

ge

Std

Resid

Äng

bypl

an

400,

0000

0000

0000

000

0,72

7369

2341

9800

0 58

7,38

8321

5719

9999

5 - 81

,939

3552

3659

9994

0,

0139

8781

2387

000

70,0

6781

6737

8000

01

515,

2601

8219

5999

960

- 187,

3883

2157

1999

995

433,

1980

8421

5999

984

361,

2608

6556

0000

013

0,07

6271

1518

7810

0 26

,936

7417

9989

9998

30

6,74

6430

0500

0001

5 - 0,

4325

6959

8990

000

Aka

lla

800,

0000

0000

0000

000

0,69

9401

7182

6100

0 92

7,32

9708

6750

0000

6 0,

2248

9695

2387

000

0,12

6336

3590

1500

0 51

,782

3458

1449

9998

26

6,83

7991

5310

0000

0 - 12

7,32

9708

6750

0000

6 38

8,83

9882

6839

9997

4 28

2,96

1593

7410

0000

2 0,

0536

5378

3224

400

10,8

8269

1585

9000

00

221,

9512

7054

4000

010

- 0,32

7460

5161

2800

0

Fittj

a

600,

0000

0000

0000

000

0,07

8572

8103

4390

0 93

8,01

1866

1190

0004

7 53

7,23

9307

3380

0000

3 0,

1244

7410

4369

000

27,4

0168

2787

1999

99

- 86,1

8470

2012

9000

04

- 338,

0118

6611

8999

990

419,

2909

0940

6000

026

393,

9943

7839

0000

008

0,12

8862

2512

6800

0 33

,485

1190

1740

0002

29

2,55

9789

4320

0000

2 - 0,

8061

5119

1301

000

Brom

map

lan

3000

,000

0000

0000

0000

0,

6674

9263

7530

000

2576

,626

5592

2000

0217

- 53

6,56

5773

9329

9994

6 0,

1334

9341

4738

000

55,5

1024

5585

4000

00

816,

5178

6778

8999

979

423,

3734

4077

6999

985

182,

5143

2626

1000

008

338,

2088

0207

2000

026

0,05

1643

3753

7140

0 26

,135

7611

2559

9998

30

8,45

7002

0169

9997

9 2,

3196

7237

5590

000

Lilje

holm

en

4200

,000

0000

0000

0000

0,

8032

6067

1494

000

3606

,655

3792

9999

9822

- 21

39,2

6651

4139

9997

99

0,15

4922

8248

7900

0 37

,578

3648

1310

0002

24

94,1

9462

2619

9997

91

593,

3446

2070

4000

022

228,

2158

0217

1999

997

332,

3145

5162

4999

979

0,04

2765

4370

2670

0 21

,870

0962

8750

0001

30

8,87

4828

1809

9999

8 2,

5999

2785

3620

000

Page 75: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

74

Örn

sber

g

900,

0000

0000

0000

000

0,74

9512

1592

5600

0 79

2,47

9968

4939

9999

1 - 14

49,2

4409

4910

0000

58

0,17

4508

9244

5300

0 66

,788

3121

9740

0003

16

97,6

2515

1510

0000

23

107,

5200

3150

5999

995

432,

9593

2172

4000

006

360,

3775

3392

0000

019

0,05

2807

8802

5180

0 27

,269

1036

6430

0001

30

3,75

4306

0709

9997

4 0,

2483

3749

0639

000

Kär

rtorp

900,

0000

0000

0000

000

0,69

6040

0775

3500

0 66

6,97

2846

1299

9999

4 - 11

1,08

0881

9939

9999

5 0,

1487

8941

2924

000

46,3

4812

7726

5999

98

386,

6620

4942

2999

985

233,

0271

5387

0000

006

452,

2995

9469

8000

021

337,

6761

8939

5999

984

0,04

2884

8066

7130

0 11

,763

3449

6460

0000

27

0,82

4391

7379

9997

4 0,

5152

0531

2146

000

Stur

eby

500,

0000

0000

0000

000

0,47

7068

9437

0800

0 67

1,22

7687

2759

9998

3 - 25

8,76

9051

9849

9997

6 0,

1539

5138

0013

000

54,3

8534

6745

6999

98

521,

1748

0612

5000

032

- 171,

2276

8727

6000

012

444,

4163

2152

1999

976

329,

9189

8468

6999

977

0,04

8650

8983

1290

0 21

,008

3100

4650

0000

25

9,29

2953

9250

0000

6 - 0,

3852

8667

5994

000

Glo

ben

300,

0000

0000

0000

000

0,65

4847

2756

8700

0 55

0,08

4690

4029

9996

8 - 10

89,6

5590

5110

0000

49

0,16

0818

9301

3800

0 43

,526

0309

7400

0001

13

28,7

2366

2979

9999

72

- 250,

0846

9040

2999

996

448,

7941

3339

6999

996

342,

6624

7206

7000

010

0,04

5933

4254

1710

0 19

,689

0683

6520

0001

26

8,18

1896

1600

0000

8 - 0,

5572

3698

6388

000

Huv

udsta

600,

0000

0000

0000

000

0,63

0480

4599

7900

0 92

8,76

1586

3700

0003

2 - 77

5,79

6494

9280

0001

6 0,

1920

0472

8508

000

31,6

3919

2601

2000

01

934,

5262

2374

2999

946

- 328,

7615

8636

9999

975

441,

6676

1863

6999

975

308,

2646

2831

2000

013

0,03

6903

9022

5290

0 18

,756

1503

2709

9999

27

7,19

9383

4350

0001

6 - 0,

7443

6425

1525

000

Uni

vers

itete

t

500,

0000

0000

0000

000

0,59

7722

2575

8200

0 82

2,85

8363

7010

0003

0 - 75

9,45

9815

3360

0002

0 0,

1476

0362

4606

000

33,6

1838

4413

5999

98

1058

,263

5271

3999

9951

- 32

2,85

8363

7009

9997

3 42

2,25

9521

9660

0002

3 27

0,94

4194

9999

9997

9 0,

0325

3104

0981

700

11,3

1799

1634

7000

00

240,

6181

0871

2000

009

- 0,76

4596

9999

6400

0

Ham

mar

byhö

jde

n 90

0,00

0000

0000

0000

0 0,

7002

0994

9697

000

1014

,155

3434

8000

0056

- 52

4,90

3935

2720

0001

2 0,

1569

4308

0148

000

40,5

7226

4056

9000

03

798,

9008

4574

1000

012

- 114,

1553

4347

9999

999

456,

4799

3781

7999

996

342,

4362

8395

1999

997

0,04

1564

3799

0430

0 12

,305

3828

0670

0001

28

2,21

6966

9840

0001

0 - 0,

2500

7746

0197

000

Page 76: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

75

Joha

nnel

und

200,

0000

0000

0000

000

0,65

4873

5241

9300

0 47

7,50

4039

4889

9997

9 14

,734

6771

7910

0000

0,

0739

2667

4640

900

69,7

2890

9161

9000

06

282,

2822

3956

0999

983

- 277,

5040

3948

8999

979

432,

4002

1045

3999

989

341,

5417

0550

9999

986

0,07

9869

7916

8340

0 24

,115

5059

6340

0000

28

9,10

4519

2400

0000

2 - 0,

6417

7591

2176

000

Hag

sätra

1200

,000

0000

0000

0000

0,

3854

9536

9761

000

681,

7309

1320

1000

021

- 104,

7357

5369

3999

996

0,21

9770

7457

2800

0 62

,773

4343

9580

0003

29

2,66

5027

1469

9998

9 51

8,26

9086

7989

9997

9 43

4,81

2663

2729

9999

8 35

3,61

7627

8030

0000

5 0,

0724

9394

8129

700

30,5

0297

9870

0999

99

284,

7539

3565

6000

010

1,19

1936

5064

0000

0

Mäl

arhö

jden

700,

0000

0000

0000

000

0,59

5077

0418

7300

0 84

0,11

5278

3840

0002

1 - 76

5,91

7383

5679

9999

1 0,

2221

5421

2042

000

60,9

3848

1498

3000

00

985,

0608

8391

1000

019

- 140,

1152

7838

3999

993

440,

9052

3656

2000

027

384,

8715

3210

7000

007

0,05

7862

3862

3270

0 25

,904

5522

3660

0001

32

9,96

3545

7150

0000

9 - 0,

3177

9000

7388

000

Isla

ndsto

rget

800,

0000

0000

0000

000

0,73

1186

2311

2500

0 64

8,49

7797

5640

0005

2 - 23

,387

8223

7339

9999

0,

0091

9549

0242

980

73,7

7456

9299

4000

00

439,

0491

5825

5000

009

151,

5022

0243

6000

005

443,

2194

6377

0999

994

361,

7095

1728

5999

993

0,08

1006

1914

7180

0 26

,545

5289

4260

0001

30

8,36

0141

1020

0000

0 0,

3418

2208

7746

000

Berg

sham

ra

1100

,000

0000

0000

0000

0,

5974

5029

5291

000

874,

6628

8122

9000

050

- 490,

7604

5894

1000

024

0,15

9759

6330

3800

0 45

,663

9197

9699

9998

66

2,30

2363

6740

0004

8 22

5,33

7118

7710

0000

7 43

6,16

2801

1889

9999

3 27

5,58

4733

6339

9997

4 0,

0327

8500

6794

300

11,2

9692

2815

9000

00

224,

5318

1224

7999

994

0,51

6635

3438

5900

0

Skan

stull

2200

,000

0000

0000

0000

0,

8125

0395

3361

000

1892

,498

0732

7000

0077

- 23

67,4

7256

9500

0001

91

0,16

8581

3330

6500

0 26

,670

6613

2890

0000

26

67,7

0353

5399

9999

64

307,

5019

2672

7000

011

412,

5073

4397

2000

001

357,

1967

1504

7999

987

0,03

9399

6040

8300

0 19

,473

8446

1680

0001

35

4,61

8295

0940

0001

8 0,

7454

4594

4711

000

Hök

arän

gen

1000

,000

0000

0000

0000

0,

4821

8400

8004

000

1022

,036

5459

2999

9988

76

,951

9074

7190

0000

0,

1617

5590

3634

000

44,4

2546

5951

8000

00

219,

5378

4891

0000

008

- 22,0

3654

5929

5000

01

384,

5855

5419

7000

022

324,

4590

1551

2000

008

0,04

6478

0325

3370

0 17

,445

2809

0129

9999

25

2,95

7055

8229

9999

0 - 0,

0572

9946

3510

900

Page 77: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

76

Mas

mo

200,

0000

0000

0000

000

0,09

4018

9376

5650

0 52

2,00

1586

0510

0000

4 48

0,57

5415

5129

9999

6 0,

1577

2639

8770

000

24,3

9600

4845

2999

98

- 51,8

6981

7153

6999

98

- 322,

0015

8605

1000

004

273,

8021

9410

2999

977

388,

4753

0541

2000

012

0,12

3335

1168

4000

0 33

,910

6493

4239

9999

28

7,05

2280

3900

0002

1 - 1,

1760

3727

4300

000

Frid

hem

spla

n

5700

,000

0000

0000

0000

0,

6615

6497

7584

000

4200

,304

0806

7000

0076

- 13

15,1

5695

0379

9998

98

0,19

2542

2047

6500

0 8,

7217

4666

9440

000

1634

,597

0635

5000

0030

14

99,6

9591

9329

9999

24

341,

3100

9839

0000

007

292,

6696

3877

6999

989

0,03

4966

6724

2610

0 17

,485

6811

5870

0000

25

5,51

5115

0039

9999

5 4,

3939

3948

9050

000

Väs

terto

rp

700,

0000

0000

0000

000

0,52

8774

7229

2500

0 10

36,1

6336

4289

9998

90

- 640,

7475

5218

2000

049

0,21

3929

9791

0900

0 61

,947

0310

4279

9999

88

5,74

0645

3679

9994

6 - 33

6,16

3364

2929

9997

2 44

6,57

2797

8549

9997

6 38

5,15

8093

4849

9999

5 0,

0602

8327

8249

100

27,8

3323

6612

0000

00

329,

5748

5083

3000

028

- 0,75

2762

7430

6900

0

S:t E

riksp

lan

2500

,000

0000

0000

0000

0,

6381

4913

0343

000

1954

,873

8397

1000

0084

- 11

37,1

1290

6390

0000

35

0,18

7445

9785

2400

0 10

,553

1547

1180

0000

14

54,3

6576

2919

9999

52

545,

1261

6028

5999

958

389,

3962

5912

2000

004

280,

7856

0278

8999

995

0,03

3470

4442

8740

0 17

,043

7146

3920

0001

24

7,11

6801

5560

0001

3 1,

3999

2654

6580

000

Med

borg

arpl

atse

n 14

00,0

0000

0000

0000

00

0,73

0662

6135

9400

0 16

63,2

0461

5860

0001

04

- 1755

,683

5218

1000

0002

0,

1693

8346

3295

000

18,8

6878

9803

7000

00

2107

,190

5180

3000

0021

- 26

3,20

4615

8620

0002

6 42

8,40

6439

0820

0002

0 30

8,72

7002

3010

0002

7 0,

0354

3821

6278

200

18,1

2953

7039

9999

99

318,

4652

0699

0000

013

- 0,61

4380

6251

5200

0

Tallk

roge

n

400,

0000

0000

0000

000

0,52

6711

2725

9100

0 64

9,72

5466

6950

0002

3 - 14

,515

3592

9249

9999

0,

1561

6640

0300

000

45,2

5542

3535

7999

99

298,

7209

4798

6999

988

- 249,

7254

6669

4999

994

450,

4884

8574

8000

016

329,

0423

2123

2000

006

0,04

5129

6256

1990

0 16

,391

0439

4170

0001

25

5,44

9955

0099

9999

6 - 0,

5543

4372

8187

000

Gam

la st

an

800,

0000

0000

0000

000

0,67

3663

1135

7700

0 79

0,78

7086

5459

9995

5 - 14

31,9

9442

6779

9999

12

0,16

9291

2379

9400

0 12

,492

2292

6829

9999

18

23,7

6938

5849

9999

35

9,21

2913

4544

2000

1 43

7,54

1984

1629

9999

5 30

4,73

4703

2220

0000

7 0,

0335

8324

7499

600

17,5

6388

4704

1999

99

297,

3605

8746

6000

027

0,02

1056

0672

7560

0

Page 78: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

77

Kar

lapl

an

900,

0000

0000

0000

000

0,63

3848

9631

5200

0 92

4,83

6301

3580

0001

4 - 11

62,3

7617

6369

9999

39

0,13

3946

4871

9400

0 11

,939

4472

4340

0000

16

94,3

3569

8200

0000

24

- 24,8

3630

1357

6999

98

445,

7931

1463

9000

009

312,

8176

5391

5999

983

0,03

2100

7715

1230

0 15

,657

0050

0050

0000

31

8,37

2722

7300

0002

1 - 0,

0557

1261

7674

300

Ensk

ede

Går

d

300,

0000

0000

0000

000

0,60

5578

7463

7700

0 48

9,28

8469

8400

0000

5 - 84

4,02

8866

6059

9995

1 0,

1587

0331

7077

000

46,8

4500

3187

8999

98

1082

,034

9362

1000

0069

- 18

9,28

8469

8400

0000

5 44

6,72

3224

0189

9998

6 33

8,01

8685

3100

0002

3 0,

0462

9317

7779

000

19,8

7806

8332

1000

00

265,

1734

5975

6000

000

- 0,42

3726

5037

1100

0

Soln

a str

and

300,

0000

0000

0000

000

0,61

2393

1628

0300

0 64

8,81

7995

2550

0002

8 - 52

9,72

6435

2170

0001

7 0,

1694

9687

3637

000

45,2

9474

0153

1000

01

685,

7911

4122

1999

965

- 348,

8179

9525

5000

028

437,

9086

1352

1000

007

306,

8242

9952

6000

004

0,03

7928

3675

5310

0 16

,899

9365

1989

9999

25

8,25

1410

0579

9997

6 - 0,

7965

5431

4038

000

Rågs

ved

800,

0000

0000

0000

000

0,38

5590

7901

4000

0 69

2,39

2330

5570

0003

7 - 50

,546

3737

6310

0000

0,

1968

1659

4089

000

54,2

2977

8928

9999

98

289,

7344

6014

2999

978

107,

6076

6944

3000

006

424,

9341

1587

2000

007

335,

0828

6672

4999

974

0,06

0802

0519

0810

0 28

,119

5959

5369

9999

26

6,29

0860

4630

0000

1 0,

2532

3377

3011

000

Hal

lonb

erge

n

1000

,000

0000

0000

0000

0,

6232

1792

5670

000

904,

8147

5676

5999

959

- 171,

8351

6389

1999

997

0,14

6820

5453

0700

0 50

,659

0813

2620

0003

36

6,86

5465

8859

9998

1 95

,185

2432

3360

0005

43

6,83

1124

9980

0000

7 27

4,83

2352

8270

0002

2 0,

0393

3546

2286

500

10,5

6006

6075

2000

00

217,

6805

6353

3999

987

0,21

7899

4073

1500

0

Skär

mar

brin

k

1200

,000

0000

0000

0000

0,

6824

9961

6055

000

490,

8474

4452

5000

014

- 952,

2083

0909

5000

004

0,16

5130

8622

9700

0 38

,217

0090

7809

9998

12

10,1

4945

7889

9998

94

709,

1525

5547

4999

986

442,

6217

6064

9999

999

322,

6649

1669

9999

992

0,04

1486

0674

0940

0 14

,252

4813

0350

0000

25

9,33

7550

4730

0002

2 1,

6021

6378

5250

000

Hju

lsta

300,

0000

0000

0000

000

0,65

6582

7686

1200

0 66

8,82

1862

4840

0000

7 - 28

,399

4100

8560

0000

0,

1153

8247

4218

000

53,9

4159

6927

6999

97

309,

0154

8690

9999

993

- 368,

8218

6248

4000

007

449,

1269

4977

5000

014

289,

1951

1787

2000

026

0,05

9681

4218

9760

0 11

,961

2138

2360

0000

22

5,75

2328

8769

9999

7 - 0,

8211

9735

3374

000

Page 79: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

78

Zink

ensd

amm

800,

0000

0000

0000

000

0,72

7431

8228

7500

0 12

78,6

9778

5540

0000

41

- 1824

,935

6262

5999

9935

0,

1692

9406

1539

000

15,7

4887

3325

9000

00

2208

,873

5661

3000

0199

- 47

8,69

7785

5370

0001

6 45

3,41

4195

4479

9998

7 31

1,93

2060

6829

9997

5 0,

0360

1700

6403

100

17,8

0372

9140

6000

02

304,

4702

6332

3999

973

- 1,05

5762

6786

8000

0

Hus

by

1100

,000

0000

0000

0000

0,

6960

3267

8910

000

800,

3932

9409

2000

019

1,24

6883

8238

9000

0 0,

1247

2557

1279

000

51,6

4355

6555

2000

00

265,

6449

5158

6999

980

299,

6067

0590

7999

981

445,

9346

5890

9000

007

277,

2202

1380

1999

989

0,05

1667

3017

2950

0 10

,781

8670

1029

9999

21

9,15

2984

3069

9999

7 0,

6718

6234

5575

000

Tele

fonp

lan

2400

,000

0000

0000

0000

0,

6738

9108

7019

000

1192

,525

7036

0000

0043

- 12

01,2

0713

8450

0000

02

0,14

4889

4850

4300

0 86

,226

7400

1020

0004

14

68,0

9132

9540

0000

61

1207

,474

2963

9999

9957

43

9,48

0338

3060

0002

1 37

8,18

5425

8760

0001

1 0,

0687

5988

5675

700

38,3

4099

8681

9999

99

324,

1352

2367

1000

006

2,74

7504

7030

7000

0

Band

hage

n

900,

0000

0000

0000

000

0,44

3131

0108

7000

0 85

7,29

2831

5550

0002

1 - 13

8,05

5238

3650

0000

8 0,

1623

2318

8408

000

52,7

6046

0378

2000

01

406,

0931

9941

5000

015

42,7

0716

8444

4999

99

451,

8905

2517

3000

015

324,

4377

3982

2000

026

0,05

0014

3938

6630

0 22

,226

1155

3370

0000

25

3,83

0076

7920

0000

0 0,

0945

0777

5811

700

Gub

bäng

en

600,

0000

0000

0000

000

0,48

9210

6577

8500

0 72

7,09

8544

6769

9995

0 28

,440

2609

9499

9999

0,

1600

7224

0360

000

44,8

1457

2764

8999

99

262,

8098

4586

0999

985

- 127,

0985

4467

7000

007

453,

9608

0624

6000

004

324,

6903

8653

6999

995

0,04

5873

6990

2620

0 17

,517

1595

4050

0000

25

2,17

3323

1860

0000

5 - 0,

2799

7691

1944

000

Thor

ildsp

lan

800,

0000

0000

0000

000

0,67

2272

2915

1200

0 59

9,54

2704

4230

0003

2 - 13

58,2

8803

5799

9999

89

0,19

6852

2368

6100

0 10

,595

8088

7640

0000

16

65,5

7359

2319

9999

89

200,

4572

9557

6999

996

430,

2004

1330

8999

998

291,

3071

0110

0000

011

0,03

5823

0731

2480

0 18

,073

3990

5430

0001

26

2,06

2924

0740

0002

3 0,

4659

6258

2498

000

Väl

lingb

y

1900

,000

0000

0000

0000

0,

6598

2285

4302

000

1509

,026

2115

9999

9897

11

,796

1738

9560

0001

0,

0622

6471

1720

000

70,5

2534

4618

3999

98

304,

0958

6814

0999

983

390,

9737

8839

9999

989

395,

4961

3839

5999

992

336,

6114

3934

5999

997

0,07

6416

8117

8450

0 24

,190

6863

4670

0002

28

7,36

8424

7090

0001

0 0,

9885

6537

5090

000

Page 80: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

79

Skar

pnäc

k

1000

,000

0000

0000

0000

0,

6776

3472

1143

000

908,

0563

9971

0000

051

61,1

5796

1356

1999

98

0,14

8237

3656

1600

0 48

,310

1112

8350

0000

22

1,05

4001

2890

0001

3 91

,943

6002

9000

0006

35

1,34

6848

8149

9998

7 32

8,17

9598

2560

0002

0 0,

0434

6479

2483

900

11,8

0147

0020

8000

00

261,

0736

9359

6999

988

0,26

1688

9851

1600

0

Kist

a

1200

,000

0000

0000

0000

0,

6953

1519

2401

000

1525

,355

9628

9000

0001

8,

3630

0449

4900

000

0,12

2231

0578

5800

0 51

,474

1540

4899

9999

25

7,83

3828

3950

0001

2 - 32

5,35

5962

8859

9998

6 41

6,27

3826

9339

9999

9 27

3,42

6210

3629

9999

6 0,

0499

8328

9676

600

10,7

0450

2726

0999

99

217,

2806

7727

4999

988

- 0,78

1591

2071

2100

0

Abr

aham

sber

g

1000

,000

0000

0000

0000

0,

6648

4845

6624

000

737,

5971

1067

3999

964

- 761,

2060

9257

0999

999

0,16

3969

8540

6800

0 47

,040

3631

7269

9998

10

11,8

6969

1500

0000

44

262,

4028

8932

5999

979

447,

0056

4344

7000

011

323,

8156

8922

5000

028

0,04

5418

9370

2260

0 25

,181

6400

2360

0000

30

5,48

7065

3670

0001

4 0,

5870

2366

1051

000

Kun

gsträ

dgår

den

50

0,00

0000

0000

0000

0 0,

6535

3614

4873

000

730,

9420

4780

6000

005

- 1302

,544

7850

4000

0079

0,

1605

6764

8278

000

12,4

5033

4995

1000

00

1727

,911

7481

9000

0026

- 23

0,94

2047

8060

0000

5 39

7,40

2392

7270

0000

6 30

4,60

5745

1330

0002

8 0,

0325

5361

0284

600

17,3

0750

8349

3999

99

296,

0624

4896

9000

002

- 0,58

1128

9816

8900

0

Björ

khag

en

700,

0000

0000

0000

000

0,72

9604

4155

8700

0 70

5,39

6043

6690

0005

1 - 24

1,57

3862

9919

9998

8 0,

1488

3457

9705

000

44,6

2654

2553

0000

00

520,

3326

6072

3000

004

- 5,39

6043

6691

9000

0 45

3,86

0406

3989

9999

9 35

0,48

5030

2309

9999

6 0,

0418

4146

5841

900

11,6

7542

0836

2000

01

290,

4063

0701

8000

007

- 0,01

1889

2143

7760

0

Hor

n stu

ll

2100

,000

0000

0000

0000

0,

7439

3848

3300

000

1673

,435

7852

0999

9949

- 18

85,8

3616

2900

0000

90

0,16

2963

1455

8400

0 22

,274

1148

1980

0001

22

71,6

6286

1010

0001

42

426,

5642

1478

9000

005

408,

9640

6381

0000

027

313,

8206

6483

1999

977

0,03

7876

1332

4010

0 18

,419

0954

8170

0001

29

2,80

8379

7990

0002

2 1,

0430

3593

5270

000

Vår

by g

ård

500,

0000

0000

0000

000

0,13

1147

0483

2900

0 77

8,88

0509

5349

9998

7 38

1,79

8526

4590

0001

6 0,

1639

6689

2014

000

37,9

3137

9458

0000

02

- 18,5

2129

1410

0000

00

- 278,

8805

0953

4999

987

440,

7594

5204

9000

004

379,

5480

4559

2999

983

0,11

4627

8034

8600

0 29

,751

9774

2290

0001

28

2,51

1840

2680

0001

4 - 0,

6327

2723

5316

000

Page 81: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

80

Rådm

ansg

atan

1500

,000

0000

0000

0000

0,

6310

6265

7970

000

1396

,527

9079

1000

0067

- 11

72,9

5668

2539

9999

74

0,16

2721

8904

1600

0 11

,366

6487

9270

0000

15

86,2

2785

7269

9999

59

103,

4720

9209

0000

004

426,

0437

5611

6999

987

294,

2541

4106

1999

974

0,03

2707

1739

5800

0 16

,964

1154

6390

0001

26

2,03

6039

1780

0001

0 0,

2428

6728

9108

000

Mör

by

cent

rum

20

00,0

0000

0000

0000

00

0,61

7217

1970

3900

0 18

41,6

0097

8510

0000

04

- 256,

0249

0742

2000

013

0,15

5824

1897

0000

0 51

,183

4944

6620

0003

41

4,17

0735

6719

9997

8 15

8,39

9021

4940

0001

0 33

1,65

4984

6269

9997

6 29

3,47

4771

6530

0000

5 0,

0335

9343

4974

600

11,3

1187

9601

5999

99

220,

1978

4099

8000

004

0,47

7601

8116

3100

0

Axe

lsber

g

500,

0000

0000

0000

000

0,70

1824

1319

6900

0 73

2,52

1932

0649

9998

7 - 12

03,4

9918

2699

9998

92

0,20

1354

8960

4400

0 64

,868

8337

7530

0004

14

19,0

4542

4879

9999

28

- 232,

5219

3206

4999

987

437,

1278

8204

8999

993

378,

5044

8239

9999

972

0,05

3810

2228

0320

0 25

,972

3701

3750

0000

31

8,04

6321

4029

9997

9 - 0,

5319

3113

8722

000

Dan

dery

ds

sjukh

us

2800

,000

0000

0000

0000

0,

6002

9412

3682

000

2923

,118

3183

8999

9786

- 35

7,32

2433

7139

9999

9 0,

1545

8886

4297

000

48,7

7456

0385

5999

97

530,

0409

5977

4000

044

- 123,

1183

1839

2999

996

282,

1961

6954

2999

996

292,

5798

3684

9999

992

0,03

3622

3588

5030

0 11

,584

1567

2360

0000

22

8,62

2733

2169

9999

0 - 0,

4362

8628

4793

000

Alb

y

1000

,000

0000

0000

0000

0,

0596

4531

8732

500

858,

5034

1643

9000

034

625,

4623

2127

3000

043

0,10

2040

2304

8600

0 21

,318

0274

0730

0001

- 12

0,33

4074

8309

9999

5 14

1,49

6583

5609

9999

4 33

7,72

3901

2659

9998

4 40

8,00

7976

7569

9999

4 0,

1391

3447

3725

000

35,7

3145

4396

6000

00

299,

4130

0102

5000

028

0,41

8971

1863

1600

0

Näc

kros

en

1100

,000

0000

0000

0000

0,

6190

9293

0887

000

1246

,364

9713

4000

0011

- 36

9,19

6412

6529

9998

2 0,

1731

0486

8114

000

48,1

7722

8011

6000

00

485,

4355

3643

6000

007

- 146,

3649

7134

4999

987

411,

4523

8792

9999

986

294,

7466

3992

7999

979

0,03

5411

2557

8960

0 10

,775

1627

6619

9999

23

0,57

3022

9140

0000

6 - 0,

3557

2760

2119

000

Rink

eby

1000

,000

0000

0000

0000

0,

6547

5128

0871

000

975,

7750

8361

6999

950

- 39,0

6055

8956

5999

98

0,12

0493

8562

6300

0 52

,328

9833

7889

9999

31

0,62

4976

5349

9997

3 24

,224

9163

8289

9998

39

9,09

5526

1569

9999

5 27

0,29

0085

6549

9998

4 0,

0510

4468

1728

800

10,9

8072

6414

6999

99

215,

9309

9165

6999

993

0,06

0699

5438

3140

0

Page 82: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

81

Riss

ne

900,

0000

0000

0000

000

0,62

0787

5226

8700

0 12

30,2

9521

3690

0000

82

- 97,2

0022

8937

2999

97

0,12

0457

8467

5100

0 52

,790

4137

8190

0000

36

2,18

2452

2000

0000

0 - 33

0,29

5213

6910

0001

5 40

9,81

2099

3620

0002

6 26

6,75

9528

0950

0000

7 0,

0474

7910

4357

100

11,5

6691

2494

7000

00

216,

3102

6427

8000

005

- 0,80

5967

4524

1400

0

Gär

det

1100

,000

0000

0000

0000

0,

6301

5015

7918

000

678,

3231

5674

3000

027

- 1139

,863

0316

3999

9917

0,

1285

0585

4736

000

10,6

4790

8095

4000

00

1700

,510

9811

4000

0013

42

1,67

6843

2569

9997

3 39

0,47

9263

3569

9997

9 31

1,14

5876

2949

9999

4 0,

0322

7603

0602

900

14,9

0758

9906

9000

00

316,

9543

3983

8000

010

1,07

9895

6124

6000

0

Häs

selb

y gå

rd

900,

0000

0000

0000

000

0,66

2381

8285

0600

0 68

2,63

5977

3489

9997

2 4,

8295

2518

3890

000

0,07

7235

6246

3270

0 71

,181

7423

5610

0003

28

8,31

8472

1829

9998

3 21

7,36

4022

6509

9999

9 42

5,31

2635

8040

0002

4 34

5,14

5331

0790

0001

6 0,

0814

5097

3423

100

24,5

5564

1516

9000

00

292,

6793

0908

3000

021

0,51

1068

8099

8300

0

Rådh

uset

1000

,000

0000

0000

0000

0,

6669

0630

9102

000

1241

,950

7750

6000

0069

- 14

11,7

8048

4769

9999

30

0,17

7517

4977

0600

0 10

,201

7958

3420

0000

17

88,2

9384

2309

9999

45

- 241,

9507

7505

8999

994

454,

9744

5425

9000

026

298,

3438

1622

0000

008

0,03

4093

2500

1950

0 16

,950

5773

4900

0000

26

5,58

6090

4909

9999

3 - 0,

5317

8980

2249

000

Kris

tineb

erg

1100

,000

0000

0000

0000

0,

6756

6277

1194

000

1355

,970

4177

9000

0056

- 13

01,2

9096

5570

0000

26

0,19

6510

0912

4600

0 16

,198

4192

4629

9999

15

87,2

0667

1319

9999

41

- 255,

9704

1778

9000

010

414,

8368

9597

9000

019

297,

6182

8500

6000

008

0,03

6367

2052

8780

0 19

,293

9946

9530

0000

27

9,75

7685

3620

0001

8 - 0,

6170

3869

7065

000

Hög

dale

n

1000

,000

0000

0000

0000

0,

4150

6863

9527

000

1387

,211

2569

5000

0006

- 73

,290

6119

0359

9995

0,

1731

8865

6008

000

52,3

1109

7876

2000

02

337,

6822

8865

8000

004

- 387,

2112

5695

1999

985

353,

5193

9480

9999

994

326,

7589

0495

9000

006

0,05

3290

4622

1840

0 24

,619

6456

9150

0001

25

6,64

2442

4090

0001

2 - 1,

0953

0414

0690

000

Alv

ik

2100

,000

0000

0000

0000

0,

6873

7529

6342

000

2056

,946

2953

3999

9779

- 11

87,3

3726

1220

0000

73

0,19

1292

0336

7600

0 28

,322

7147

0499

9999

14

39,1

4796

0629

9999

43

43,0

5370

4661

4999

99

254,

5595

8017

8000

004

324,

3226

4839

4999

987

0,04

0997

1690

5640

0 23

,351

2057

0659

9998

31

3,91

6396

5960

0002

7 0,

1691

3016

8393

000

Page 83: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

82

Blås

ut

600,

0000

0000

0000

000

0,65

8486

8410

6900

0 67

9,64

8367

6120

0001

5 - 37

7,39

5860

0409

9999

2 0,

1541

8316

3884

000

43,5

1560

0402

0999

99

644,

7328

8965

6999

987

- 79,6

4836

7612

0000

01

453,

7842

4634

4999

985

337,

5799

8313

6000

010

0,04

3115

4372

1540

0 13

,329

4407

5790

0000

26

7,06

6740

0219

9997

6 - 0,

1755

2034

5304

000

Höt

orge

t

500,

0000

0000

0000

000

0,64

1820

3934

3800

0 78

3,05

9456

1149

9998

9 - 12

49,3

9124

5540

0000

00

0,16

3826

5666

1600

0 10

,698

4132

9400

0000

16

68,4

7237

2149

9999

56

- 283,

0594

5611

4999

989

443,

4912

4580

5000

005

299,

6939

7204

6999

988

0,03

2822

8658

5820

0 17

,213

3112

7699

9999

27

1,15

5171

8399

9998

0 - 0,

6382

5263

4731

000

Baga

rmos

sen

1100

,000

0000

0000

0000

0,

7028

2011

2134

000

665,

0614

7206

1000

018

10,9

301 5

9599

0000

00

0,14

7129

1288

1800

0 48

,083

5587

7849

9999

26

8,11

9811

1329

9998

5 43

4,93

8527

9389

9998

2 45

1,06

7141

1729

9998

2 33

1,12

6773

9499

9997

2 0,

0430

4531

6512

800

11,6

5380

7366

6000

01

264,

2145

1037

3999

985

0,96

4243

4312

7400

0

Sand

sbor

g

700,

0000

0000

0000

000

0,61

0664

6847

7800

0 39

0,88

8249

0610

0001

0 - 25

1,46

7982

5960

0001

3 0,

1530

9023

1237

000

45,4

1023

8499

0000

02

518,

7744

4517

4999

983

309,

1117

5093

8999

990

442,

4650

0803

7000

018

331,

3724

8385

3999

995

0,04

3023

1609

0120

0 13

,634

4477

5620

0000

25

9,10

3352

1140

0001

8 0,

6986

1287

4067

000

Sätra

800,

0000

0000

0000

000

0,34

8179

8779

3700

0 60

4,09

9005

7770

0000

2 - 59

,292

2080

8819

9999

0,

2497

7027

6870

000

60,3

2399

6948

5999

98

255,

8775

8189

7999

988

195,

9009

9422

2999

998

415,

5800

6751

4000

007

402,

8469

3567

8000

023

0,09

4967

3032

3920

0 25

,009

2116

0180

0001

29

9,47

7515

3229

9997

7 0,

4713

9169

9306

000

Fars

ta

1200

,000

0000

0000

0000

0,

4901

3891

4833

000

1079

,601

8724

2000

0063

13

9,43

8492

1330

0001

1 0,

1622

1842

7919

000

44,4

4445

8194

2000

03

162,

2078

8370

8999

987

120,

3981

2758

0999

997

365,

2851

2274

7999

992

327,

5636

3649

8999

983

0,04

7821

8799

7800

0 16

,984

8355

7320

0002

25

7,39

8017

3460

0001

7 0,

3296

0041

3714

000

Fruä

ngen

1800

,000

0000

0000

0000

0,

4133

1892

3033

000

1920

,731

1707

1999

9909

- 33

4,73

1365

2770

0000

9 0,

2301

4673

1275

000

61,1

0297

2580

3999

99

577,

1091

5171

5000

053

- 120,

7311

7071

9999

994

288,

0024

2557

2999

982

411,

6713

5729

3000

028

0,07

8533

4554

4320

0 32

,844

2085

6860

0003

34

4,59

2599

4550

0002

7 - 0,

4192

0192

3317

000

Page 84: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

83

Duv

bo

600,

0000

0000

0000

000

0,60

0329

5026

8200

0 10

06,5

0881

6740

0000

43

- 212,

4035

3140

9000

010

0,13

9722

9591

9500

0 50

,779

1371

1990

0000

42

6,02

5188

9090

0000

8 - 40

6,50

8816

7420

0002

2 41

8,86

9962

2500

0001

5 28

0,50

7302

1919

9999

7 0,

0411

2388

6531

500

11,4

0779

2552

6000

00

224,

1651

4790

9000

012

- 0,97

0489

3006

8400

0

Soln

a ce

ntru

m

1600

,000

0000

0000

0000

0,

6265

3293

3903

000

1975

,175

3278

5999

9925

- 55

0,60

6895

9020

0001

9 0,

1897

8328

3619

000

41,4

3628

8596

6000

01

649,

5095

0167

5000

024

- 375,

1753

2785

8000

003

396,

7354

9110

6999

973

295,

2704

9632

6999

989

0,03

4409

7145

8860

0 11

,598

4727

6760

0001

24

3,64

8470

2879

9999

9 - 0,

9456

5607

6322

000

Ode

npla

n

2100

,000

0000

0000

0000

0,

6266

7199

8870

000

3762

,555

6837

3000

0055

- 11

01,5

7395

8929

9998

90

0,17

0993

6327

4600

0 13

,334

9591

8500

0001

14

60,5

8739

4409

9998

88

- 1662

,555

6837

3000

0055

37

0,38

5491

9139

9999

9 28

4,42

8368

2640

0002

8 0,

0324

9652

7623

000

15,8

0663

8362

1999

99

249,

8354

8468

6000

001

- 4,48

8717

0799

9000

0

Öste

rmal

msto

rg 80

0,00

0000

0000

0000

0 0,

6386

0300

1678

000

1370

,642

7963

5999

9920

- 12

26,2

1551

8980

0000

70

0,15

2417

3230

0700

0 11

,594

0100

0600

0000

16

88,5

6231

3709

9998

98

- 570,

6427

9636

3000

002

433,

8193

4177

1999

973

301,

3096

4610

5000

013

0,03

2082

7613

5600

0 16

,801

8550

0700

0000

28

6,63

6626

6829

9997

4 - 1,

3153

9270

2480

000

Stad

shag

en

700,

0000

0000

0000

000

0,66

3662

6874

1700

0 10

44,2

8762

7449

9999

45

- 1242

,925

2897

7000

0063

0,

2079

8913

4913

000

7,58

5860

7325

2000

0 15

09,6

6276

4420

0000

30

- 344,

2876

2744

9000

013

435,

5795

9326

0000

024

293,

1409

0029

2000

026

0,03

5687

3840

5960

0 18

,536

1535

1319

9999

26

5,82

0785

3900

0002

6 - 0,

7904

1266

5736

000

Tekn

iska

högs

kola

n 20

00,0

0000

0000

0000

00

0,61

9785

4413

2000

0 28

07,5

3364

7090

0001

59

- 1105

,081

3424

4999

9966

0,

1480

4892

6099

000

12,5

9660

5684

3000

00

1564

,784

5715

5000

0010

- 80

7,53

3647

0910

0003

4 36

3,01

7295

6029

9998

0 29

7,49

7347

9550

0000

9 0,

0323

8096

1983

300

15,2

7068

8535

6000

00

274,

1065

4226

7999

998

- 2,22

4504

6086

5000

0

Sund

bybe

rg

1500

,000

0000

0000

0000

0,

6033

4474

9451

000

2133

,152

3063

8999

9922

- 36

4,34

1549

9270

0001

7 0,

1601

1580

1319

000

48,4

7010

3599

9000

00

528,

2879

5632

1000

024

- 633,

1523

0639

3000

003

398,

8174

0388

1000

018

293,

3505

3199

1000

025

0,03

7341

6437

7150

0 12

,172

3009

0330

0000

23

4,52

3587

2680

0000

0 - 1,

5875

7441

4330

000

Page 85: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

84

Åke

shov

500,

0000

0000

0000

000

0,68

0543

2531

0400

0 54

6,91

7333

4800

0002

5 - 25

4,89

8140

0220

0000

7 0,

0753

7058

5746

400

64,2

8512

4321

4000

05

603,

5274

3304

3999

963

- 46,9

1733

3480

2000

00

431,

4255

9145

0000

013

346,

4732

1697

0000

010

0,06

2147

5152

3650

0 26

,395

4545

7890

0001

30

2,59

3018

8629

9999

8 - 0,

1087

4953

7371

000

Sved

myr

a

400,

0000

0000

0000

000

0,50

9545

3465

7100

0 62

4,60

9137

2839

9998

5 - 22

7,69

2789

7520

0001

0 0,

1536

8670

3729

000

49,9

0744

6041

9000

02

492,

7250

1695

6999

980

- 224,

6091

3728

4000

013

441,

4444

4196

1999

985

332,

8632

1556

6000

008

0,04

6850

7758

0740

0 19

,596

2860

4459

9999

25

8,80

5065

4589

9999

1 - 0,

5088

0499

5451

000

Fars

ta st

rand

700,

0000

0000

0000

000

0,49

0912

6413

8900

0 10

42,8

1648

3920

0001

10

162,

0357

9170

5999

998

0,16

2815

5093

1900

0 44

,386

0512

4059

9997

14

1,64

2460

9059

9999

7 - 34

2,81

6483

9170

0002

8 35

9,52

7548

2700

0001

1 32

9,47

4170

6849

9999

0 0,

0489

0409

1604

500

17,1

8263

5284

3000

02

259,

7077

4174

1000

007

- 0,95

3519

3772

1100

0

Sock

enpl

an

500,

0000

0000

0000

000

0,55

1103

1912

0400

0 57

6,64

8072

4079

9996

2 - 39

9,78

9837

1360

0001

7 0,

1517

4346

0933

000

49,8

9824

9109

7999

98

654,

2108

4713

4999

995

- 76,6

4807

2408

3999

97

452,

2705

9992

4000

010

339,

9483

9584

2000

025

0,04

7066

8948

8420

0 19

,695

9311

5889

9999

26

4,67

2953

3500

0000

0 - 0,

1694

7392

2075

000

Bred

äng

1100

,000

0000

0000

0000

0,

4591

9746

2487

000

1069

,660

1391

5999

9972

- 26

6,68

6094

0280

0001

4 0,

2368

8281

1407

000

67,2

2863

2306

5000

03

466,

9798

6317

5999

981

30,3

3986

0840

6999

98

438,

5181

8342

6999

997

399,

5801

4991

3000

014

0,07

6043

9270

6010

0 26

,149

0664

2549

9999

32

3,58

0326

1639

9998

5 0,

0691

8723

5529

400

Skog

skyr

kogå

rde

n 40

0,00

0000

0000

0000

0 0,

5979

8818

1753

000

740,

5866

0755

7999

969

- 122,

1926

1039

9000

003

0,15

2518

2304

6100

0 46

,017

8819

4209

9997

39

6,35

3821

9480

0001

8 - 34

0,58

6607

5580

0002

6 45

5,98

3534

8350

0000

0 32

5,35

4797

7759

9999

8 0,

0425

0062

9301

500

12,6

9565

2083

1000

01

254,

6750

4404

4999

993

- 0,74

6927

4250

9100

0

Mid

som

mar

kran

sen

900,

0000

0000

0000

000

0,75

9469

0408

3600

0 89

5,37

4784

7280

0000

9 - 17

92,3

5029

5349

9998

97

0,16

1764

1929

6100

0 60

,030

8490

4840

0000

20

75,1

0774

7869

9999

12

4,62

5215

2716

2000

0 37

8,33

1517

4219

9999

0 35

0,10

5691

7959

9997

4 0,

0576

0268

7137

600

31,2

8259

5881

9999

99

301,

6725

1084

2999

998

0,01

2225

2972

8190

0

Page 86: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

85

Tens

ta

900,

0000

0000

0000

000

0,65

7087

4295

7100

0 69

6,91

5464

3509

9996

9 - 23

,631

8725

2890

0001

0,

1147

7816

2636

000

53,2

4488

5924

3000

00

305,

3408

5215

6999

972

203,

0845

3564

9000

003

450,

8460

6403

9999

987

282,

9489

5691

4000

007

0,05

7255

9493

7260

0 11

,527

7649

1310

0000

22

2,11

5710

5489

9999

9 0,

4504

5205

4143

000

Stor

a m

osse

n

500,

0000

0000

0000

000

0,67

5341

4092

0000

0 60

8,23

1827

7279

9998

5 - 97

4,06

8031

5880

0005

3 0,

1795

7992

0097

000

38,1

8074

5238

9999

97

1213

,542

2344

7999

9934

- 10

8,23

1827

7279

9999

9 43

7,46

2944

1029

9998

4 32

8,36

5425

9730

0001

5 0,

0432

4415

7140

900

24,8

0176

2267

0999

99

317,

4114

2095

8999

997

- 0,24

7407

9900

6500

0

Stad

ion

700,

0000

0000

0000

000

0,62

7413

356 5

8000

0 11

43,1

2470

2029

9999

80

- 1159

,758

7190

5999

9976

0,

1422

9083

6972

000

11,1

5197

2760

3000

00

1662

,575

2274

1999

9919

- 44

3,12

4702

0339

9999

5 45

3,14

8249

9260

0000

5 30

3,65

9489

2690

0000

5 0,

0321

8459

4652

900

16,1

5412

1335

5000

01

292,

6607

6637

9999

984

- 0,97

7880

2016

9300

0

Skär

holm

en

800,

0000

0000

0000

000

0,22

7901

5211

0800

0 12

82,1

8722

9849

9999

94

155,

3812

8857

8000

010

0,22

2021

7974

0200

0 48

,276

7527

2039

9998

10

6,44

9029

9689

9999

4 - 48

2,18

7229

8459

9998

0 34

6,77

9366

8300

0001

5 38

1,48

6338

7930

0001

6 0,

1037

9144

3127

000

26,2

8677

2779

7000

01

277,

8819

8156

9999

994

- 1,39

0472

6635

1000

0

Vår

berg

1100

,000

0000

0000

0000

0,

1838

5106

6737

000

516,

8056

5169

0999

980

286,

6942

4470

4000

027

0,17

6210

4362

1100

0 48

,338

9476

3930

0002

24

,535

4621

3039

9999

58

3,19

4348

3090

0002

0 39

4,46

0731

1920

0002

6 37

3,45

9934

3130

0001

9 0,

1079

4602

0406

000

26,8

0658

2163

8000

02

277,

7871

7704

3999

975

1,47

8459

8369

2000

0

Häs

selb

y str

and

700,

0000

0000

0000

000

0,67

0841

9894

4400

0 70

1,94

2654

3289

9999

3 - 0,

7379

2501

2073

000

0,07

6731

1265

0610

0 72

,859

2613

1710

0007

29

6,68

3962

1980

0001

7 - 1,

9426

5432

8530

000

446,

4990

4573

2000

013

347,

3732

6271

2999

974

0,08

3202

0862

2550

0 24

,716

3846

3420

0001

29

4,69

8825

5929

9998

1 - 0,

0043

5085

8858

710

Häg

erste

nsås

en 10

00,0

0000

0000

0000

00

0,60

4943

0850

2900

0 79

9,30

5372

4799

9996

0 - 93

8,16

0146

3660

0004

9 0,

1876

2104

2078

000

70,8

1764

7676

5000

02

1177

,622

9206

9999

9895

20

0,69

4627

5200

0001

2 43

3,81

6594

7190

0002

2 37

4,89

4866

3990

0002

3 0,

0594

2948

9224

800

31,1

7930

4113

4999

99

320,

5579

9966

0999

997

0,46

2625

5195

4700

0

Page 87: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

86

Väs

tra sk

ogen

1300

,000

0000

0000

0000

0,

6381

1952

2340

000

607,

1011

8954

5000

011

- 903,

6359

0501

0999

977

0,20

3308

2860

6200

0 20

,182

3890

6699

9999

10

92,5

1578

3430

0000

56

692,

8988

1045

4999

989

438,

5735

5603

2999

988

290,

2462

1521

0999

992

0,03

4709

1295

1000

0 17

,071

8468

3859

9999

26

8,55

8305

3949

9999

1 1,

5798

9190

3930

000

Mar

iato

rget

1900

,000

0000

0000

0000

0,

7298

4181

2448

000

1749

,952

0005

3999

9972

- 18

20,1

8460

3630

0000

83

0,17

1143

3191

6100

0 16

,000

8551

3839

9999

21

83,7

9746

3719

9999

96

150,

0479

9946

2999

996

412,

3982

4164

8000

010

314,

9778

2482

9999

975

0,03

5709

9262

1360

0 18

,194

3051

9879

9999

32

0,59

5529

0379

9999

5 0,

3638

4248

1149

000

Blac

kebe

rg

500,

0000

0000

0000

000

0,71

3217

9592

6100

0 56

0,16

9099

9219

9998

7 - 15

,741

5758

0410

0000

0,

0259

4173

4532

300

73,9

7872

0022

2999

96

397,

8089

4015

5000

016

- 60,1

6909

9921

6000

01

441,

7452

7032

3000

000

352,

3297

0375

0000

022

0,07

9821

5852

8990

0 25

,816

3676

7079

9998

30

3,00

2354

1240

0002

1 - 0,

1362

0768

3396

000

Råck

sta

1100

,000

0000

0000

0000

0,

6730

2292

9519

000

617,

2586

8971

0999

988

- 5,94

3655

5245

4000

0 0,

0493

8635

7728

300

71,1

7354

0639

6999

93

347,

6524

5800

9999

975

482,

7413

1028

9000

012

448,

8337

0145

4999

982

334,

7030

6251

4999

999

0,07

3959

8713

5640

0 24

,443

3155

5560

0002

28

7,84

0319

7650

0000

4 1,

0755

4604

0160

000

Asp

udde

n

1000

,000

0000

0000

0000

0,

7684

5792

6444

000

1035

,292

8544

7000

0066

- 16

74,4

9154

7739

9999

87

0,15

6571

7567

3100

0 64

,980

5852

2750

0001

19

50,5

5142

2909

9999

28

- 35,2

9285

4472

0000

02

445,

7714

6309

3000

023

344,

2991

1187

5999

984

0,05

5364

8607

7970

0 29

,795

6524

7209

9999

29

0,85

8305

4520

0002

5 - 0,

0791

7252

9859

000

Rops

ten

3800

,000

0000

0000

0000

0,

6224

5080

4688

000

2641

,425

2861

7000

0163

- 10

40,0

0865

7670

0000

48

0,11

6698

2336

8300

0 14

,575

3089

7620

0001

16

12,5

1059

4939

9999

19

1158

,574

7138

3000

0064

33

4,50

9035

8439

9998

2 30

7,06

6853

4040

0002

8 0,

0331

7570

8288

100

12,7

8810

7905

5000

00

309,

5797

3247

7999

983

3,46

3507

9764

4000

0

Nor

sbor

g

400,

0000

0000

0000

000

0,07

6203

6912

4250

0 82

1,09

5838

9940

0001

9 57

5,93

8708

7280

0005

1 0,

0730

7303

9918

000

35,1

6078

8169

2999

98

- 111,

2263

8545

4999

999

- 421,

0958

3899

4000

019

263,

6866

6031

3000

004

394,

9909

3525

0000

007

0,13

6934

3356

1500

0 32

,174

4273

2899

9997

29

9,54

6624

9489

9997

7 - 1,

5969

5541

1000

000

Page 88: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

87

Hal

lund

a

300,

0000

0000

0000

000

0,07

1536

2799

1830

0 91

6,50

3330

0579

9996

0 57

8,17

7871

9390

0005

6 0,

0872

4887

6847

000

31,7

5572

0135

0000

01

- 110,

1951

7841

5000

001

- 616,

5033

3005

7999

960

410,

2494

8911

4000

028

397,

3459

9165

9999

981

0,13

5548

6215

5700

0 32

,854

7708

5250

0003

29

8,28

1518

9699

9997

9 - 1,

5027

5221

8870

000

Bark

arby

sta

tion

608,

0000

0000

0000

000

0,65

9954

5689

2000

0 67

6,52

6256

7959

9998

4 - 28

,110

6219

2140

0000

0,

1170

4238

7051

000

54,7

0834

7429

9000

02

306,

2784

0429

3999

984

- 68,5

2625

6795

6999

93

436,

1332

2700

1000

023

300,

3022

1471

3000

012

0,06

4554

2047

3590

0 12

,552

2520

3050

0000

23

2,08

9291

1610

0000

6 - 0,

1571

2230

2437

000

Järla

1053

,000

0000

0000

0000

0,

7460

7417

9500

000

1012

,610

5466

4000

0052

- 51

4,98

8528

3830

0001

6 0,

1437

6295

6183

000

38,8

1296

1652

6999

97

844,

6237

8142

7000

040

40,3

8945

3364

6000

01

421,

2427

6465

1000

016

351,

6087

2346

1000

011

0,03

7561

9116

7640

0 12

,036

0045

4440

0001

30

9,51

4425

9080

0002

1 0,

0958

8165

4841

100

Ham

mar

by

Kan

al

1854

,000

0000

0000

0000

0,

7529

1687

4797

000

1846

,365

3150

0999

9904

- 16

67,6

7851

3930

0000

08

0,17

2239

5555

5300

0 21

,962

9854

2690

0001

20

07,3

6610

6279

9999

40

7,63

4684

9854

4000

0 36

7,18

0894

6310

0000

1 32

7,43

2279

3669

9997

8 0,

0364

1713

1075

800

14,6

5470

3902

9000

00

330,

3433

7656

5000

028

0,02

0792

7076

1920

0

Nac

ka

Cent

rum

29

40,0

0000

0000

0000

00

0,74

0397

2393

1300

0 29

94,7

6531

7299

9998

79

- 587,

7136

1317

6999

957

0,13

8815

8096

8100

0 36

,517

0370

6800

0000

94

9,62

5133

7370

0005

6 - 54

,765

3173

0140

0003

17

2,93

8164

0100

0000

8 34

9,17

5848

0710

0001

9 0,

0366

3979

6542

300

12,2

3007

9545

8000

01

308,

2649

6292

8999

978

- 0,31

6675

7182

5300

0

Bark

arby

stade

n 265,

0000

0000

0000

000

0,68

2715

8947

7100

0 30

8,16

3415

0439

9997

6 - 6,

7022

5400

6800

000

0,12

1513

1764

9900

0 52

,664

2461

8330

0001

28

2,17

8624

5719

9999

0 - 43

,163

4150

4390

0002

41

7,66

6190

6190

0002

0 29

4,23

1243

4369

9998

9 0,

0606

9785

5560

000

11,3

5294

9671

1999

99

227,

1133

9146

5999

996

- 0,10

3344

2878

8700

0

Sofia

2026

,000

0000

0000

0000

0,

7129

1852

0532

000

1600

,625

1899

1999

9912

- 14

87,5

4512

1870

0000

03

0,16

6216

2266

0400

0 18

,791

5366

1350

0000

18

60,8

2295

3630

0000

29

425,

3748

1007

9999

975

395,

1839

1242

8999

975

296,

1536

1077

5000

004

0,03

2809

7010

4740

0 15

,133

0872

3259

9999

31

0,92

0346

6260

0002

5 1,

0763

9708

1720

000

Page 89: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

88

Sick

la

1118

,000

0000

0000

0000

0,

7408

2602

3516

000

1024

,188

9513

7000

0041

- 62

8,53

2741

1089

9997

1 0,

1530

7304

7833

000

36,3

7045

2151

5999

99

942,

7644

5682

8999

982

93,8

1104

8633

2000

02

417,

5338

9997

9000

012

355,

5828

3736

5999

978

0,03

8007

8605

7470

0 12

,145

5675

4700

0001

31

9,67

0356

1690

0000

2 0,

2246

7887

9099

000

Page 90: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

89

Appendix IV: GWR Prediction by ArcGIS (ArcMap)

ArcMap proposes an option while calculating the GWR model to predict dependent variables at given location as well as their respective GWR equations. The tool is very useful and the results for 2016 are presented in the table below with each respective prediction done with the OLS equation.

The way these predictions were executed and calculated by ArcMap are unclear. It was for this reason that the GWR equations for the new stations were finally determined using the prediction from the OLS equation.

Page 91: Geographically Weighted Regression as a Predictive Tool ...1351572/FULLTEXT01.pdf · This thesis studies a new regression method, Geographically Weighted Regression (GWR) to predict

TRITA TRITA-ABE-MBT-19647

www.kth.se