21
GRAVITINO DARK MATTER Wilfried Buchm¨ uller DESY, Hamburg LAUNCH09, Nov. 2009, MPK Heidelberg

GRAVITINO DARK MATTER - Startseite

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GRAVITINO DARK MATTER - Startseite

GRAVITINO DARK MATTER

Wilfried Buchmuller

DESY, Hamburg

LAUNCH09, Nov. 2009, MPK Heidelberg

Page 2: GRAVITINO DARK MATTER - Startseite

Why Gravitino Dark Matter?

Supergravity predicts the gravitino, analog of W and Z bosons in electroweaktheory; may be LSP, natural DM candidate:

• m3/2 < 1keV, hot DM, (Pagels, Primack ’81)

• 1keV <∼ m3/2 <∼ 15keV, warm DM, (Gorbunov, Khmelnitsky, Rubakov ’08)

• 100keV <∼ m3/2 <∼ 10MeV, cold DM, gauge mediation and thermalleptogenesis (Fuji, Ibe, Yanagida ’03); recently proven to be correct by F-theory(Heckman, Tavanfar, Vafa ’08)

• 10GeV <∼ m3/2 <∼ 1TeV, cold DM, gaugino/gravity mediation andthermal leptogenesis (Bolz, WB, Plumacher ’98)

Baryogenesis, (gravitino) DM and primordial nucleosynthesis (BBN) stronglycorrelated in cosmological history.

1

Page 3: GRAVITINO DARK MATTER - Startseite

Gravitino Problem

Thermally produced gravitino number density grows with reheatingtemperature after inflation (Khlopov, Linde ’83; Ellis, Kim, Nanopoulos ’84;...),

n3/2

nγ∝ α3

M2p

TR.

For unstable gravitinos, nucleosynthesis implies stringent upper bound onreheating temperature TR (Kawasaki, Kohri, Moroi ’05; ...),

TR < O(1) × 105 GeV,

hence standard mSUGRA with neutralino LSP incompatible withbaryogenesis via thermal leptogenesis where TR ∼ 1010 GeV !!

Possible way out: Gravitino LSP, explains dark matter!

2

Page 4: GRAVITINO DARK MATTER - Startseite

Gravitino Virtue

Can one understand the amount of dark matter, ΩDM ≃ 0.23, withΩDM = ρDM/ρc, if gravitinos are dominant component, i.e. ΩDM ≃ Ω3/2?

Production mechanisms: (i) WIMP decays, i.e., ‘Super-WIMPs’ (Covi, Kim,

Roszkowski ’99; Feng, Rajaraman, Takayama ’03),

Ω3/2 =m3/2

mNLSPΩNLSP ,

independent of initial temperature TR (!), but inconsistent with BBNconstraints; (ii) Thermal production, from 2 → 2 QCD processes,

Ω3/2h2 ≃ 0.5

(TR

1010GeV

) (100GeV

m3/2

)(mg(µ)

1TeV

).

→ ΩDMh2 for typical parameters of supergravity and leptogenesis!

3

Page 5: GRAVITINO DARK MATTER - Startseite

Leptogenesis, GDM and BBN (Bolz, WB, Plumacher ’98)

Left: Gravitino abundance as function of reheating temperature. Right:

Upper bound on gluino mass, lower bound on higgsino NLSP; shaded area:BBN ok. Note: gaugino mass unification not possible. Improved BBNconstraints → τ NLSP ... →... Pospelov ’06 ... review Steffen ’08

4

Page 6: GRAVITINO DARK MATTER - Startseite

Reheating: initial RH-neutrino dominance(...Asaka et al ’99; Hahn-Woernle, Plumacher ’08; Erbe ’09)

Reheating process from inflaton decay: φ → N1N1 → (lH)(lH) → . . .;combined system of Boltzmann eqs connects LG and gravitino production

0.05

0.06

0.07

0.08

0.095

0.112

0.14

0.16

0.18

0.2

1 10

ΩG~h2

mG~ [GeV]

M3 = 400 GeV

Dark Matter Region

K=10

K=500

parameters: M1 = 109 GeV ∼ TR, mg = 1 TeV; for K = 10 (strongwashout): m3/2 ≃ 6 GeV (cf. thermal LG: Ωh2 ∼ 1).

5

Page 7: GRAVITINO DARK MATTER - Startseite

Decaying GDM (WB, Covi, Hamaguchi, Ibarra, Yanagida ’07)

BBN, leptogenesis and gravitino dark matter are all consistent in case ofa small ‘R-parity’ breaking, which leads to processes τR → τ νµ, µ ντ ,τL → bct, ... and also ψ3/2 → γν. Small R-parity breaking can occurtogether with B-L breaking,

λ ∼ h(e,d)Θ <∼ 10−7 , Θ ∼v2

B−L

MP2 .

The NLSP lifetime becomes sufficiently short (decay before BBN),

cτ lepτ ∼ 30 cm

( mτ

200GeV

)−1(

λ

10−7

)−2

.

BBN, thermal leptogenesis and gravitino dark matter are consistent for10−14 < λ, λ′ < 10−7 (B, L washout) and m3/2 >∼ 5 GeV.

6

Page 8: GRAVITINO DARK MATTER - Startseite

At LHC one should see characteristic signal with strongly ionisingmacroscopic charged tracks, followed by a muon track or a jet and missingenergy, corresponding to τ → µντ or τ → τνµ.

The gravitino decay ψ3/2 → γν is suppressed both by the Planck mass andthe small R-parity breaking couplings, so the lifetime is much longer thanthe age of the universe (Takayama, Yamaguchi ’00),

τ3/2 ∼ 1026s

10−7

)−2 ( m3/2

10 GeV

)−3

;

(Note that this lifetime became very popular after PAMELA). What are thecosmic ray signatures? Gamma-ray flux of the order of EGRET excess !!

Several other mechanisms to generate small R-parity breaking have beenproposed (Mohapatra et al ’08; Endo, Shindou ’09, ...)

7

Page 9: GRAVITINO DARK MATTER - Startseite

LAUNCH07, March 2007, MPK Heidelberg:Extragalactic diffuse gamma-ray flux obtained from EGRET data (1998)

energy (MeV) 10 210 310 410 510

MeV

-1 s-1

sr-2

. inten

sity,

cm2 E

-310

V

analysis of Strong, Moskalenko and Reimer, astro-ph/0406254 (2004), astro-ph/0506359 (2005);

subtraction of galactic component difficult astro-ph/0609768; extragalactic gravitino signal

consistent with data for m3/2 ∼ 10 GeV; halo component may partly be hidden in

anisotropic galactic gamma-ray flux → wait for GLAST !!

8

Page 10: GRAVITINO DARK MATTER - Startseite

Superparticle Mass Window (WB, Endo, Shindou ’08)

What are the constraints from leptogenesis and GDM on superparticlemasses for unstable gravitinos, i.e. without BBN? GDM: upper bound ongluino mass for given reheating temperature; low energy observables: lowerbound on NLSP.

Connection is model dependent; assume gaugino mass unification (mgluino ≃6mbino). Two typical examples (different ratios mNLSP/mgluino),

(A) χ NLSP : m0 = m1/2 , a0 = 0 , tanβ ;

(B) τ NLSP : m0 = 0 , m1/2 , a0 = 0 , tanβ .

Low energy observables: mh > 114 GeV, BR(Bd → Bsγ), mcharged >100 GeV. Possible hint for supersymmetry (Marciano, Sirlin ’08),

aµ(exp) − aµ(SM) = 302(88) × 10−11 .

9

Page 11: GRAVITINO DARK MATTER - Startseite

Stau and gravitino masses

Left: (A) gravitino: m3/2 < 490 GeV. Right: (B) stau: 100 GeV <mstau < 490 GeV. Red: mass range favoured by aµ.

10

Page 12: GRAVITINO DARK MATTER - Startseite

Cosmic-Ray Signatures from Decaying Gravitinos(WB, Ibarra, Shindou, Takayama, Tran ’09)

Gravitino decays: ψ3/2 → γν;hν, Zν,W±l∓, leads to continuous gamma-ray and antimatter spectrum: ψ3/2 → γX, pX, e±X ; qualitative featuresfrom operator analysis (hierarchy: mSM ≪ m3/2 ≪ msoft):

Leff =iκ√2MP

lγλγνDνφψλ +

i

2lγλ (ξ1g

′Y Bµν + ξ2gWµν)σµνφψλ

+ h.c.

R-parity breaking: κ; further suppression: ξ1.2 = O(1/m3/2)

dim 5 : ψ3/2 → hν, Zν,W±l∓; continuous spectrum ,

i.e., single term correlates antiproton flux, PAMELA and Fermi!

dim 6 : ψ3/2 → γν; gamma line

11

Page 13: GRAVITINO DARK MATTER - Startseite

Minimal gravitino lifetime from antiproton flux

10-5

10-4

10-3

10-2

10-1

100

0.1 1 10

Antip

roto

n flu

x [G

eV-1

m-2

s-1

sr-1

]

T [GeV]

Total flux

MED

Lifetime: 7.0E26 s

φF = 500 MV

BESS 95+97BESS 95IMAX 92

CAPRICE 94CAPRICE 98

conservative propagation model (B/C ratio): MED model; require that totalantiproton flux (including gravitino decays) lies below maximal flux fromspallation (including astrophysical uncertainties) → minimal lifetime; form3/2 = 200 GeV one finds τmin

3/2 (200) = 7 × 1026 s.

12

Page 14: GRAVITINO DARK MATTER - Startseite

PAMELA & Fermi vs ‘electron dominance’

0.01

0.1

1

1 10 100 1000

Positro

n fra

ction e

+/(

e++

e−)

E [GeV]

PAMELA 08HEAT 94/95/00

10

100

1000

10 100 1000 10000

E3 d

N/d

E [G

eV

2 m

-2 s

-1]

E [GeV]

ATIC 08Fermi LAT 09

HESS 08

Input: m3/2 = 200 GeV, τ3/2 = 3.2 × 1026 s, BR(ψ → µ±W∓, τ±W∓) ≪BR(ψ → e±W∓) (why?); background: “Model 0” (Grasso et al, Fermi LAT ’09)

Conclusion: GALPROP & gravitino incompatible with PAMELA & Fermi !![PAMELA & Fermi make CR signature for dark matter UNLIKELY !!]

13

Page 15: GRAVITINO DARK MATTER - Startseite

PAMELA & Fermi vs ‘flavour democracy’

0.01

0.1

1

1 10 100 1000

Positro

n fra

ction e

+/(

e++

e−)

E [GeV]

PAMELA 08HEAT 94/95/00

10

100

1000

10 100 1000 10000

E3 d

N/d

E [G

eV

2 m

-2 s

-1]

E [GeV]

ATIC 08Fermi LAT 09

HESS 08

Input: m3/2 = 200 GeV, τ3/2 = 7 × 1026 s, BR(ψ → l±i W∓) universal for

i = e, µ, τ (theoretical model exists), background: “Model 0”.Conclusion: astrophysical sources needed to explain PAMELA & FERMI!!

14

Page 16: GRAVITINO DARK MATTER - Startseite

Contribution from gravitino decays to positron fraction increases withincreasing gravitino mass:

0.01

0.1

1

1 10 100 1000

Positro

n fra

ction e

+/(

e++

e−)

E [GeV]

PAMELA 08HEAT 94/95/00

10

100

1000

10 100 1000 10000

E3 d

N/d

E [G

eV

2 m

-2 s

-1]

E [GeV]

ATIC 08Fermi LAT 09

HESS 08

Input: m3/2 = 400 GeV, τ3/2 = 3 × 1026 s, BR(ψ → l±i W∓) universal for

i = e, µ, τ , background: “Model 0”.Conclusion: gravitino contribution to electron/positron fluxes may besizable, has to be complemented by astrophysical sources!

15

Page 17: GRAVITINO DARK MATTER - Startseite

Contribution from gravitino decays to positron fraction decreases rapidly forgravitino masses below 200 GeV:

0.01

0.1

1

1 10 100 1000

Positro

n fra

ction e

+/(

e++

e−)

E [GeV]

PAMELA 08HEAT 94/95/00

10

100

1000

10 100 1000 10000

E3 d

N/d

E [G

eV

2 m

-2 s

-1]

E [GeV]

ATIC 08Fermi LAT 09

HESS 08

Input: m3/2 = 100 GeV, τ3/2 = 1 × 1027 s, BR(ψ → l±i W∓) universal for

i = e, µ, τ , background: “Model 0”.Conclusion: gravitino contribution to electron/positron fluxes may benegligable, as for antiproton flux!

16

Page 18: GRAVITINO DARK MATTER - Startseite

Predictions for the Gamma-Ray Spectrum

Important contributions form extragalactic DM and DM in the Milky Wayhalo; typical branching ratio for gamma line (cf. operator analysis):

BR(ψ3/2 → νγ) ∼ 0.02

(200 GeV

m3/2

)2

;

Gamma-ray background presently uncertain, two analyses of EGRET data;Sreekumar et al:

[E2dJ

dE

]

bg

= 1.37 × 10−6

(E

GeV

)−0.1

(cm2 str s)−1 GeV ,

and Moskalenko et al:

[E2dJ

dE

]

bg

= 6.8 × 10−7

(E

GeV

)−0.32

(cm2 str s)−1 GeV.

17

Page 19: GRAVITINO DARK MATTER - Startseite

Height of gamma line depends on energy resolution (assumed: σ(E)/E =15%) and background; ‘minimal’ lifetime from antiproton flux constraintgive maximal gamma-ray flux:

10-7

10-6

0.1 1 10 100

E2 d

J/d

E [(c

m2 s

tr s

)-1 G

eV

]

E [GeV]

Sreekumar et al.Strong et al.

10-7

10-6

0.1 1 10 100

E2 d

J/d

E [(c

m2 s

tr s

)-1 G

eV

]

E [GeV]

Sreekumar et al.Strong et al.

left: m3/2 = 200 GeV, τ3/2 = 7× 1026 s; right: m3/2 = 100 GeV, τ3/2 =1 × 1027 s; improvement of energy resolution?

18

Page 20: GRAVITINO DARK MATTER - Startseite

Hope for the LHC: τ -mass measurement (Ellis, Raklev, Oye ’06)

τ -mass can be measured from mτ = pmeas/βγmeas, slow τ ’s important!Background from muon tracks, accurate measurement of τ -mass possible

γβ0 1 2 3 4 5 6

[G

eV

]1τ∼

m

0

50

100

150

200

250

300

350

400

[GeV]1

τ∼m146 148 150 152 154 156 158 160 162 164

-1E

ven

ts / 0

.2 G

eV

/ 3

0 f

b

0

20

40

60

80

100

120

140

160

180

200 < 0.6γβCut on 0.3 < / ndf 54.1 / 412χ

0.021± 152.485 1τ∼m

0.019± 1.006 1τ∼σ

analysis relevant for sufficiently long lifetimes, such that the τ -lepton leavesthe detector; more work in progress ...

19

Page 21: GRAVITINO DARK MATTER - Startseite

SUMMARY

• Gravitino DM is viable possibility

• Gravitino DM is theoretically motivated: leptogenesis and/or

gauge mediation ...

• Decaying gravitino DM consistent with leptogenesis and BBN

• GALPROP & gravitino DM incompatible with PAMELA &

Fermi, astrophysical sources needed !!

• Sizable excess in gamma-ray spectrum possible, in particular

line at Eγ ≃ m3/2/2. Gravitino DM can be discovered with

Fermi LAT and/or falsified at the LHC !!

20