65
GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemis try Dr. Brad Chazotte 213 Maddox Hall [email protected] Web Site: http://www.campbell.edu/faculty /chazotte Original material only ©2000-14 B. Chazotte

GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall [email protected] Web Site:

Embed Size (px)

Citation preview

Page 1: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

GLYCOLYSISStudent Edition 5/30/13 version

Pharm. 304 Biochemistry

Fall 2014

Dr. Brad Chazotte 213 Maddox Hall

[email protected]

Web Site:

http://www.campbell.edu/faculty/chazotte

Original material only ©2000-14 B. Chazotte

Page 2: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Goals• Learn the enzymes and sequence of reactions in glycolysis

• Develop an understanding of the chemical “logic” of the glycolysis pathway

• Understand the basis and need for redox balance in glycolysis

• Learn and understand the control(s) and control points of the glycolysis pathway.

• Learn where products of glycolysis can go.

• Be aware that other sugars can enter the glycolysis pathway

Page 3: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

An Energy Conversion Pathway Used by Many Organisms

Glycolysis:

• Almost a universal central pathway for glucose catabolism

• The chemistry of these reactions has been completely conserved.

• Glycolysis differs among species only in its regulation and in the metabolic fate of the pyruvate generated.

• In eukaryotic cells glycolysis takes place in the cell cytosol.

Page 4: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

The Glycolysis Pathway[Embden-Meyerhof Pathway]

Glycolysis is the sequence of reactions that metabolizes one molecule of glucose to two molecules of pyruvate with the concomitant net production of two molecules of ATP

Glycolysis is an anaerobic process, i.e., it does not require oxygen

Voet, Voet & Pratt 2013 Fig 15.1

Page 5: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Glucose + 2NAD+ + 2ADP + 2Pi

2 pyruvate + 2 NADH + 2H+ + 2ATP + 2H2O

Conversion of glucose into pyruvate: G1 = -146 kJ mol-1

Glucose + 2NAD+ 2 pyruvate + 2 NADH + 2H+

Formation of ATP from ADP and Pi G2 = 2 (30.5)= 61 kJ mol-1

2ADP + 2Pi 2ATP + 2H2O

Gs = G1 + G1 = -146 kJ mol-1 + 61 kJ mol-1 = -85 kJ mol-1

Overall Reaction of Glycolysis

Page 6: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

The Glycolysis Pathway

There are three major stages of glycolysis defined (some texts define two):

• Trapping and destabilization of glucose (2 ATP used)

• Cleavage of 6-carbon fructose to two interconvertible 3-carbon molecules (4 ATP produced)

• Generation of ATP

Page 7: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Examples of Glucose Metabolic Fates

Voet, Voet & Pratt 2013 Fig 15.16

O O -

CH3 C C O

Pyruvate

Catabolism via PyruvateMajor Glucose Utilization Pathways in Cells of Higher Plants and Animals

Lehninger 2000 Fig 15.1

Page 8: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Definition: A general term for the anaerobic degradation of glucose or other organic nutrients to obtain energy conserved in the form of ATP.

Disadvantage: Fermentations produce less energy than complete

combustion with oxygen

Advantage: Does not require oxygen. Gives an organism a wider choice of habitats.

TWO EXAMPLES OF FERMENTATION:Alcohol Fermentation: e.g. the conversion of pyruvate from glycolysis to ethanol in yeast CH3-CH2OH

Lactic Acid Fermentation: e.g. the conversion of pyruvate from glycolysis to lactic acid in skeletal muscle. CH3-CHOH-COO-

FERMENTATION

Page 9: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Table. 16.1

Reactions of Glycolysis

Page 10: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2002 Fig. 16.3

1. Trap and destabilize

2. Cleave 6-C into two 3-C molecules

3. Generate ATP

Schematic of the

Glycolysis Pathway

Hexose stage

Triose stage

Horton 2-stage

Page 11: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2002 Fig. 16.X

Stage 1 of Glycolysis Detail

Page 12: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Horton, 2002 Fig 11.3Glycolysis Step 1 G= -16.7 kJ/mol

Conversion of Glucose by Hexokinase

carbon numbering

mechanism

Lehninger 2000 Fig 15.1

Hexokinase present in all cells of all organisms

Kinases are enzymes that catalyze the transfer of a phosphoryl group from ATP to an acceptor

Reaction Purposes:1. Traps glucose in the cell due to the negative charges on the phosphoryl groups which are ionized at pH 7. Precludes diffusion through the plasma membrane. 2. The attachment of the phosphoryl group renders glucose a less stable molecule and more amenable to further metabolic action.

Page 13: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.3

Hexokinase Structure &

Glucose Binding

Voet, Voet & Pratt , 2008 Fig. 15.2

Yeast HexokinaseTwo lobes move towards each other as much as 8 Å when glucose is bound

Resulting cavity creates a much more nonpolar environment around the glucose molecule which favors the donation of the ATP’s terminal phosphate

Page 14: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap 16 p. 457Glycolysis Step 2

G=1.7 kJ/mol

Isomerization of Glucose-6-P to Fructose-6-P

Page 15: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Phosphoglucose Isomerase Mechanism

Voet, Voet & Pratt 20012 Fig. 15.3

Enzyme active site

Glycolysis Step 2

Glu?

Lys?

Page 16: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap 16Glycolysis Step 3

G= -14.2 kJ/mol

Phosphorylation of Fructose 6-P

Page 17: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2002 chap 16.

Stage 2 of Glycolysis

Berg, Tymoczko & Stryer, 2002 Chap. 16

Page 18: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 chap 16 p. 458Glycolysis Step 4

G=23.8 kJ/mol

Cleavage of Fructose 1,6-biphosphate by Aldolase

Page 19: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Aldolase Reaction: Glycolysis Rx #4

Glycolysis Step 4Voet, Voet & Pratt 2013 15 p. 478

Page 20: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Base-catalyzed Aldol Cleavage Mechanism

Voet, Voet & Pratt 2013 Fig. 15.4Glycolysis

Page 21: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Aldolase Mechanism

Voet, Voet & Pratt 2013 Fig. 15.5

The cleavage by aldolase of F1,6BP stabilizes the enolate intermediate via increased electron delocalization.

Page 22: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2002 Chap 16.

Stage 2 of Glycolysis

End of “stage I ” in Voet, Voet & Pratt

Page 23: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2002 Fig. 16.3Glycolysis Step 5

G=7.5kJ/mol

Isomerization of Dihdroxyacetone phosphate

Page 24: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Lehninger 2000 Fig 15.4

Isomerization of DHAP with Carbon #s

Page 25: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Triose Phosphate Enzyme Mechanism

Cunningham 1978, p343

Page 26: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Triose Phosphate Isomerase Rx Proposed Mechanism

Voet & Voet Biochemistry 1995 Fig.16.10

Glycolysis Step 5

Page 27: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.5

Catalytic Mechanism of Triose Phosphate Isomerase

Page 28: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap 16 p. 460

Avoiding Methyl Glyoxal by Triose Phosphate Isomerase

Page 29: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap. 16 p.461

Stage 3 Glycolysis Overview

Voet, Voet & Pratt, 2013 Fig. 15.15

Page 30: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2002 Fig. 16.X

Stage 3 of Glycolysis

Page 31: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap.. 16 p. 461Glycolysis Step 6

G= 6.3 kJ/mol

Conversion (Oxidation) of GAP into 1,3-BPG

Page 32: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap. 16 p. 461Glycolysis Step 6

Two steps involved: oxidation of aldehyde & joining of carboxylic acid with orthophosphate

G= 6.3 kJ/mol

Conversion of GAP into 1,3-BPG

Page 33: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Glyceraldehyde-3-phosphate Dehydrogenase Mechanism

Voet, Voet &Pratt 2013 Fig. 15.9

Enzyme active site

Glycolysis Step 6

Page 34: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.6

Glyceraldehyde Oxidation Free Energy Profile

Berg, Tymoczko & Stryer, 2012 Fig. 16.6

Page 35: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap. 16 p. 463Glycolysis Step 7

G= -18.5 kJ/mol

Phosphoglycerate Kinase

Page 36: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Phosphoglycerate Kinase Reaction

Voet & Voet Biochemistry 2008 p. 499

Glycolysis Step7

MechanismReaction

Page 37: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

SUBSTRATE-LEVEL PHOSPHORYLATION

IMPORTANT: This refers to the formation of ATP from a high phosphoryl transfer potential substrate.

1,3-bisphosphoglycerate (1,3-BPG) in the phosphoglycerate kinase reaction of glycolysis is such an example.

Page 38: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Voet, Voet, & Pratt, 2013 Chap 15. p. 486Glycolysis Step 8

G= 4.4 kJ/mol

Rearrangement of 3-phosphoglycerate

Page 39: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Lehninger 2000 Fig 15.6

Phosphoglycerate Mutase Reaction Mechanism

Voet, Voet & Pratt 2008 Fig p500

Page 40: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Phosphoglycerate Mutase Proposed Mechanism

Voet & Voet Biochemistry 2013 Fig. 15.12

Enzyme active site

Glycolysis Step 8

Page 41: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Voet, Voet, & Pratt 2012 Chap. 15 p. 487Glycolysis Step 9

G= 7.5 kJ/mol

Dehydration of 2-phosphoglycerate

Page 42: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Glycolysis Step 10 G= -31.4 kJ/mol

Dephosphorylation of Phosphoenolpyruvate

Berg, Tymoczko & Stryer, 2002 Fig. 16.3;

2013 Chap 15 p. 465

Page 43: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Enzymes of Glycolysis Table

Bhagavan 2001 Biochemistry Table 13.2

Page 44: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Channeling of Intermediates in Glycolysis

Page 45: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap. 16 p. 466

The Redox Balance in Glycolysis

NADH Regeneration

Page 46: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Alcoholic Fermentation

Voet, Voet & Pratt 2013 Fig 15.18Voet, Voet & Pratt 2013 Fig 15.16

Page 47: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Chap. 16 p. 468

Lactic Acid Fermentation

Page 48: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.11

Redox Balance of NADH needed to Maintain Glycolysis

Page 49: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.12

NAD+-Binding Domain of Dehydrogenases

Page 50: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Entry of other Hexoses into Glycolysis

Voet, Voet , & Pratt 2013 Fig 15.26

Page 51: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.13

Galactose and Fructose Entry Points in Glycolysis

Page 52: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Fructose Metabolism

Voet, Voet & Pratt 2013 Fig 15.27

Page 53: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Galactose Metabolism

Voet, Voet & Pratt 2013 Fig 15.28

Page 54: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Lehninger 2000 Fig 15.11

Feeder Pathways: Entry of Glycogen, Starch, Disaccharides and hexoses into preparatory stage of Glycolysis

Page 55: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Control of the Glycolytic Pathway

The metabolic flux through the glycolytic pathway must be adjusted to respond to internal and extracellular conditions.

IMPORTANT - Two major cellular needs regulate the rate of glucose conversion into pyruvate:

1) The production of ATP. 2) The production of building blocks for synthetic reactions.

In metabolic pathways, enzymes catalyzing essentially irreversible reactions are potential sites for control.• These enzymes are regulated by allosteric effectors that reversibly bind to the enzyme

or by covalent modification (meaning? E.g. phosphorylation).• These enzymes are also subject to regulation by transcription in response to metabolic

loads (demands).

Page 56: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Lehninger 2000 Fig 15.16

Regulation of Flux Through a

Multistep Pathway

Page 57: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Cumulative standard and actual free energy changes for the reactions of glycolysis

Horton et al 2012 Fig 11.12Voet , Voet, & Pratt 2013 Table 15.1

Page 58: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Phosphofructokinase Control

For mammals, phosphofructokinase is the most important control element in the glycolytic pathway.

Berg, Tymoczko, & Stryer 2012 Fig 16.16Voet, Voet & Pratt 2013 Fig 15.23

Page 59: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.20

Phosphofructokinase Control IIEffect of F-2,6-BP and ATP

Page 60: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.32

Glucagon Signal Pathway

Page 61: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Lehninger 2000 Fig 15.19

Glycogen Phosphorylase of

Liver as a Glucose Sensor

Page 62: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Lehninger 2000 Fig 15.18

Phosphofructokinase Control Summary of Regulatory Factors Affecting PFK

Page 63: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Hexokinase Control

Hexokinase is inhibited by Glucose –6-P (its product). Indicates that the cell has sufficient energy supply. This will leave glucose in the blood.

Special case of liver: glucokinase (an isozyme) not inhibited by glucose-6-P. Has a 50-fold LOWER affinity for glucose. Functions to provide glucose-6-P for glycogen synthesis. Lower affinity means that hexokinase (muscle, brain) has first call on available glucose.

Page 64: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

Berg, Tymoczko & Stryer, 2012 Fig. 16.21

Pyruvate Kinase Control

Several mammalian isozymes of tetramer enzyme:

L-form predominates in liver

M-form predominates in muscle and brain

Pyruvate kinase controls the outflow from the glycolysis pathway. It is the third irreversible step. This final step yields ATP and pyruvate.

Page 65: GLYCOLYSIS Student Edition 5/30/13 version Pharm. 304 Biochemistry Fall 2014 Dr. Brad Chazotte 213 Maddox Hall chazotte@campbell.edu Web Site:

End of Lectures