19
Geometrical optimization of a disc brake Lauren Feinstein [email protected] Vladimir Kovalevsky [email protected] Nicolas Begasse [email protected]

Geometrical optimization of a disc brake Lauren Feinstein [email protected] Vladimir Kovalevsky [email protected] Nicolas Begasse [email protected]

Embed Size (px)

Citation preview

Page 1: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Geometrical optimization of a

disc brake

Lauren Feinstein [email protected]

Vladimir Kovalevsky [email protected]

Nicolas Begasse [email protected]

Page 2: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Presentation Overview

• Optimization Overview• Disc Brake Analysis• Response Surface Optimization

Page 3: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Design process• Functional requirements• Initial design• Topologic optimization• Parametric optimization

Page 4: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Problem statement

objective function

state variables

bounded domain

Given geometryGiven parameters

Page 5: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Example problem

• Variables ?

Minimize displacement

Bounded volumeBounded stress

Page 6: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Parametric optimization

• X = thickness of each portion• 5 Variables

Minimize displacement

Bounded volumeBounded stress

Page 7: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Topologic optimization

• X = presence of each cell• 27 variables

Minimize displacement

Bounded volumeBounded stress

Page 8: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Parametric with interpolation

• X = position of each point• 8 variables

Minimize displacement

Bounded volumeMaximum stress

• We use this one!

Page 9: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

ANSYS Modeling (Reference)

80mm

60mm

Symmetry

0.28 MPa

Linear Elastic, Isotropic

Page 10: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

ANSYS Modeling (Optimization)

80mm

60mm

0.28 MPa

Symmetry

X 1

X 2

Min total displacementBC & symmetry

Linear Elastic, Isotropic

Page 11: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Ansys Results : Deflection

Optimized Reference

mm mm

9.2% Reduction

Page 12: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Ansys Results :

not exceeded8.35% Reduction

MPa MPa

Optimized Reference

Page 13: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Response Surface Optimization

X 1 X 2

Dis

plac

emen

t

Page 14: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Objective Function Formulation

Optimization parameter

Penalty functions for design variables

Penalty functions for state variables

Traditional Method

ANSYS

Page 15: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Design of ExperimentsAngle 1

Angl

e 2

Page 16: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Kriging Algorithm

180190

200210

220110

120

130

140

0.9

1

1.1

1.2

1.3

x 10-4

x1 x2

Dis

plac

emen

t

Page 17: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

MISQPMixed Integer Sequential Quadratic Programming

Angle 1Angle 2

Dis

plac

emen

t

Page 18: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Candidate Point Validation

Angle 1Angle 2

Dis

plac

emen

t

Page 19: Geometrical optimization of a disc brake Lauren Feinstein lpf24@cornell.edu Vladimir Kovalevsky vk285@cornell.edu Nicolas Begasse nb442@cornell.edu

Thank you!