güçlendirme sistemi FRP.pptx

Embed Size (px)

Citation preview

  • 8/13/2019 glendirme sistemi FRP.pptx

    1/66

    TAIYICI YIMA DUVARLARIN

    FRP LE GLENDRLMES

  • 8/13/2019 glendirme sistemi FRP.pptx

    2/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    3/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    4/66

    FRP kompozit malzemeler tek ynl

    plakalar,kumalar,ubuklar ve ift ynl rtlerolarak retilebilmektedir.

  • 8/13/2019 glendirme sistemi FRP.pptx

    5/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    6/66

    Kompozit glendirme sistemi betonarme

    elemanlara dtan uygulanan bir glendirmesistemidir.

    Harici yaptrmal kompozit sistemler , yapelemanlarnn yk tama kapasitesini ve eilmedayanmn artrr.Ykler epoksi reine yaptrcsvastasyla kompozite aktarlr,bylelikle niform bir

    yk aktarm salanr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    7/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    8/66

    NAAT SEKTRNDE FRPKULLANIMININ AVANTAJLARI

    Tasarsm kolayl Farkl fiziksel deerler iin farkl kompozit malzeme

    kullanma imkanAnti koroziflerdir.

    Yaplarda kullanm altnda uygulama imkan Uygulama ve kullanm kolayl Maliyeti yksek makine ve ekipman gerekmez.

    Her eit yap eleman glendirilmesinde kullanlr. Bakm gerektirmez. Kullanlan btn bileenlerin nceden kalite

    kontrol yaplmtr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    9/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    10/66

    FRP SSTEMNN YAPIYA FAYDALARI Yk tama kapasitesini artrr.

    Eilme dayanmn artrr.

    Durabiliteyi gelitirir. Dinamik ykten gelen malzeme yorulmas direncini

    glendirir.

    Sehimi azaltr.

    l yk arttrmaz, elemann geometrisinideitirmez.

    Esnektir, eitli formlara adapte edilebilir.

  • 8/13/2019 glendirme sistemi FRP.pptx

    11/66

    CFRP PLAKALAR

    Karbon fiber ve epoksi matriksinden oluanplakalar, kolon, kiri, deme ve duvarlarn tamakapasitelerini arttrmak iin harici takviyedonatsdr.Bu plakalar yap elemanlarnn ekmeblgelerine yksek mukavametli epoksi reine ileyaptrlr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    12/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    13/66

    UYGULAMA

    FRP plakalarn yaptrlmasndan nce yzeyhazrlnn doru yaplmas ok nemlidir.

    Beton yzeyi; letans,ya,kir,zayf ksmlar,sva ve

    boyalardan kumlama veya talama gibi mekanikyntemlerden biri kullanlarak temizlenmelidir.Betonyzeyin minumum ekme dayanm 1.5 N/mm2olmaldr.Yzey profili dzgn olmal, kot fark 2

    metre de 5 mm yi gememelidir.

  • 8/13/2019 glendirme sistemi FRP.pptx

    14/66

    Uygulama aamalar:

    stenilen uzunlukta hafif kolay tanabilir rulolardapaketlenen plakalar uygulama yerinde istenilenuzunlukta firesiz kesilir.

    Epoksi reine plakaya ve

    uygulanacak elemana

    2 mm kalnlkta srlr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    15/66

    Plakalar uygun pozisyonda

    tutularak yaptrlr.

    Yaptrldktan sonra zerine

    rulo gezdirilerek sabitlenir.

  • 8/13/2019 glendirme sistemi FRP.pptx

    16/66

    FRP KUMALAR

    FRP kumalar tek ynl veya iki ynl %100 karbon liflerden

    oluur.

    Kolonlarda : Kesme,kayma,eilme dayanmn ve darbe direncini

    arttrr,uzun sreli yk tama zelliini pekitirir.

    Kirilerde : Eilme ve kesme dayanmn arttrr. Duvarlarda : Darbe direncini arttrr,patlamalara kar koruma

    salar.

  • 8/13/2019 glendirme sistemi FRP.pptx

    17/66

    CFRP kuman hazrlanmas

    Temiz bir yzey zerinde CFRP

    kumaa yaptrc emdiriliyor.

  • 8/13/2019 glendirme sistemi FRP.pptx

    18/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    19/66

    UYGULAMA

    FRP kumalarn yaptrlmasndan nce yzey

    hazrlnn doru yaplmas ok nemlidir. Beton yzeyi; letans,ya,kir,zayf ksmlar,sva ve

    boyalardan kumlama veya talama gibi mekanikyntemlerden biri kullanlarak temizlenmelidir.Betonyzeyin minumum ekme dayanm 1.5 N/mm2olmaldr.Keli kesitler en az 10 mm apnda

    yuvarlatlmaldr. Yzey bozukluklar epoki puty ile dzeltilir. Uygun ekilde hazrlanm yzeye epoksi srlr FRP gerilerek yaptrlr, rolu gezdirilerek sabitlenir ve

    epoksi ile iyice doyurulur.

    FRP kuman zerine son kat epoksi uygulanr Koruyucu kaplama yaplacaksa kum serpilir ve daha

    sonra sva veya baka bir uygulama ile ilemtamamlanr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    20/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    21/66

    DZAYN KRTERLER

    Yaptrlacak yzeyin ekme mukavameti min.1,5N/mm2 olmaldr.

    Uygulama yaplacak yzeydeki min. Paspay10 mmolmaldr. Glendirme faktr 2 olmaldr. Yzey profili dzgn olmal kot fark 2 metrede 10 mm yi

    gememelidir.

    Maksimum kat says plakalar iin 3, kumalar iin 5olmaldr. Karbon plaka ile beton arasndaki epoksi kalnl

    sktrmadan sonra min.1,5 mm olmaldr. Kiri uygulamalarnda karbon plakalar arasndaki

    aklk min.(0,2L , 5h) olmaldr. Karbon kuma uygulamasnda keler min.10-15 mm

    apnda yuvarlatlmaldr. Kolon sarglamada bindirme boyu min.200 mm olmaldr. Kolon sarglamada kat says min. 2 olmaldr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    22/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    23/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    24/66

    TAIYICI YIMA DUVARLARIN FRP LEGLENDRLMES

    Fiber takviyeli polimer (FRP) kompozitlerinin ymayaplarn glendirilmesinde kullanm sonzamanlarda hzla artmaktadr. Bu kompozitmalzemeler karbon, cam, aramid fiberleriyle takviyeedilmi reine karmndan oluurlar. Fiberler yk

    tayan elemanlardr, reine karm fiberlerinarasna ykn dalmas salar ve ayrca fiberlerievresel etkenlerden korur. Gnmzde; zelliklemhendislik uygulamalarnda bu trde kompozitmalzemeler avantajlarndan tr kullanlmaktadr.

    Dk oranlarna ramen yksek dayanmgstermeleri, yorulmaya kar olan direnleri,karmak ekillerde uygulanabilirlii gibi avantajlarvardr .

  • 8/13/2019 glendirme sistemi FRP.pptx

    25/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    26/66

    FRP malzemesini uygulamak ok kolaydr, nksadece yapnn yzeyine yaptrlmalarylauygulama tamamlanr. Sakncal ynleri de vardrhalen aratrmakla birlikte: yksek elastisite

    modl, snmede ve yorulmada yetersiz davranolarak saylabilir.

  • 8/13/2019 glendirme sistemi FRP.pptx

    27/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    28/66

    Levha ve dokuma eklinde retilen FRPlerduvaryzeyine epoksi esasl yaptrcyla uygulanr.Epoksi esasl yaptrc srlmeden nce astar

    malzemesi duvar yzeyine uygulanr. Byleceepoksi, FRP ve duvar yzeyi ile olan aderans

    arttrlm olur. Yzey hazrl nemli aamalardanbiridir. Bina sistemi ierisinde deprem srasnda

    davran incelenerek, sistemin eitli yerlerineFRPleruygulanr. ekme ve eilmemukavemetlerini alacak ekilde FRPleryerletirilmelidir. Levha FRPler5 ve 10cmgeniliinde plakalardr, dokumalar tek yndekuvvetli 50 cm geniliinde malzemelerdir. Binaiinde boyutlandrlmas bu esaslara grebelirlenmelidir.

  • 8/13/2019 glendirme sistemi FRP.pptx

    29/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    30/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    31/66

    FRP (Fiber Takviyeli Polimerler) isimli kompozitler

    ile glendirme lkemizde de yaygnlamaktadr.Daha ok karbon fiber (karbon lifi) adyla tannan bu

    malzemeler hafif, yksek mukavemetli, liflerindizilim ynleri deitirilerek mukavemetiayarlanabilen, beton ve eliin giremeyeceiyerlere girebilen, ince, uygulamas hzl ve pratik,korozyona dayankl, uzun mrl yeni nesilmalzemelerdir. Yap kullanm durumundayken deevreye zarar vermeden uygulamas yaplabilir.Uyguland kesitin formuna olumsuz bir etkisiolmaz. Ancak bu malzemelerin retim yntemlerinin

    zorluundan dolay maliyetleri yksektir. Uygulamauzman kiilerin denetiminde ve uzman ustalar ileyaplmaldr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    32/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    33/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    34/66

    FRP uygulanarak glendirilen duvarn yzeyinedaha sonra sva, boya gibi uygulamalar yaplabilir.FRP uygulamasndan 7 gn sonra tam

    mukavemetine ulaacaktr. 7 gnlk zamanda FRPyzey dik gelen UV dalgalarndan korunmaldr. Busrete FRP yzeyine uygulama yaplmamaldr.

  • 8/13/2019 glendirme sistemi FRP.pptx

    35/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    36/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    37/66

    Aseismic retrofitting of unreinforced masonry wallsusing FRP

    Mohamed A. ElGawady*, Pierino Lestuzzi, Marc Badoux

    Swiss Federal Institute of Technology at Lausanne EPFL,Ecole Polytechnique Federal de Lausanne (EPFL-ENAC-IS-IMAC), Lausanne 1015, Switzerlan Received 8September 2004; accepted 20 June 2005 Available online 15September 2005

    Abstract Many of existing unreinforced masonry (URM) buildings are

    seismically vulnerable and require retrofitting. This paperinvestigates in-plane seismic behaviour of URM walls beforeand after retrofitting using fiber-reinforced polymers (FRP).

    Dynamic in-plane tests were carried out on five half-scalespecimens with two different effective moment/shear ratiosnamely 0.7 and 1.4. The specimens were retrofitted on asingle side using different types and structures of FRPs.

  • 8/13/2019 glendirme sistemi FRP.pptx

    38/66

    . The test specimens were subjected to a series of

    synthetic earthquake motions on a uni-axial earthquake

    simulator. The retrofitting technique improved the lateral

    strength and stiffness of the URM walls. Moreover, thefundamental frequency and the initial stiffness of each

    specimen remained approximately constant before and

    after retrofitting. During the test, the slender specimens

    failed in flexural. For specimens failed in flexural, themeasured FRP axial strains showed that the strain

    distributions along the specimens cross-sections areapproximately linear even at failure. Hence, the flexural

    strengths of the specimens were calculated using linear

    elastic approach.

  • 8/13/2019 glendirme sistemi FRP.pptx

    39/66

    The measured lateral resistances of slender specimens

    are approximately 130% of the calculated flexural

    strength. This difference attributed to the difference in

    the nominal ultimate strains of FRPs and the real valuesat failure. The measured axial strains in FRPs during

    this test were approximately 50% of its nominal values.

    In addition, the shear strengths of the squat specimens

    were calculated using two different models. Thecalculated shear strengths approximately range from 99

    to 177% of the measured lateral resistances.

  • 8/13/2019 glendirme sistemi FRP.pptx

    40/66

    1. Introduction Existing unreinforced masonry (URM) buildings constitute a

    significant portion of existing buildings around the world.Recent earthquakes have repeatedly shown the vulnerabilityof URM buildings. Moreover, based on modern design codesmost of the existing URM buildings need to be retrofitted. Forexample, in Switzerland, a recent research [1] carried out ona target area in Basel shows that from 45 to 80% of theexisting URM buildings, based on construction details, will

    experience heavy damage or destruction during a moderateearthquake event. This brought to light the urgent need toimprove and

    develop better methods of retrofitting for existing seismically

    inadequate. The main structural elements that resistearthquakes in these buildings are the old URM walls URMbuildings.

  • 8/13/2019 glendirme sistemi FRP.pptx

    41/66

    Several conventional techniques are available to improveseismic performance of existing URM walls. Surfacetreatments (ferrocement, shotcrete, etc.), grout injections,external reinforcement, and center core are examples of such

    conventional techniques. Several researchers (e.g. [2]) havediscussed the disadvantages of these techniques: availablespace reduction, architecture impact, adding heavy mass,corrosion potential, etc. Modern composite materials offerpromising retrofitting possibilities for masonry buildings and

    present several well-known advantages over existingconventional techniques. A recent literature review for using ofcomposites for retrofitting of URM walls have been presentedin [3]. This paper presents a pioneer dynamic in-plane testscarried out on half-scale single leaf unreinforced masonry

    walls retrofitted with composites (URM-WRC). The objectiveof this study was to compare the seismic behavior of URMwalls before and after retrofitting with composites. Anotherobjective was to examine the ability of existing simpleanalytical models to predict the lateral strength of URM-WRC.

  • 8/13/2019 glendirme sistemi FRP.pptx

    42/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    43/66

    2. Experimental program 2.1. Test specimens The test specimens had two aspect ratios (Fig. 1):

    slender walls and squat walls; also, two mortar typeswere used: weak (M2.5) and strong (M9). In addition,different types of FRP (Table 1) and retrofittingconfiguration (Figs. 2 and 3) were used to retrofit thespecimens. Anchorage failure of the FRP was prevented

    by clamping the FRP ends to specimensfooting andcap beam using steel plates and screw bolts (sinceanchorage problem is out of the scope of this research).Both the cap beam and footing pad were pre-castreinforced concrete. The test walls were tested twice:

    first, the URM specimens were tested, as referencespecimens, till a predefined degree of damage;secondly, these reference specimens were retrofittedusing composites and retested.

  • 8/13/2019 glendirme sistemi FRP.pptx

    44/66

    The focus of this paper is on the comparisons between

    the retrofitted and URM specimens. More details about

    the behavior of the URM specimens are presented in

    [4]. The specimens were retrofitted on a single side only.This way of retrofitting was successfully used in different

    research programs for retrofitting of URM walls using

    composite material (e.g. [5]). Each specimen is

    designated by a name that reflects their characteristics;

    Tables 2 and 3 explain the specimens names and givea complete list of the tested specimens. For instance, L1

    WRAP-G-X means a slender specimen (L) which was

    constructed using mortar type (1) and was retrofitted

    with fabric (WRAP) of glass (G) fiber in a diagonal (X)configuration. Also, Figs. 2 and 3 show summary of the

    tests that were carried out on the specimens.

    It h ld b t d th t i L1 LAMI C I h

  • 8/13/2019 glendirme sistemi FRP.pptx

    45/66

    It should be noted that specimen L1-LAMI-C-I where avirgin URM specimen was upgraded with two verticalplates of CFRP was designed to study the shearresistance of slender URM walls rather to investigatethe effect of using vertical plates as retrofitting ofexisting URM walls. Since, in this specimen and in orderto force a shear failure, the flexural strength of thespecimen was increased with minimal increment in itsshear strength. As such, this specimen herein after isconsidered as a reference specimen. More discussionabout this specimen is published in [6]. Finally, aftertesting of L1-LAMI-C-I and S1-LAMIC- X the CFRPplates were taken off using hammer and chisel. These

    specimens were retrofitted, one more time, using glassfiber and retested again as L1-WRAP-G-X and S1-WRAP-G-F, respectively.

  • 8/13/2019 glendirme sistemi FRP.pptx

    46/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    47/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    48/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    49/66

    2 2 Test set up

  • 8/13/2019 glendirme sistemi FRP.pptx

    50/66

    2.2. Test set-up

    The walls are tested on the uni-axial earthquake

    simulator of the Swiss Federal Institute of Technology in

    Zurich (ETHZ). A test specimen is fixed on a shakingtable measuring 2 m by 1 m. It has a maximum

    displacement of G100 mm and is driven by a 100 kN

    servo-hydraulic

    actuator (Fig. 4). The specimen is connected at its top toa 12-ton substitute mass placed on bearing wheels with

    a low coefficient of friction in the order of 0.5%. This 12-

    ton mass represents approximately the mass of

    approximately 55 m2 of a floor due to 200 mm thick

    reinforced concrete slab, flooring, and live load. At itstop, the specimen is guided with a low friction set-up to

    ensure that out-of-plane displacements are limited.

    More details about the test set-up are available in [4].

  • 8/13/2019 glendirme sistemi FRP.pptx

    51/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    52/66

    2 3 Loading system

  • 8/13/2019 glendirme sistemi FRP.pptx

    53/66

    2.3. Loading system

    A test specimen was constructed on a pre-cast reinforced

    concrete footing. After allowing the specimen to cure (from 3

    to 7 days), the pre-cast reinforced concrete cap beam was

    fixed to the top of the specimen using strong mortar (M20).

    Superimposed gravity load of approximately 30 kN was

    simulated using two external post-tensioning bars. This was

    in addition to 12 kN of self-weight from steel elements at wall

    top (due to the test set-up), reinforced concrete cap beam,and masonry panel weight. This normal force corresponded to

    a stress of 0.35 MPa. During testing of specimens L1-REFE,

    L1-WRAP-G-F and L1-WRAP G-X and due to increase of the

    wall height as result of opening of flexural cracks the post

    tensioning force increased many times; in the next specimenstwo railcar springs were used with the post-tensioning bars.

    These springs pre ent to a certain e tend the

  • 8/13/2019 glendirme sistemi FRP.pptx

    54/66

    . These springs prevent to a certain extend the

    increment in the post-tensioning force. 2.4. Dynamic

    excitations The displacement inputs were based on

    synthetic acceleration time-histories compatiblewithEurocode 8 [7] for rock soil Type A and with a peak

    ground acceleration of 1.6 m/s2 (Fig. 5). The specimens

    were subjected to acceleration histories of increasing

    intensity until failure occurred. The tests started by

    subjected the specimens to an earthquake withacceleration of 10% of the reference earthquake

    acceleration followed by an increment in the

    acceleration of usually 10% of the reference earthquake

    acceleration. For space limitations in this paper, thedetailed test runs are not presented and interested

    reader is referred to [4].

    3 Experimental results

  • 8/13/2019 glendirme sistemi FRP.pptx

    55/66

    3. Experimental results

    In this section, the experimental results of the test

    specimens are discussed in terms of lateral strength, drift,

    maximum strain in composites, and specimen asymmetry.Detailed results regarding URM specimens (i.e.

    specimens without composites) are available in [4]. It

    should be noted that effects of mortar on specimensbehavior were examined during testing the reference

    specimens; the effects were very limited.

  • 8/13/2019 glendirme sistemi FRP.pptx

    56/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    57/66

    3 1 Lateral strength and mode of failure

  • 8/13/2019 glendirme sistemi FRP.pptx

    58/66

    3.1. Lateral strength and mode of failure

    All the composite materials increased the lateral strength by a

    factor ranging from 1.3 to 2.9. Different failure modes

    happened during the test; Fig. 6 shows the test specimens atthe test end. For slender specimens, the full-face retrofitted

    specimens (L1-WRAP-G-F and L2-GRID-G-F) developed

    and under a constant normal force of 57 kN, the retrofitting

    increased the lateral strength by a factor of 2.6 for fabric and

    2.9 for grid. A superposition of the hysteresis loops ofreference slender specimens (L1-REFE and L2-REFE) and

    the corresponding retrofitted specimens (L1-WRAP-G-F and

    L2-GRID-G-F) is presented in Fig. 8. For L1-WRAP-G-F and

    at the test end, the normal force tripled (due to increments of

    wall height as a result of opening of flexural cracks and due tothe absence of the railcar springs); this increment in the

    normal force had insignificant effect on the specimen lateral

    strength.

  • 8/13/2019 glendirme sistemi FRP.pptx

    59/66

    Specimens (L1 WRAP G X and S1 LAMI C X) that

  • 8/13/2019 glendirme sistemi FRP.pptx

    60/66

    Specimens (L1 WRAP-G-X and S1-LAMI-C-X) that

    retrofitted with diagonal shape (X) were less successful.

    The behaviors of both specimens were affected by the

    previous tests, which was carried out on the specimensbefore retrofitting: before retrofitting, L1-WRAP-G-X was

    tested as L1 LAMI-C-I while S1-LAMI-C-X was tested as

    S1- REFE. These testes developed several cracks in

    both specimens. So, the retrofitting could be considered

    as retrofitting of URM wall that have been severelydamaged during a recent real earthquake event. For L1-

    WRAP-G-X and at failure, the FRP failed at the

    specimen mid-height due to shear and flexural cracks,

    which had developed first a rockingmode withmasonrycrushing at toes and fiber rupture at heals (Fig. 7); see

    the video in Appendix A in the online version of this

    paper.

    . For the reference specimens a rocking mode of failure was

  • 8/13/2019 glendirme sistemi FRP.pptx

    61/66

    . For the reference specimens a rocking mode of failure was

    observed. However, in case of retrofitted specimens the

    failure happened at level corresponding to the first brick

    course and this was not always the case for the reference

    specimens [4]. For both retrofitted specimens through mortarjoints. For S1-LAMI-C-X and during the test, one plate failed

    due to anchorage failure at foundation level since no steel

    plates (which were used in the other specimens to prevent

    anchorage failure) were used in this specimen. Both

    retrofitting configurations enhanced the lateral resistance by afactor of 1.5 for L1-WRAP-G-X and 1.3 for S1-LAMI-C-X. A

    superposition of the hysteresis loops of the reference

    specimens (L1-REFE and S1-REFE) and the corresponding

    retrofitted specimens (L1-WRAP-GX and S1-LAMI-C-X) is

    presented in Fig. 10. It should be noted that the cracks, which

    were exist in the specimens before the diagonal retrofitting

    influenced the results.

    Hence it is not recommended to use the diagonal

  • 8/13/2019 glendirme sistemi FRP.pptx

    62/66

    . Hence, it is not recommended to use the diagonalconfiguration as the only retrofitting scheme in the caseof real URM wall, which suffers sever damage after areal earthquake. Recently [13] a similar conclusion has

    been experimentally explored in static cyclic tests onURM walls retrofitted using diagonal strips of carbonfiber. Finally, as mentioned, the goal of testing specimenL1-LAMI-C-I was not to examine the effect of retrofitting;since, in such retrofitting configuration shear crackswere expected to occur. However, it was interested tocompare the hysteresis of this specimen (L1 LAMI-C-I)and the corresponding reference specimen. Fig. 11shows such comparison; as expected this retrofittingsystem changed the wall mode of failure (from rockingto shear) and increased the specimen lateral strength bya factor of 1.75. Fig. 12 shows step-cracks passingthrough bed and head joints during the test.

  • 8/13/2019 glendirme sistemi FRP.pptx

    63/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    64/66

  • 8/13/2019 glendirme sistemi FRP.pptx

    65/66

    Var olan birok glendirilmemi yma duvarlar sismik

  • 8/13/2019 glendirme sistemi FRP.pptx

    66/66

    g y olarak savunmasz ve glendirme gerektirir. Bu makaledede glendirilmemi duvarlarn (URM) fiber polimerle (FRP)glendirildikten sonraki ve nceki sismik davrann inceler.5 fakl numuneye 2 farkl etki ve moment/kesme kuvveti oran

    ile yle ki 0,7 ve 1,4 olarak birtakm testler uygulanmtr.Numuneler tek tarafndan fakl tip ve yaplarda FRPkullanlarak glendirilmitir. Ve bu numuneler birtakm yapaydeprem hareketlerine tabi tutulmutur. Tek ynl depremsimlatr. Ve bu ekilde glendirme teknikleriiyiletirilmitir.

    KAYNAKLAR

    http://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.html

    http://www.sciencedirect.com/science/article/pii/S0950061807002310

    kten, M., 2003. Betonarme Kirilerin Karbon ElyaflaGlendirilmesi zerine Deneysel Bir nceleme, YksekLisans Tezi, .T.. Fen Bilimleri Enstits, stanbul.

    http://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.sciencedirect.com/science/article/pii/S0950061807002310http://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.htmlhttp://www.carbonelyaf.com/uygulamalarimiz/karbon-elyaf-fiber-g%C3%BC%C3%A7lendirme.html