8
8/1/2015 Guru Hargobind Thermal Power Plant, Lehra Mahobbat http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 1/8 Home Registration Challenge Projects SIF Summer School State University Award Blog Collaborations 0 creativity, collaboration, compassion Login | Register Username:* Password:* Home Academic Projects Guru Hargobind Thermal Power Plant, Lehra Mahobbat Guru Hargobind Thermal Power Plant, Lehra Mahobbat Student Team/ Author : Ajaypal Bansal Guide By : Er. D.S. Bhullar Degree : Mechanical Engg College : Guru Gobind Singh College of Engineering & Technology, Talwandi Saboo My Self Ajaypal Bansal 1 PROJECT REPORT ON SIX MONTHS INDUSTRIAL TRAINING AT G.H.T.P. LEHRA MOHABBAT BATHINDA Submitted to PUNJAB TECHNICAL UNIVERSITY, JALANDHAR In partial fulfillment of the requirements for the award of the Degree of Bachelor of Technology in Mechanical Engineering By AJAYPAL BANSAL Univ.Roll No. 100361130198 Semester: 7th Under the guidance of Academic Tutor Industrial Tutor Er.Yadwinderpal Sharma Er.D.S.Bhullar (TRAINING COORDINATOR) (A.S.E./TRAINING) Department of Mechanical Engineering GURU GOBIND SINGH COLLEGE OF ENGINEERING & TECHNOLOGY TALWANDI SABO,BATHINDA (PUNJAB) 2 GURU GOBIND SINGH COLLEGE OF ENGINEERING & TECHNOLOGY, TALWANDI SABO (BATHINDA) CERTIFICATE OF ORIGINALITY OF WORK I am Ajaypal Bansal Univ. Roll No. 100361130198 student of Bachelor in Technology Branch Mechanical 4th Year, have undergone the six month industrial training at G.H.T.P. LEHRA MOHABBAT BATHINDA.I have done the following project during my training period: 1. Methods to remove failure in Boiler Tubes. I hereby declare that the work is an original one and has not been submitted earlier to this university or any other institution for fulfillment of the requirement of a course of study. Ajaypal Bansal Univ. Roll No.: 100361130198 Branch: Mechanical Engg. Semester: 7th G.G.S.C.E.T. Talwandi Sabo (Bathinda) Er.Yadwinderpal Sharma (Academic Tutor) 3 The six month industrial training at GURU HARGOBIND THERMAL POWER PLANT, LEHRA MOHABBAT (BATHINDA) commenced from 04June, 2013 to 30Nov, 2013.It was a very knowledgeable experience for me under the able guidance of the employees of various departments at GHTP, Lehra Mohabbat.I am thankful to the incharge of the training cell Er. D.S. BHULLAR (A.S.E./TRAINING) Who made great efforts to make my training informative. I am also thankful for the very kind cooperation of the employees of the various cells who forwarded their best hand to make my training interesting and knowledgeable. My heartiest thanks go to Er.BEANT SINGH Er.PARAMJIT SINGH Er.BALJEET SINGH BEDI Er.INDERJIT SINGH Er.JASKARAN SINGH Ajaypal Bansal ACKNOWLEDGEMENT 4 ABOUT THE TRAINING Punjab Technical University, Jalandhar, PTU’s curriculum for B.Tech. specifies the completion of the six months project work in some industry, in partial fulfillment of the requirements for the award of the degree of Bachelor in Technology in Mechanical Engineering. Towards the fulfillment of the requirement of the six month industrial training, a first in any of the Indian Universities,m our institutionGuru Gobind Singh College of Engg. & Tech., Talwandi Sabo, (Bathinda) – Pb. deputed me for my industrial training during the seventh semester to GURU HARGOBIND THERMAL POWER PLANT, LEHRA MOHABBAT, BATHINDA. I joined G.H.T.P. As a trainee on 04062013 and I am working here for my industrial projects under the guidance of Er.Jaskaran Singh (AE/BMC). My major project here is, Methods to remove failure in Boiler Tubes. With the active help of Training Department and even the people at the senior most level of the plant. I could achieve these tasks quite satisfactorily and finished with all these projects by (30112013). 5 ï· TECHNICAL DETAILS AND FEATURES OF SYSTEM ï· PLANT OVERVIEW ï· INTRODUCTION TO THERMAL POWER PLANT ï· BY PASS SYSTEM ï· TURBINE LUB OIL SUPPLY SYSTEM ï· GOVERNING SYSTEM ï· GENERAL ASPECTS OF BOILER ï· COAL PULVERISING SYSTEM ï· PLANT OVERVIEW DESCRIPTION ï· VARIOUS CYCLES INVOLVED IN POWER GENERATION ï· WORKING OF THERMAL POWER PLANT AT G.H.T.P. ï· DEMINERALISED WATER PLANT ï· COOLING TOWERS ï· INSTRUMENT/ SERVICE AIR COMPRESSORS ï· COAL HANDLING PLANT ï· ASH HANDLING SYSTEM ï· ELECTROSTATIC PRECIPITATOR (ESP) ï· HYDROGEN GAS PLANT ï· DETAIL OF PROJECT CONTENTS 6 TECHNICAL DETAILS AND FEATURES OF SYSTEM Part1: Site Details 1.0 Site Features ï· Name of Village V.P.O. Lehra Mohabbat ï· Name of District Bathinda ï· Nearest Town and Distance Rampura Phul8 Kms ï· Nearest Railway Station and Distance Lehra Mohabbat 1.5 Kms ï· Nearest Airport and Distance Amritsar190 Kms ï· Ultimate Potential of The Site(MW) 920 MW 2.0 Land Total area of land available at site for ï· Power Plant 774 Acres ï· Ash Pond 160 Acres ï· Township 91 Acres 3.0 Fuel ï· Type Bituminous coal and oil ï· Source Coal India Ltd. And Indian Oil Corporation ï· Distance Appx. 1500 Kms for coal and 350 Kms for oil ï· Fuel Availability Through Rail 7 4.0 Ash Disposal Proposed ï· Method of Disposal Dry and Wet ï· Proposal for Utilisation (1) Use in cement plant (2) Use in brick plant 5.0 Power Evacuation Proposal To main grid of PSEB through 8 nos. 220 KV Lines. 8 PLANT OVERVIEW Conveyer belt FD Fan Heat released Continue On Next Page COAL PLANT BOILER BUNKERS PULVERISING MILLS BOILER BURNER COMBUSTION CLEARED FUEL GAS PASS TO CHIMNEY VIA INDUCED DRAUGHT FAN COAL BURN BOILS WATER WHICH GIVES STEAM STEAM IS SUPERHEATED PASSES TO H.P TURBINE Dust Ash 9 CONTINUED FROM THE LAST PAGE: Steam Power Lines TURBINE BLADES CAUSES TURBINE TO ROTATE STEAM IS RETURNED TO BOILER FOR REHEATING TIRBINE SHAFT IS COMPLED TO ROTOR OF GENERATOR GENERATOR ROTOR IS ENCLOSED IN STATOR ELECTRICITY IS PRODUCED AT STATORWINDINGFROM WHICH IT GOES TO TRANSFORMER EXHAUSTED STEAM ENERGY CONDENSER USED AGAIN IN BOILER WATER IS PUMPED HEATED IN LP HEATERS DEAERATED IN DEAERATOR PRESSURE INCREASES BY BOILER FEED PUMPS HEATED IN HP HEATERS ECONOMIZER STEAM DRUM STEAM IS HEATED IN SUPERHEATER HP TURBINE POWER IS STEPED UP BY TRANSFORMER GRID SYSTEMS 10 INTRODUCTION TO THERMAL POWER PLANT Fig 1.1 shows basic block diagram of the thermal power plant. It basically consists of three parts viz., Turbine, Generator and Boiler, which are further divided as shown in the figure. Fig 1.1 Block Diagram of Thermal Power Plant Steam Turbine Specifications MW: 250 MW Speed: 3000rpm Steam inlet Pressure: 147atm Steam outlet pressure: 0.1033atm Steam Search Projects News & Announcement 21 May, 2015 : Summer School 2015 24 Apr, 2015 : Three innovators from GYTI Awards 2014 were selected for the President's scholars in residence program 21 Apr, 2015 : 35th Shodh Yatra in Tripura 13th to 18th May, 2015 View All Message of Appreciation I am extremely happy to see an initiative of SRISTI (Society for Research and Initiatives for Sustainable Technologies and Institutions... By Dr. A.P.J. Abdul Kalam read more Collaborator Techpedia Peru Follow Us

Guru Hargobind Thermal Power Plant, Lehra Mahobbat

Embed Size (px)

DESCRIPTION

project report

Citation preview

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 1/8

    Home Registration Challenge Projects SIF SummerSchool State University Award Blog Collaborations

    0

    creativity,collaboration,compassion

    Login|Register

    Username:*

    Password:*

    Home AcademicProjects GuruHargobindThermalPowerPlant,LehraMahobbat

    GuruHargobindThermalPowerPlant,LehraMahobbat

    StudentTeam/Author:AjaypalBansal

    GuideBy:Er.D.S.Bhullar

    Degree:MechanicalEngg

    College:GuruGobindSinghCollegeofEngineering&Technology,TalwandiSaboo

    MySelfAjaypalBansal

    1PROJECTREPORTONSIXMONTHSINDUSTRIALTRAININGATG.H.T.P.LEHRAMOHABBATBATHINDASubmittedtoPUNJABTECHNICALUNIVERSITY,JALANDHARInpartialfulfillmentoftherequirementsfortheawardoftheDegreeofBachelorofTechnologyinMechanicalEngineeringByAJAYPALBANSALUniv.RollNo.100361130198Semester:7thUndertheguidanceofAcademicTutorIndustrialTutorEr.YadwinderpalSharmaEr.D.S.Bhullar(TRAININGCOORDINATOR)(A.S.E./TRAINING)DepartmentofMechanicalEngineeringGURUGOBINDSINGHCOLLEGEOFENGINEERING&TECHNOLOGYTALWANDISABO,BATHINDA(PUNJAB)2GURUGOBINDSINGHCOLLEGEOFENGINEERING&TECHNOLOGY,TALWANDISABO(BATHINDA)CERTIFICATEOFORIGINALITYOFWORKIamAjaypalBansalUniv.RollNo.100361130198studentofBachelorinTechnologyBranchMechanical4thYear,haveundergonethesixmonthindustrialtrainingatG.H.T.P.LEHRAMOHABBATBATHINDA.Ihavedonethefollowingprojectduringmytrainingperiod:1.MethodstoremovefailureinBoilerTubes.Iherebydeclarethattheworkisanoriginaloneandhasnotbeensubmittedearliertothisuniversityoranyotherinstitutionforfulfillmentoftherequirementofacourseofstudy.AjaypalBansalUniv.RollNo.:100361130198Branch:MechanicalEngg.Semester:7thG.G.S.C.E.T.TalwandiSabo(Bathinda)Er.YadwinderpalSharma(AcademicTutor)3ThesixmonthindustrialtrainingatGURUHARGOBINDTHERMALPOWERPLANT,LEHRAMOHABBAT(BATHINDA)commencedfrom04June,2013to30Nov,2013.ItwasaveryknowledgeableexperienceformeundertheableguidanceoftheemployeesofvariousdepartmentsatGHTP,LehraMohabbat.IamthankfultotheinchargeofthetrainingcellEr.D.S.BHULLAR(A.S.E./TRAINING)Whomadegreateffortstomakemytraininginformative.Iamalsothankfulfortheverykindcooperationoftheemployeesofthevariouscellswhoforwardedtheirbesthandtomakemytraininginterestingandknowledgeable.MyheartiestthanksgotoEr.BEANTSINGHEr.PARAMJITSINGHEr.BALJEETSINGHBEDIEr.INDERJITSINGHEr.JASKARANSINGHAjaypalBansalACKNOWLEDGEMENT4ABOUTTHETRAININGPunjabTechnicalUniversity,Jalandhar,PTUscurriculumforB.Tech.specifiesthecompletionofthesixmonthsprojectworkinsomeindustry,inpartialfulfillmentoftherequirementsfortheawardofthedegreeofBachelorinTechnologyinMechanicalEngineering.Towardsthefulfillmentoftherequirementofthesixmonthindustrialtraining,afirstinanyoftheIndianUniversities,mourinstitutionGuruGobindSinghCollegeofEngg.&Tech.,TalwandiSabo,(Bathinda)Pb.deputedmeformyindustrialtrainingduringtheseventhsemestertoGURUHARGOBINDTHERMALPOWERPLANT,LEHRAMOHABBAT,BATHINDA.IjoinedG.H.T.P.Asatraineeon04062013andIamworkinghereformyindustrialprojectsundertheguidanceofEr.JaskaranSingh(AE/BMC).Mymajorprojecthereis,MethodstoremovefailureinBoilerTubes.WiththeactivehelpofTrainingDepartmentandeventhepeopleattheseniormostleveloftheplant.Icouldachievethesetasksquitesatisfactorilyandfinishedwithalltheseprojectsby(30112013).5TECHNICALDETAILSANDFEATURESOFSYSTEMPLANTOVERVIEWINTRODUCTIONTOTHERMALPOWERPLANTBYPASSSYSTEMTURBINELUBOILSUPPLYSYSTEMGOVERNINGSYSTEMGENERALASPECTSOFBOILERCOALPULVERISINGSYSTEMPLANTOVERVIEWDESCRIPTIONVARIOUSCYCLESINVOLVEDINPOWERGENERATIONWORKINGOFTHERMALPOWERPLANTATG.H.T.P.DEMINERALISEDWATERPLANTCOOLINGTOWERSINSTRUMENT/SERVICEAIRCOMPRESSORSCOALHANDLINGPLANTASHHANDLINGSYSTEMELECTROSTATICPRECIPITATOR(ESP)HYDROGENGASPLANTDETAILOFPROJECTCONTENTS6TECHNICALDETAILSANDFEATURESOFSYSTEMPart1:SiteDetails1.0SiteFeaturesNameofVillageV.P.O.LehraMohabbatNameofDistrictBathindaNearestTownandDistanceRampuraPhul8KmsNearestRailwayStationandDistanceLehraMohabbat1.5KmsNearestAirportandDistanceAmritsar190KmsUltimatePotentialofTheSite(MW)920MW2.0LandTotalareaoflandavailableatsiteforPowerPlant774AcresAshPond160AcresTownship91Acres3.0FuelTypeBituminouscoalandoilSourceCoalIndiaLtd.AndIndianOilCorporationDistanceAppx.1500Kmsforcoaland350KmsforoilFuelAvailabilityThroughRail74.0AshDisposalProposedMethodofDisposalDryandWetProposalforUtilisation(1)Useincementplant(2)Useinbrickplant5.0PowerEvacuationProposalTomaingridofPSEBthrough8nos.220KVLines.8PLANTOVERVIEWConveyerbeltFDFanHeatreleasedContinueOnNextPageCOALPLANTBOILERBUNKERSPULVERISINGMILLSBOILERBURNERCOMBUSTIONCLEAREDFUELGASPASSTOCHIMNEYVIAINDUCEDDRAUGHTFANCOALBURNBOILSWATERWHICHGIVESSTEAMSTEAMISSUPERHEATEDPASSESTOH.PTURBINEDustAsh9CONTINUEDFROMTHELASTPAGE:SteamPowerLinesTURBINEBLADESCAUSESTURBINETOROTATESTEAMISRETURNEDTOBOILERFORREHEATINGTIRBINESHAFTISCOMPLEDTOROTOROFGENERATORGENERATORROTORISENCLOSEDINSTATORELECTRICITYISPRODUCEDATSTATORWINDINGFROMWHICHITGOESTOTRANSFORMEREXHAUSTEDSTEAMENERGYCONDENSERUSEDAGAININBOILERWATERISPUMPEDHEATEDINLPHEATERSDEAERATEDINDEAERATORPRESSUREINCREASESBYBOILERFEEDPUMPSHEATEDINHPHEATERSECONOMIZERSTEAMDRUMSTEAMISHEATEDINSUPERHEATERHPTURBINEPOWERISSTEPEDUPBYTRANSFORMERGRIDSYSTEMS10INTRODUCTIONTOTHERMALPOWERPLANTFig1.1showsbasicblockdiagramofthethermalpowerplant.Itbasicallyconsistsofthreepartsviz.,Turbine,GeneratorandBoiler,whicharefurtherdividedasshowninthefigure.Fig1.1BlockDiagramofThermalPowerPlantSteamTurbineSpecificationsMW:250MWSpeed:3000rpmSteaminletPressure:147atmSteamoutletpressure:0.1033atmSteam

    SearchProjects

    News&Announcement

    21May,2015:SummerSchool2015

    24Apr,2015:ThreeinnovatorsfromGYTIAwards2014wereselectedforthePresident'sscholarsinresidenceprogram

    21Apr,2015:35thShodhYatrainTripura13thto18thMay,2015

    ViewAll

    MessageofAppreciation

    I am extremely happy to seeaninitiativeofSRISTI(SocietyforResearchandInitiativesforSustainableTechnologiesandInstitutions...ByDr.A.P.J.AbdulKalam

    readmore

    Collaborator

    TechpediaPeru

    FollowUs

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 2/8

    Temperature:535CCoolingwatertemperature:33CThermalPowerPlantTurbineGeneratorBoilerSteamTurbineStatorRotorDVARHPTLPTIPT11DescriptionItisasingleshaftmachinewithseparateHP(HighPressure),IP(IntermediatePressure)andLP(LowPressure)module.HPandIPsectionsaresingleflowcylinderswithHP&LPflowsinoppositedirectionsandLPsectionisadoubleflowcylinder.Therotorsofturbineandgeneratorarecoupledwithrigidcoupling.HPandIPcylindersarecontrolledbythrottlecontrolgoverning.Theturbineissupportedby3bearingsoneeachforLP,HPandIPsections.Allvalvesareactuatedbyindividualhighpressureelectrohydraulicactuatorsatanoilpressureof160bar.Turbinehasahighpressureelectrohydraulicgoverningsystem,whichcontrolsspeedandoutputbyanelectricsystem.Aclosedcircuitoilsystemisprovidedforlubricatingandcoolingthebearings.Forcontroloilpurpose,separatehighpressureoilsystemisprovided.Thehighpressuresuppliedbyliftingoilpumppreventsmetaltometalcontactofbearingsduringstartupandshutdown.GeneratorSpecificationsKVA:147060StatorCurrent:8086AKW:250000RotorVolts:364VPowerfactor:0.98lagRotorCurrent:819.5ASpeed:3000rpmInsulation:FclassNo.ofphases:3Cooling:CACWConnection:YOverspeed:10%maxFrequency:50HzStatorVolts:10500VDescriptionThetwopolegeneratorusesdirectaircoolingfortherotorwindingandindirectcoolingforthestatorwinding.Thelossesintheremaininggeneratorcomponents,suchasironlosses,windagelossesandstraylossesarealsodissipatedthroughair.ThemaincomponentsofGeneratorareasfollows:1.Stator:Statorframe,Statorcore,Statorwinding,Statorendcovers2.Rotor:Rotorshaft,Rotorwindings,Rotorretainingrings,Fieldconnections3.Bearings124.AirfiltersThefollowingadditionalauxiliariesarerequiredforgeneratoroperation:1.Oilsupplysystem2.ExcitationsystemExcitationSystemThebrushlessDCexcitationsystemusedinthisplantconsistsofthefollowingmaincomponents:1.Rectifierwheel2.Threephasemainexciter3.Threephasepilotexcitercooler4.MeteringandsupervisoryequipmentSteamCycleTheoryThepowerstationoperatesusingaclosedsteampowercycle,wherewaterundergoesvariousthermodynamicprocessesinacycle.Fig.1.2showsthesimplifieddiagramofthesteamplant,showingtheessentialelementsoftheplant.Onehalfofthecycleconsistsoftheboileri.e.steamgeneratoranditsauxiliaries.Theotherhalfi.e.theturbinecycleconsistsofturbine,generator,condenser,feedpumpandfeedwaterheaters.13Fig1.2SimplifiedPowerplantcycleFirstweconsidertheboilerplantinvolvedinthecycle.Feedwaterissuppliedtotheboilerdrumthrougheconomizer,wherewaterisboiledandconvertedintodrysaturatedsteam.ThisdrysteamisfurthersuperheatedinthesuperheaterandthenfedtotheHPcylinderthroughmainsteamlinesviaEmergencyStopValvesandControlValves.Thesteamexpandsintheturbinegivingupheatenergy,ahighproportionofwhichisconvertedintoworkenergyontheturbineshaft.Theshaftturnsanelectricalgeneratorwhichproduceselectricpower.SteamleavingtheHPcylindersreturnstotheboiler,whereitisreheated.ThereheatedsteamisDCONDENSERHOTWELLLPHDeaeratorBFPHPHHPTLPTIPTGBoilerSuperheaterReheaterEconomiser14suppliedtotheIPcylinderthroughhotreheatlinesviainterceptorvalvesandcontrolvalves.AfterdoingworkonIProtor,thesteamexhaustedfromIPcylinderisdirectlyfedthroughcrossaroundandcrossoverpipestoLPcylinder.FinallythesteamexhaustedbyLPcylindergoestocondenser.TheshaftsofHPIPLPandgeneratorareconnectedinseries,sogeneratorreceivesthemechanicalpoweraddedbyallthethreecylinders.Inthecondenser,whichisalargesurfacetypeheatexchanger,thesteamiscondensedbytransferringitslatentheatofevaporationtothecoolingwater(KW).Thesteamhavingbeencondensedinthecondenserisnowintheformofcondensateatverylowpressureandsaturationtemperature.Thiscondensateispumpedbycondenserextractionpumpfromcondenserhotwellandpassedthroughthelowpressureregenerativefeedheatingsystemanddeaerator(directcontactheatexchanger)toincreasethetemperatureofwaterandremovedissolvedgasessuchasO2andCO2toformfeedwatersuitableforboiler.Boilerfeedpumpsucksfeedwaterfromdeaeratorandpumpstoboilerdrumviahighpressureregenerativefeedheatingsystem(HPheater).Inmodernregenerativecycle,usedinthisplant,someofthesteampassingthroughtheturbinecylinderisbledfromaseriesofextractionbeltslocatedafterselectedmovingbladestagesandfedtothecondensateheater(LP)andfeedwaterheaters(HP),whichareofsurfacetypeheatexchangers.TheBFPincreasesthefeedwaterpressuretoalevelinexcessofthedrumpressure,toprovideforthepressurelossintheboilercircuitandHPheatingtrain.Thecycleisnowcompleted.TurbineEfficiencyTheefficiencyofturbineisgivenbythefollowingformula:or,AcomparisonofactualandisentropicexpansionsisillustratedinFig.1.3(Mollierdiagram).Thedeviationofactualexpansionlinefromisentropicexpansionisduetolossesor15irreversibilitycorrespondingtoanincreaseinentropy.FromFig.1.3wecanseethatforanexpansionbetweentwopressures,thegreatertheentropyrise(morelosses),thelessenergythereisavailableforwork.Toreducethelossesandtoincreasetheavailableenergy,turbinesareconstructedwithspecialdesignfeatures.P1AHAActualP2IsentropicExpansionExpansionHBHCEntropySFig.1.3ComparisonofActualExpansionwithIsentropicExpansioninTurbineMainComponentsofTurbineTheturbineisatandemcompoundmachinewithHP,IPandLPparts.TheHPandIPpartsaresingleflowcylindersandtheLPpartisadoubleflowcylinder.Theindividualturbinerotorsandthegeneratorrotorareconnectedbyrigidcouplings.TheHPcylinderhasathrottlecontrol.Theinitialsteamisadmittedbeforethebladingbytwocombinedmainsteamstopandcontrolvalves.ThelinesleadingfromtheHPexhaustbranchestothereheaterareprovidedwithswingcheckvalveswhichpreventhotsteamfromthereheaterflowingbackintotheHPturbine.EnthalpyH16ThesteamcomingfromthereheaterispassedtotheIPpartviatwocombinedreheatstopandcontrolvalves.CrossaroundpipesconnecttheIPandLPcylinders.Bladesarearrangedatseveralpointsoftheturbine.Themaincomponentsoftheturbineare:1)Innerandoutercasing2)Fixedbladesordiaphragms3)Rotorwithmovingblades,shaftandcoupling4)ShaftGlandsandBladeSealingStrips5)Bearings6)Valves7)Mainoilpumpetc.HPCasingsTheoutercasingoftheHPturbineisofthebarreltypeandhasneitheranaxialnoraradialflange.Thispreventsmassaccumulationswithhighthermalstresses.Thealmostperfectrotationalsymmetrypermitsmoderatewallthicknessesofnearlyequalstrengthatallsections.Theinnercasingisaxiallysplitandkinematicallysupported.Asthepressuredifferenceacrossthewallofinnercasingislow,thehorizontalflangeandconnectionboltscanbekeptsmall.Thebarreltypecasingpermitsflexibilityofoperationintheformofshortstartuptimesandahighrateofchangeofloadevenathighinitialsteamconditions.IPCasingsTheIPpartisalsoofsingleflowconstruction.Attachedintheaxiallysplitoutercasingisaninnercasingsupportedkinematicallyandtakingtheguideblades.Thereheatedsteamisadmittedtotheinnercasingthroughthetopandbottomcenterofthecasing.Thearrangementofaninnercasingconfinesthehighsteaminletconditionstotheadmissionbranchofthecasing,whilethejointoftheoutercasingisonlysubjectedtothelowerpressureandlowertemperatureattheexhaustoftheinnercasing.17LPCasingsThecasingofthedoubleflowLPcylinderisofthreeshelldesign.Theshellsareaxiallysplitandofrigidweldedconstruction.Theinnershelltakingthefirstrowsofguidebladesisattachedkinematicallyinthemiddleshell.Independentoftheoutershell,themiddleshellissupportedatfourpointsonlongitudinalbeams.Tworingscarryingthelastguidebladerowsarealsoattachedtothemiddleshell.BladingTheentireturbineisprovidedwithreactionblading.ThemovingbladesoftheHPandIPpartsandthefrontrowsoftheLPpartwithinvertedTrootsandshroudingaremilledfromthesolid.ThelaststagesoftheLPpartconsistoftwisted,dropforgedmovingbladeswithfirtreerootsinsertedincorrespondinggroovesoftherotor.HighlystressedguidebladesoftheHPandIPpartswithinvertedTrootsandshroudingaremachinedfromonepiecelikethemovingblades.TheotherguidebladeshaveinvertedLrootswithrivetedshrouding.ThelastthreestagesoftheLPturbineareguidebladerowsoffabricatedconstruction.BearingsTheHProtorissupportedbytwobearings,adoublewedgejournalbearingatthefrontendoftheturbineandacombinedjournalandthrustbearingdirectlyadjacenttothecouplingwiththeIProtor.TheIPandLProtorshaveajournalbearing

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 3/8

    eachattheendoftheshaft.Thecombinedjournalandthrustbearingincorporatesaselfadjustingdoublewedgejournalbearingandathrustbearingwhichtakesupresidualthrustfrombothdirections.Thebearingtemperaturesaremeasuredbythermocouplesinthelowershelldirectlyunderthewhitemetallining.ShaftGlandsandBladeSealingStripsAllshaftglands,sealingthesteaminthecylindersagainstatmosphereareaxialflowlabyrinths.TheyconsistofalargenumberofthinsealingstripswhichintheHPandIPpartsarealternatelycaulkedintogroovesintheshaftsandsurroundingsealingrings.ThesealingstripsintheLPpartareonlycaulkedintothesealingrings.Theseringsaresplitintosegmentswhichare18forcedradiallyagainstprojectionbyhelicalspringsandareabletoyieldintheeventofrubbing.Sealingstripsofsimilardesignarealsousedtosealtheradialbladetipclearances.ValvesTheHPturbineisfittedwithtwoinitialsteamstopandcontrolvalves.Astopandacontrolvalvewithstemsarrangedatrightanglestoeachotherarecombinedinacommonbody.TheIPturbinehastwocombinedreheatstopandcontrolvalves.Thereheatstopvalvesarespringloadedsingleseatvalves.Thecontrolvalves,alsospringloaded,havediffusers.Thecontrolvalvesoperateinparallelandarefullyopenintheupperloadrange.Inthelowerloadrange,theycontrolthesteamflowtotheIPturbineandensurestableoperationevenwhentheturbosetissupplyingonlythestationload.Allvalvesareactuatedbyindividualoilhydraulicservomotors.TurbineMaterialsDesignRequirementsThesteamturbineischaracterizedasahighspeedrotatingmachine.Therotatingpartsaresubjectedtohighstressescausedbycentrifugalforcesaswellashightemperaturecyclicload.Thestaticpartsarealsohighlystressedduetosteampressuredropaswellashightemperature.cyclicload.Hencetocounteractthesestressesunderchangingoperatingconditions,theselectionofsuitablematerialisvitalinturbinedesign,particularlycomponentsintemperaturerange4500Candabove.ThemajorcomponentsworkingincreeprangeareHPandIPsteamchests,valves,casings,rotors,diaphragms,bladenozzles,boltsandsteamadmissionpiping.Also,thecomponentsworkingunderlowtemperaturezone(LPturbine)arehighlystressedduetoitslargesizeandfacedwithproblemslikecorrosionanderosionduetowetsteam.Metallurgicalconsiderationsarealsoofutmostimportanceintheselectionofmaterialsinordertohavegreaterreliabilityandgoodserviceduringoperation19CriteriaforSelectionofMaterialsTurbinematerialsareselectedonthebasisoffollowingconsiderations:Physicalpropertiesa.Thermalcoefficientofexpansionb.Thermalconductivityc.Modulusofelasticityd.Poisonsratioe.DensityMechanicalpropertiesa.Hotyieldb.Creepandrupturec.Relaxationpropertiesd.Cyclicloadingbehaviore.Fatiguebehaviorf.Fracturetoughnessg.Rateofcrackgrowthh.ResistancetoscalingThephysicalpropertiesareimportantforselectionofmaterialforthecomponentsworkingatelevatedtemperature.Thethermalconductivityismoreimportantforquickdissipationofheatincomponentsinordertominimizethermalstresses.Thermalcoefficientofexpansionandthemodulusofelasticityplayanimportantroleininducingthermalstressesandensuringthedesignclearanceandtheminimumvaluesarefavourable.Themechanicalpropertiesarenowdiscussedwithsomedetail.HotyieldThehotyieldistakenintoconsiderationfordesignforthosecomponentsthatworkatelevatedtemperaturebutnotinthecreeprange.Thehotyieldisdeterminedfromthestressstrainsrelationshipat6500C.Thecomponentsaredesignedforstressoccurringat0.2%strain.Thehotyieldofsteeldecreaseswithanincreaseoftemperature.20CreepandRupturePropertiesThegradualdeformationundertheactionofconstantloadtestiscalledcreepandsoaconstantloadtestiscalledCreepTest.Theconventionalstressi.e.,loaddividedbyinitialcrosssectioniscalledasCreepStresswhereasthegradualstrainiscalledasCreepStrain.Therupturetestisbasicallysimilartocreeptestwiththeexceptionthatitisalwayscarriedoutuptothefailureofthematerial.Thestressrupturetestmeasurestheeffectoftemperatureonthelongtimeloadsustainingcharacteristics,i.e.thetimetocausefailureatagivennominalstressforaconstanttemperature.Thestressrequiredforcausing1%creepis100,000hoursandcorrespondingrupturestressareconsideredtoevaluatematerialbehaviorofthesteamturbinecomponents.StressRelaxationInsomehightemperaturecomponentsthestressdoesnotremainconstantbutdecreaseswithtimeatelevatedtemperatureduetocreep.Therelaxationofstressinboltedjointsmayleadtoloosejointsandsubsequentleakagewhichrequiresretighteningofbolts.Similarly,duetostressrelaxation,theshrunkfittedassemblies(e.g.discrotoronshaft)willbecomeloose.So,thematerialselectedfortheseapplicationsmusthavehighstressrelaxationresistance.Itisthedatarequiredfordesigningofboltsandflanges,whichisgeneratedupto30,000hoursatdifferenttemperatures.ResistancetoScalingThecomponentsworkingatelevatedtemperaturemaybesubjecttoscaleformation.Excessivescalingofcomponentscarryinghighpressuresteamcansignificantlyreducetheeffectivethickness,sothattheremainingmetalisoverstressedandmayburst.Whenoxidestightlyadheretothesurfacetheysometimesactasinsulatingfilm,therebyreducingheatturbinerates.ResistancetoCorrosionandErosionThechancesofcorrosionanderosionofcomponentinlowtemperaturezonearemuchmorepredominantthanthecomponentsinelevatedtemperaturezone.Thisisbecausethewetconditionofsteamformswaterdropletsandstrikethecomponentsatveryhighspeed.Thiscauseserosion,mostly,oftheLPturbinelaststagebladeswhicharefurthersubjectedtocorrosionduetowetatmosphere.21MaterialsusedforTurbineComponentsAlargevarietyofheatresistantsteelsareusedformeetingdiversetechnicalrequirementsofvariouscomponents.Thecompositionofalloysteelscontainingcarbon,chromium,molybdenumandvanadiumareusedaccordingtoweldabilityorhardenabilityofthecomponentsdescribedasfollows:BladingMaterial12%Cr.StainlesssteelsareusedforLPturbinebladingbecauseofsuperiormaterialdamping.SomeconsiderationsforLPTbladingare:CorrosionandscalingresistanceAdequatetensilestrengthtowithstandcentrifugalandbendingstressesImpactstrengthtoresisterosionandimpactloadingMaterialdampingtocopeupwithvibratorystressdevelopedinturbineblades.The12%Cr.Stainlesssteelsretainallthesepropertiesaslongastemperaturedoesnotexceedabout4800C.ForshorterbladesworkingathightemperatureforHPturbine,12%CrMoVisusedwithsuitableheattreatmentstogiveadequatecreepresistance.Additionofniobiumto12%CrMoVsteelsfurtherincreasesthestressrupturestrengthandcreepstrengthintheshortterm.Theintermediateblades,whichareneitherhighlystressednorveryhot,aremadefrom12%Crsteelswithlinearalloyingcontentandheattreatedtoappropriatehardness.Thetypicalsteelhasacompositionof11%Cr,0.6%Mo,0.25%V,0.3%Nb.Thisalloysteelhasgoodcreepresistanceupto5500C.HPandIPRotorMaterialsAstheserotorsworkinhightemperaturezone,sotheyrequireacombinationofcreepstrength,rupturestrengthandductility.Thisisconferredbyrotorsmanufacturedfromforgedchromiummolybdenumvanadiumalloysteel.Thisisaferritematerial,whichprovidesthebestpossiblecreepproperties.22ThereducedtemperaturesencounteredatthelasttwostagesoftheIPturbineareoffsetbyincreasedborestressduetolongerbladelength,whichdemandsanadequatelyhighproofstrength.Thisisachievedbytheuseof1Cr1Mo0.25Valloysteel.LPRotorMaterialLProtorsworkinlowtemperaturezoneandhavelongerbladesanddiameterduetowhichtheyencountertheimpactofmoistureinthelaststages.Hencethemainrequirementsoftheserotorsarehightensilestrengthcombinedwithhightoughness.The3.5NiCrMoVmonoblocrotorforgingiscurrentlyusedasitavoidsthecomplicationofshrinkfitsinthecaseofbuiltuprotors.Vacuumdegassinghaseradicatedtheformerproblemsofhydrogenembrittlementcrackingandgivesgoodfracturetoughness.TurbineCasingMaterialsHPandIPcasingswheretemperatureover3500Cisencounteredaremadefromcreepresistantsteels.Twodifferentalloysteelsareusedforthemviz.2.25Cr1Mofortemperatureupto5380Cand0.5Cr0.5Mo0.25Vfortemperaturesupto5650C.Casingsinthesematerialsiscastratherthanfabricatedbecauseofthedifficultyofqualitycontrolandlikelihoodofthermaldistortioninthethicksectionsinvolved.LPcylindercasingsaregenerallyfabricatedfromcarbonsteel,althoughinnercasingmaybecastfromspheroidalgraphiteiron.Hightemperatureboltsaremadefromlowalloysteelsdesignedespeciallyforcreepresistantbolting.Thenickelalloysareusedmainlyoninnercylinderswherethecompact

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 4/8

    flangeismostadvantageous.LowtemperatureboltsonLPcasingsaremadefromnormalhightensileboltingsteels.TurbineAnchoringandExpansionFixedPointsofTurbineIndesigningthesupportsfortheturbineonthefoundation,attentionisgiventotheexpansionandcontractionofthemachineduringthermalcycling.Themethodofattachmentofthemachinecomponentandtheircouplingtogether,arealsodecisivefactorsindeterminingthemagnitudeoftherelativeaxialexpansion(differentialexpansion)betweentherotorandturbinecasing.Thefixedpointsoftheturbineareasfollows:23ThebearingpedestalbetweentheIPandLPturbines.FromthispointtheIPandHPcasingsexpandtowardsthefrontbearingpedestaloftheHPturbine.TherearbearinghousingoftheLPturbine(LP/Generatorbearingpedestal).ThemiddleportionofeachlongitudinalgirderofLPturbine.Fromthesepointsthelongitudinalgirdersexpandinbothdirections(TurbinesideandGeneratorside).ThethrustbearinginrearbearingcasingofHPturbine.CasingExpansionThefrontbearingpedestalsoftheHPandIPturbinecanslideontheirbaseplatesinanaxialdirection.Anylateralmovementperpendiculartothemachineaxisispreventedbyfittedkeys.TheHPandIPcasingsaresupportedbylugsonbearingpedestals.Theguidesareprovidedinturbinestomaintaintheircentralpositionaswellasaxialmovement.ThustheoriginofthecumulativeexpansionofthecasingsisatthefrontbearinghousingoftheI.Pturbine.TheoutercasingoftheIPturbineislocatedaxiallyinthecenterareaofthelongitudinalbeambyfittedkeyscastinthefoundation.Freelateralexpansionisallowed.Thecenterguidesforthiscasingarerecessedinthefoundationcrossbeams.Thereisnorestrictiononaxialmovementofthecasings.Hence,whenthereisatemperaturerise,theoutercasingoftheLPturbineexpandsfromitsfixedpoint.Differencesinexpansionbetweentheoutercasingandthefixedbearinghousingstowhichthehousingsfortheshaftglandsareattachedaretakenupbybellowsexpansionjoints.RotorExpansionThethrustbearingisincorporatedintherearbearinghousingoftheH.P.turbine.Sincethisbearinghousingisfreetoslideonthebaseplate,theshaftingsystemmoveswithit.Seenfromthispoint,boththerotorandcasingoftheH.P.turbineexpandtowardsthefrontbearinghousingoftheH.P.turbine.TherotorandcasingoftheI.P.turbineexpandtowardsthegeneratorinasimilarmanner.TheL.P.turbinerotorisdisplacedtowardsthegeneratorbytheexpansionoftheshaftingsystemfromthethrustbearing.Themagnitudeofthisdisplacement,however,isreducedbythe24amountbywhichthethrustbearingismovedintheoppositedirectionbythecasingexpansionoftheI.P.turbine.DifferentialExpansionDifferentialexpansionbetweentherotorsandcasingsresultsfromthedifferencebetweenthecasingexpansionoriginatingfromthebearinghousingbehindtheI.P.turbineandthatofrotorfromthethrustbearing.ThismeansthatthemaximumdifferentialexpansionoftheHPandIPturbinesoccursattheendfurthestfromthethrustbearing.DifferentialexpansionbetweentherotorandcasingoftheL.P.turbineresultsfromthedifferencebetweentheexpansionoftheshaftingsystem,originatingfromthethrustbearing,andthecasingexpansionoriginatingfromthefixedpointoftheL.P.casingonthelongitudinalgirder.25BYPASSSYSTEMDuringtripoutoftheunitthesteamfromboilertotheturbineiscutoffandaftertrippingisovertheturbineisrequiredtoberolledagainstforsynchronizing,thisrequirepropersteamathighertemperature.HPBypassisusedforattainingthesteamparametersatafasterrate.AlsoHPbypasssystemprovidesanalternatepathfrommainsteamlinetocoldreheatlinebypassingtheHPturbine.Similarly,LPbypasssystemenablesanalternativepathfordumpingthesteamfromreheateroutlet(HRHline)directlyintocondenseratsuitableparametersbypassingtheIPandLPturbines.TheHP/LPstationisinoperatedduringfollowingconditions:Coldstartup,warmstartup&hotstartup.Loadrejection.Trippingoftheturbine.ThemainadvantagesofHP/LPbypasssystemareasbelow:Toestablishrequiredsteamparametersatsuperheaterandreheateroutletsinshorttimeforbestmatchingofsteamandturbinemetaltemperatures.Toachievequickstartupsfasterloadingandreducelossesduringstartupandshutdown.TosaveconsiderableamountofDMwater,whichotherwisewouldhavebeenwastedduringstartup.Toenablequickerwarmingupofsteamlines.Tominimizeoperationofsafetyvalves.HPBypassStationTheHPbypassvalveisacombinedtypeofpressurereducinganddesuperheatingstationwithspraywaterbeingtappedofffromBFPdischargeandissuppliedtoHPbypassdownstreamchamberviaspraycontrolvalve.WhileoperatingwithaLPbypassstation,theHPbypassstationenablesboileroperationbyestablishingsteamflowfrommainsteamlinetoCRHlineandfromHRHlinetocondenser26withoutcoordinationwithturbine.Thisallowsquickraisingofsteamparameterstoalevelacceptabletoturbineforrolloffduringstartup.MainPartsofHPBypassHPbypassstationconsistsofthefollowingmainequipments:HPBPValves:Itconsistsof2nos.mainvalvewithhydraulicactuators.InboththetwounitsthesteamsidevalvesaresameandoftypeARS100offollowingtechnicaldata:Maxvalvestroke43mmPressure170/50KgcmTemp540485CFlow216T/HrSincethevalvehastothrottlethesteamfromaveryhightolowPr.Level,thisisassociatedwithsonicvelocities,noiseandvibration.Tokeepdownthenoiselevelslottedstemconstructionhasbeenused.SprayValves:TheHPBPsteamvalvesareprovidedwith2sprayvalvetypeBPEandanisolatingvalvetypeBD.Thevalvebodyisofcylindricalshape&madeofcarbonsteel.Astheflowmediumiserosiveinnaturethetotalpr.Dropinthevalvehasbeendividedinthreestages.Thevalvestemismadeof11%Cr&1%Mo.Oilsupplyunit:Oilsupplyunitconsistsofatankinwhichthehydraulicmediumiskept.Auxiliarypistonpumpsuppliesenergyintheformofoilunderpressureformovingthehydraulicactuator.Theabnormalpressureriseislimitedbyasafetyreliefvalve.Oilunderpressureflowsthroughtheoilfilterintotheaccumulatorwhichstoresenergytocoverpeakdemands.Pressureswitcheslocatedontheoilsupplyunit,controlthepumpmotoroperationaccordingtothepressureintheaccumulator.Thepressurereducingvalvelocatedintheconnectionblockkeepsthesystempressuretotheservovalvewithinnarrowlimits.27Servovalves:Itismadeupofelectricalandhydraulicparts.Ittransformstheelectricalsignalsintocorrectquantityofoilatcorrectlocation.Theblockingunitallowstheoiltoflowfreelytothehydraulicactuator.Ifthesupplyfailsoroilpressurefallsbelowacertainlimit,theblockingunitblockstheoilflowtoandfromtheactuator.Blockingunit:Theelectrohydraulicallypilotoperatedblockingunitismountedbetweentheservovalveandtheactuator.Itclosesoffbothportstotheactuator.Ifelectricallydeenergizedorwithinsufficientoilpressure,andholesthepistonoftheactuator(disregardingsomeleakagedrift)initslastposition.Amechanicaloverrideontheblockingunitpermitsalsolocalmanualdeblocking.OperationofHPBPValvesTheoilfromtheoilunitispassedthroughindividualservovalvesandblockingunitsbeforeentryintothecylinderofactuatorsandtheyactascontrollersoftheactuators.Theservovalvesandtheblockingelementsareoperateddependingupontheimpulsefromthecontrolsystem.TheoilunithasanaccumulatorwhichensuresregularavailabilityofPr.Oil.NormallywiththeuseofservovalveandblockingwiththemainHPBPValvecanbeopenedfullyin1015s.However,aquickopeningdeviceconsistingofseparatesolenoidvalveandaccumulatorhasbeenprovidedtoopenthevalvesquickly(3s)wheneverrequired.TheaccumulatorhasapressureofNitrogenat55Kg/cm.ProtectionsinHPBPSystemTheHPBPsystemhasthefollowinginterlocks/protection:Condenserpressureverylow:BPvalveswillcloseonpriorityat0.7Kg/cm.28DownStreamtemperatureveryhigh:BPvalveswillcloseonprioritywiththedownsteamtemperature>380C.BD/BPEvalveopensifHPBPvalveopening>2%.BD/BPEvalvecloseswhenBPvalvesopening

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 5/8

    ensurethatblockingunitleverisinlowerpositioni.e.normalposition.Inordertoclosethevalve,theleverattheotherendwhereC&Isocketisprovidedistobeoperated.Inthiscasealsofirstofallblocktheblockingunitandthenlifttheleverofservovalveupwardtillthedesiredclosingisachieved.Afterthevalvehasclosedtodesiredpositionlowertheblockingunitlever.ConditionsforautoopeningofByPassvalve:WhenGTBreakeropenstheByPasswillshiftfrommanualtoautomode&opensfullthereafter.Whenthemainsteampressureexceeds12Kg/cm2thanthepressuresetpointatHPBPconsole.LPBypassStationLPbypassvalvesmaintaintherequiredpressureinthereheatsystembybypassingthesurplussteamthroughsteamdumpingdevice.ThedesuperheatingandpressurereductiontakesplaceinthedumpingdeviceforwhichspraywateristakenfromCEPdischarge.ThisensuresthatonlytherequisiteflowismaintainedthroughtheIPandLPturbines.ThecontrolofLP29bypasssystemishookedupbysamecontroloilwhichisenvisagedfortheturbinegoverningsystem.ThecontrolsofLPbypasssystemareessentiallyacombinationofelectricalandwellprovenhydraulicsystem.Electrohydraulicconverterprovidesthenecessarylinkbetweenelectricalsystemandhydraulicactuationsystem.Theelectroniccontrolleractsasapressurecontrollerandregulatesthereheaterpressuretodesiredsetvalue.Ifreheaterpressureexceedsthissetvalue,thecontrollercausestheelectrohydraulicconvertertooperateandinitiatebypassoperations.EmergencystopandcontrolvalvesoftheLPbypassarecombinedinacommonbody.Thereisadoubleshutoffarrangementwhichseparatesthecondenserfromthereheaterduringnormaloperations.ThesafetydevicesincludedintheelectrohydraulicLPbypasscontrolsystempreventthedumpingofsteamintocondenserifthewaterinjectionpressureistooloworifpressureinsidecondenseristoohigh.Asameasureofadditionalprotections,LPbypassstationclosesinfollowingcases:CondenservacuumlowSpraywaterpressurelowTemperatureofcondenserwallhigh.30TURBINELUBOILSUPPLYSYSTEMTheturbineoilsystemfulfillsfollowingfunctions:LubricationandcoolingofbearingsJackinguptheshaftanprovidehydrostaticlubricationduringlowspeedoperationSupplyofcontroloiltogoverningandprotectionsystemSupplyofcontroloiltoLPbypassgoverningThemainoiltankisdesignedtobeairtight.Theextractorsproduceaslightvacuum(25100mimic)inthemainoiltankandthebearingpedestalstodrawoffanyoilvapour.MainOilTankThemainoiltankcontainstheoilrequiredforlubricatingandcontrolsystemsoftheturbine.Itnotonlyservesasastoragetankbutalsofordeaeratingtheoil.Thecapacityofthetankissuchthatthefullquantityofoiliscirculatednotmorethan8timesperhour.Thisresultsinaretentiontimeofapprox.7to8minutesfromentryintothetanktosuctionbythepumps.Thistimeallowssedimentationanddeaerationoftheoil.OilFlowinTankOilreturningtothetankfromtheoilsupplysystemfirstflowsthroughasubmergedinletintotherisersectionofthetankwherethefirststageofdeaerationtakesplaceastheoilrisestothetopofthetank.Oiloverflowsfromtherisersectionthroughtheoilstrainerintotheadjacentsectionofthetankwhereitisthendrawnoffontheoppositesidebythesuctionpipeoftheoilpumps.OilStrainerThebaskettypeoilstrainerismountedinthetank.Itisofstainlesssteelwiremeshof0.25mmfiltrationparticlesizeandcanbechangedbyopeningthetankcover.31OilVapourExhausterThewholetankismadeasairtightaspossible.Oilvapourexhausterproducesaslightnegativepressure(25100mmwc)inthetank,inthereturndrainlinesandinthespacesinthebearingpedestalssothatoilvapoursaredrawnout.OilLevelIndicatorThemainoiltankhasamagneticfluidlevelindicator.Extratankvolumeisprovidedbetweenthenormaloperatinglevelandthetankcovertoacceptoilfromtheentireoilsupplysystemwhentheturbineisshutdown.Thetankisconstructedwithastoppingbottomwithdrainconnectionsofthelowestpoint.Capacitancetypelevelswitchesareinstalledforindicatingnormal,lowandverylowlevel.DuplexoilfilterTheduplexfilterconsistsoffourfilterbodiesandisfittedwithachangeoverdevice,whichenablesthefilterstobeisolatedasdesired.Thefilterbodiesaredesignedaccordingtothepressurestageandtherelevantcodesandthefilteritselfisdesignedtoprovidesafety,takingintoaccountthedifferentialpressure.DifferentialpressureGaugeThefunctionofthedeviceistomeasureandgiveavisualindicationofthedifferentialpressure,whichoccursforexamplewhenfiltercontaminationincreases.OilPumpsandtheirFunctionsThemainoilpumpdrawstheoilthroughasuctionpipesituatedattheflowendofthetank.Thissuctionpipeactsasaninjectiontoaidthesuctionofthemainoilpump,whichhastoovercomeacertainsuctionheadpressureoilisconductedtotheinjectorviaaninjectionpipe.Thisinjectionpipealsofillsthesuctionpipeofthemainoilpumpwithoilwhentheplantisbeingstartedup.Theauxiliaryoilpumpsandemergencyoilpumparrangedonthetankareelectricallydrivenrotaryoilpumps.Thejackingoilpumpsalsosituatedonthetankareelectricallydriven32jackscrewimmersionpumps.Allpumpsimmersedintheoilcontainedinthetank,drawoilfromthedeepestpointinordertoobtainoilasfreeofairaspossibletodrivingelements.Thepumpsarefixedtothebaseplatesofthetankcover.MainOilPumpThemainoilpumpissituatedinthefrontbearingpedestalandsuppliestheentireturbinewithoilthatisusedforbearinglubrication,coolingtheshaftjournalsandascontroloilforthehydraulicgoverningsystem.Themainoilpumpisdrivendirectfromtheturbineshaftviathecoupling.Iftheturbosetisoutofoperationorthemainoilpumpfails,theauxiliaryoilpumpstakeoverthenecessaryoilsupply.Thesepumpsalsosupplyoilinthesuctionbranchesofthemainoilpumpuntilthemainoilpumptakesover.AuxiliaryoilpumpsTheauxiliaryoilpumpisaverticalonestagerotarypumpwitharadialimpellerandspiralcasing.Itisfixedtothecoveroftheoiltankandsubmergesintotheoilwiththebody.Itisdrivenbyanelectricmotorthatisboltedtothecoverplate.Theoilentersthesuctionconnectionfromtheunderneathandissuppliedtotheoilsystemviathepressurepipe.Thepumpshafthassleeveboringinthepumpcasingandgroovedballbearinginthebearingyoke.Thebearingsarelubricatedfromthepressurechamberofthepump,thesleevebearingviaaboreinthecasing,thegroovedballbearingviaalubeline.D.CEmergencyoilpumpTheemergencyoilpumpisofthevertical,centrifugalsubmergedtypeandserviceforlubricationandcoolingofthebearingsduringemergencyconditions.TheunitislocatedontopofthemainoiltankanddrivenbyaD.Cmotor.Thecompletepumpmotorassemblyisattachedtomountingplate,whichisboltedtothetopofthemainoiltank.JackingoilpumpThejackingoilpumpisaselfprimingscrewspindlepumpwiththreespindlesandinternalbearings.Thepumpsuppliesthejackingoilthatisneededforliftingtheshaftingatlowspeed.33TurbineOilCoolerTwooilcooler(2x100%)havebeenprovidedinthelubeoilsystemforcoolingtheoilusedforlubricationandcoolingofturbinebearings.Essentiallytheoilcoolerconsistsofatubenest,innerandoutershellslowerwaterboxandupperwaterbox.Thetubenest,throughwhichCoolingwaterflows,issurroundedbytheoilspaceformedbytheoutershell.Theoiltobecooledenterstheoutershellatinletnozzleandflowsintotheinnershell.Theshellsupportsthelargebaffleswhichareprovidedwithanopeninginthecenter.Betweeneverytwolargebaffles,thereisasmallbaffleplateheldandsupportedbyshorttubesplacedinsteelrods.Theintermediateplatesaresmallerindiameterthantheinnershellandthusleaveanannulargap.Thisarrangementservestoachieveacrossflowpatternforcingtheoilflowingtowardsoutlettoflowthroughthemiddleoflargebafflesandovertheedgeofthesmallerbafflesandincreasestheheattransferrate.Theinnershellandthelargebafflesaresupportedonthelowertubeplate,intowhichadmiralbrasstubesareexpanded.ThecoolingwaterentersandleavesthroughthelowerwaterboxwhichisdividedbyapartitionplatesoastoforcewaterthroughonehalfofthetubesystemtotheupperwaterboxIandfromtherethroughotherhalfbacktolowerwaterbox.Closedendtubesarearrangedintubesysteminlinewiththepartitionplatetoavoidoilbypassing.Inletandoutletbranchesofwaterboxareprovidedwiththermometers.Whenfillinginoil,opentheventvalve2.Fordrainingtheshell,drainvalve19isprovided.Thecoolingwaterflowisadjustedthroughouttogetthedesiredoiloutlettemperature,iftheoiloutlettemperatureishighevenwithmaximumCWflow,theoilcoolershouldbecleared.OilCoolerChangeoverDevice(SegmentPlateValve)Theoilofaturbosetiscooledinoilcoolers.Asegmentplatevalveisusedfordirectingtheoiltothecoolerinquestion,whileatthesametimeshuttingoffthereserveoilcooler.The

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 6/8

    arrangementofthevalveissuchthatthehandleautomaticallyoperatesthesegmentplatesinboththeinflowoutflowlinesofonecooler.34ThreewayControlValveThethreewaycontrolvalveiselectricallydrivenandhasthefunctionofregulatingthelubricatingoiltemperature45oC.Possibleoilflowpathsforregulatingtheoiltemperature:Alllubricatingoilflowsthroughoilcooler.Lubricatingoilflowsthroughoilcoolerandbypasspiping.Alllubricatingoilflowsthroughthebypasspiping.35GOVERNINGSYSTEMGoverningschemecompriseofmainElectrohydraulicgoverningsystemandbackuphydraulicgoverningsystem.Thereferenceelectricalsignalsforturbinespeed,generatorload(MW)andM.SpressurearepickedupbyfieldmountedsensorsandprovidedtoElectricalgoverningcabinetforprocessing.AfterprocessingbyElectronicControllersandselectioncircuit,thesignalintheelectricalformistransmittedtoelectrohydraulicconverterforamplificationandconversionintohydraulicsignalforpositioningofcontrolvalves.ElectrohydraulicconverteralongwithhydraulicgovernorandotherhydraulicprotectionequipmentarelocatedinthegoverningsystemracksituatedbesidesturbineandthelayoutofhydraulicequipmentrackisillustratedinFig5.1.Allhydrauliccomponentsareopenandcanbeoperatedlocally.Thespeedsignalintheformofhydraulicpressureisprovidedtohydraulicgovernorfromhydraulictransmitter.ThehydraulicandelectricalspeedsensorsaremountedonMainOilpumpshaft,whichisenclosedinthefrontpedestalofturbine.Theoilpipelines,namelyControloil,tripoilandsecondaryoil,areextendedtoHP&IPstopandcontrolvalveservomotorsforoperation.TheprotectionschemecomprisesofelectricalprotectionandhydraulicprotectiondevicessuchasRemotetripsolenoidvalve,maintripvalveandlowvacuumtripforshuttingdowntheturbineduringemergencycondition.Thisgoverningandprotectionschemefacilitatesthetotaloperationofturbinefromremote,i.e.fromplantcontrolroom.36Fig5.1HydraulicEquipmentRackofGoverningsystem37Stop&ControlValveSchemeValveArrangementAsshowninFig5.2,mainsteamfromsuperheaterisadmittedtoHPTurbinethroughtwosetsofcombinedHPstopvalveandcontrolvalve(ESV&HPCV).SimilarlyhotreheatsteamisadmittedtoIPTurbinethroughtwosetsofcombinedIPstopvalvecontrolvalve(IV&IPCV).TheexhaustofIPturbineisdirectlyadmittedtoLPTurbinethroughtwocrossaroundpipes.TheturbineloadIscontrolledbythrottlegoverningmethod.TheturbinestartupisperformedbyadmittingsteamintoHPturbinefirst.Duringloadingofthemachine,IPcontrolvalvesarethrottledupto20%loadandthenkeptfullopenforminimizingthethrottlinglossesatnormaloperationofturbine.Soafter20%loadtheturbineiscontrolledthroughHPcontrolvalves.Fig5.2SteamAdmissionSystemforTurbine38HPStop&Controlvalve(ESV&HPCV)Themainstopandcontrolvalvearecombinedinacommonbody.Thestopvalve(ESV)isarrangedverticallywhilstcontrolvalvehorizontally.ThemainstopvalveprovidedbetweenmainsteamcircuitandHPturbinecaninterruptthesteamsupplytoturbineextremelyquicklyduringtripping.ThefunctionofthecontrolvalveistocontrolthemasssteamflowratebyvaryingthefirststagepressureofHPturbineinaccordancewiththeloadrequirementoftheunit.H.PStopvalve(ESV)ThearrangementofstopandcontrolvalveisexplainedinFig5.3steamentersthevalvecasing(14)viatheinletconnectionsabovethemainstopvalvedisc(2).Apilotvalveintegralwiththevalvesteam(10),operatesinsidethemainstopvalvedisc.Packingrings(6)sealthevalvestemwhereitpassesthroughthevalvebody.Thevalvedischasabackseatingarrangement,whichisforcedagainstthebasebushing(3)andwhenthevalveisfullyopenedformtheseatatthispoint.Thisalsoprovidesadditionalsealingforthepassageofthesteam.Thevalvebody(4)issecuredinthevalvecasing(14)bymeansofthethreadedring(8).ThesealinggasketisUsectionring(5)thelegsofwhichareflexiblyexpandedbythesteampressureandforcedagainsttheassociatedsealingfacesoftheeasing.Themainstopvalveisopenedhydraulically(TripOil)byservomotor(13)andclosedbyspringforcewhentripoilisdrained.H.PControlvalve(HPCV)Thecontrolvalvediscisintegralwiththestem(17).Theeffortrequiredtoopenthevalveisreducedbyreliefpoleinthevalvedisc.Valvediscandstem(17)areguidedbybushingsinthevalvebody(18)thestembeingsealedbypackingrings.(21).Additionalsealingisprovidedbythebackseatingarrangementofthevalvediscwhichliesagainstthebasebushing(20)whenthevalveiswideopen.Aswiththestopvalve,thevalvebody(18)issecuredinthevalvecasing(14)byathreadedring(23)andsealedbytheUshapedsealring(2)Thecontrolvalveisoperatedbythepistonoftheactuator(29)whichisopenedhydraulically(secondaryoilsignalandcontroloil)andclosedbyspringforceservomotor.39Fig5.3HPStopandControlValve(ESVandHPCV)1.Drainconnections2.Valvediscofstopvalve3.Basebushingwithscrewjoint4.ValveBody5.Sealring6.Packingring7.Glandbushing8.Threadedring9.Bushing10.Valvediscwithpilotvalve11.Pistonrod12.Column13.Servomotorforstopvalve14.Valvecasing15.Valveseat16.Valveseat17.Valvediscwithvalvestem1.18.Valvebody2.19.Drainconnection20.Basebushingwithscrewjoint21.Packingring22.Sealring23.Threadedring24.Glandbushing25.Sealring26.Flangewithbushing27.Column28.Pistonrod29.ActuatorforcontrolvalveL1,L2Leakagesteam40CombinedIPStop&Controlvalve(IV&IPCV)functionsStopvalveandcontrolvalvearecombinedinacommonbodywiththeirstemsarrangedatrightanglestoeachother.ThestopvalvecaninterruptthesupplyofsteamfromthereheatedtotheIPandLPturbinesextremelyquickly.ThecontrolvalvecontrolsthesteamflowratetotheIPandLPturbinesduringstartup(upto20%load)orduringbulkloadrejection.Thecontrolvalvesremainsfullopenabove20%to100%loadrangetoeliminateanythrottlinglosses.IPStopvalveTheassemblyofvalveisshowninFig.5.4.Thestopvalveisasingleseatvalvewithintegratedpilotvalve.Steamentersviatheinletofthevalvebody(1)andremainsabovethevalvedisc(4)whenthestopvalveisclosed.Apilotvalve,integralwiththevalvestem(6)isprovidedforrelieving,therebyreducingtheforcenecessaryforopening.Thevalvedisc(4)slidesinthebushingofthevalvecover(5)andhasbeadonthebackwhichliesagainstthebasebushing(7)andprovidesadditionalsealingatthispoint.Metalpackingrings(8)sealthevalvestem.Bothstemandvalvediscarepreventedfromrotating.Thestopvalveisopenedhydraulically(TripOilPressure)andclosedbyspringforce.IPControlvalveThecontrolvalveassemblyisshownisFig.5.4.Thecontrolvalvehasapipeshapedvalvedisc(14)thatisboltedtothevalvestem(16)andslidesinthebushinginthevalvecover(18).Thevalvediscisprovidedwithrelievingholestoreducethenecessaryactuatingforces.Aringfixedinthebushingofthevalvecoverpreventsthevalvediscfromrotating.ThisvalvediscalsohasabacksealingthatoperateswhenthevalveisfullyopenPackingrings(17)sealtheValvestem(16)inthevalvecover(18)Thecontrolvalveisoperatedbythepistonoftheservomotor(20)i.e.itisopenedhydraulically(withsecondaryoilpressuresignalandcontroloilpressureforce.Valveisclosedbyspringforce.Intheeventofdisturbanceinthesystemorontripout,bothstopandcontrolvalvecloserapidly.41Fig5.4IPStopandControlValve(IVandIPCV)1.Valvecasing2.Valveseat3.Drainconnection4.Valvedisc5.Valvecover6.Valvestemwithpilotvalve7.Basebushing8.Packingring9.Glandbushing10.Pistonrod11.Column12.Stopvalveoperator13.Valveseat14.Valvedisc15.Drainconnection16.Valvestem17.Packingring18.Valvecover19.Pistonrod20.ControlvalveoperatorL1Leakagesteam42GenerationandFunctionofGoverningOilsThevariousgoverningoilswiththeirsourceofgenerationarediscussedinthefollowingsubsections:ControlOil:Controloilissuppliedbymainoilpumporauxiliaryoilpump.Twocontroloilsareinitiatedinthegoverningrack.Oilisfilteredandthensuppliedtovariousgoverningequipmentsatnormalpressureof6.58.5Kg/cm2.Controloilservesfollowingfunctions:Sourceoilforgenerationofallotheroilssuchastripoil,AuxTripoil,secondaryoil,Auxiliarysecondaryoil,StartupandTestoil.SuppliedtoHP&IPcontrolvalve(HPCV&IPCV)servomotorpistonsforactuatingcontrolvalves.StartupOilThisoilisgeneratedbystartingandloadlimitingdevicewhenitspositionisbroughttozero.Thesourceoilbeingcontroloilandnormalpressurewouldbe4.5kg/cm2.Thefunctionofoilistolatch(readyforopening)theservomotorsplitpistonsofHP&IPstopvalves(ESV&IV).ThisissuppliedtothetestvalveofESV&IV.Whenstartingdevicepositionisraised,theoilpressureapproachedtozero.TripOilThisoilisgeneratedatremotetripsolenoidvalvewhenitisheldopen.Thesource

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 7/8

    oilisfilteredcontroloilsuppliedfromcontroloilfiltersofnormalstream.Thenormaltripoilpressureisintherangeof57.5kg/cm2itservesfollowingfunctions:ToopenHP&IPstopvalves(ESV&IV)SourceoilforgenerationofAuxiliarysecondaryoilandsecondaryoilforoperationofcontrolvalves.43Whenturbinetripisinitiatedremotetripsolenoidoperatesandconnectsthetripoiltodrainwhichreducesthetripoilpressureinstantly.ThisinturnoperatemaintripvalvestodrainthetripoilcircuitresultinginclosureofHP&IPstop&controlvalves.PrimaryoilThisoilisgeneratedathydraulicTransmitterfittedonshaft.Thesamesourceoil,i.e.filteredcontroloilisfedtohydraulictransmitter.Inturnprimaryoilpressure,whichisproportionaltoturbinespeed,issuppliedtohydraulicspeedgovernorasaspeedsignal.Thenormalvalueofprimaryoilpressureis1.32.4kg/cm2forgovernorcontrol.SecondaryOilThisoilisgeneratedathydraulicconverterandelectrohydraulicconverterfollowuppistonswhichareconnectedinparallel.Thesourceoilforgenerationofsecondaryoilistripoilfedtohydraulicandelectrohydraulicconverterfromtripoilcircuit.Secondaryoilpressureprovidestheproportionalcontrolvalveopeningsignaltothecontrolvalveservomotors.Infacttheservomotorpilotvalveisoperatedbysecondaryoilpressurewhichinturnfeedscontroloiltoservomotorpistonsforproportionateopeningofcontrolvalve.Thesecondaryoilpressureremainsintherange2.55kg/cm2.TestOilTestoilisdrawnfromcontroloilfiltersforATTscheme.Thisoilisusedtofeedtripoilcircuitduringprotectivedevicetesting.Testoilisalsousedtoactuateoverspeedtripstrikersandthrustbearingdevice,duringtestwhenturbineisrunningnormal.44GENERALASPECTSOFBOILERThesteamgeneratorisofradiant,reheat,naturalcirculation,singledrumdrybottomsemioutdoortypeunit,designingforfiringcoalastheprincipalfuelandtheHFOoilfiringcapacityisequivalentto22.5%boilerMCR.4LDOburnersarecapablefor7.5%boilerMCRheatinput.AsperlayoutarrangementthemillsarelocatedbetweenboilerandESPs.Thecompletefurnacesectionisoffusionweldedwalltype.45LOWTEMPERATURESUPERHEATERTheLTSHsectionisofthecontinuousloops,plain,tubular,nondrainable,verticalinthelinetangenttubetype,arrangementandlocatedabovetheeconomizersection,inthebacksection,passoftheboiler.Theconsecutivespacedheatingsurfacehas120assemblies,4elementperassembly.TheoutletsectionofLTSHaloneisarrangedvertically.RADIALPLATENSUPERHEATERTheradialplatensuperheatersectionisofthecontinuousloops,plain,tubular,nondrainable,verticalinthelinetangenttubetype,arrangedforparallelflow.Theplatensuperheatersectionassembliesarewidelyspacedandlocatedintheradiantzoneatthefurnaceoutletsection.Theradialplatenheatingsurfacehas29assemblies,7elementperassembly.FINAL(FINISHPENDANT)SUPERHEATER(FSH)Finishpendantsuperheater(FSH)sectionisofspacedtypecontinuousloops,plain,tubular,nondrainable,andverticalinthespacedtypearrangedforparallelflow.ThisFSHislocatedinthehorizontalpassafterthereheatersection.Theconvectivefinalsuperheaterhas119assemblies,2elementsperassembly.REHEATERSYSTEMThereheatersystemisasinglestage,spacedtype,continuousloops,plain,tubular,nondrainable,andverticalinthelinespacedtype,arrangedforparallelflow.Thereheaterfrontpendantandrearpendantsectionislocatedinthehorizontalpassinbetweentheradiantplatensuperheaterandfinalsuperheatersection.Theconvectivesuperheatersectionhas59assemblies,6elementperassembly.Theapprox.totalconvectiveheatingsurfaceis2910msq.Theentirereheatersectionissuspendedfromtheroofstructuralsteelsections.SUPERHEATERDESUPERHEATERForcontrollingthefinalsuperheatsteamtemperatureattheratedvalue,twonumberofspraytypedesuperheatersarelocatedinthestemconnectinglinksbetweentheLTSHoutletheaderandplatenSHinletheader.Theseinterstagedesuperheatersareofweldedtype.Spraytubeandlinersareprovided.Foremergencycontrolofthereheateroutlettemperaturetwonumbersspraytypesuperheatersareprovided.Thesearelocatedinthecoldreheatpipingandusedduringanyemergencyconditionsforthesteamtemperaturecontrol.Thedesuperheatersareofweldedtype,spraynozzlesandlinesareprovided.46ECONOMIZERSYSTEMTheeconomizer,intwobanks,isofthecontinuousloop,plaintubular,drainableandhorizontal,inlinearrangementwithwaterflowupwardandgasflowdownwards.Theeconomizertubesaresuspendedfromeconomizerintermediateheaders,usingladdertypesupports.Theheatingsurfaceis5450msq.Aneconomizerrecirculationsystemisprovided,connectingthedowncomer(nearwaterwalllowerringheader)andeconomizerinletpipetoensurerequiredflowthrougheconomizertubesduringstartingconditionsoftheboiler.STEAMDRUMThesteamdrumisofthefusionweldedconstruction,fabricatedfromcarbonsteelplates.Ateachendofthedrum,amanholeof406mmdiameterisprovided,arrangedtoopeninwards.Thedrumislocatedintheupperfrontoftheunit.Thedrumisequippedwithprimaryturboseparators,secondarycorrugatedscrubbersandscreendryer,tolimitthesolidcarryoverinthesteamleavingthedrum.Alldruminternalareofcarbonsteelconstruction.Theturboseparatorsandthescreendryersareoftheremovabletype.Thedrumissuspendedfromtheboilerroofstructures.BOILERPARAMETERS1.Steampressureatsuperheateroutlet155kg/cm22.Steamtemp.atsuperheateroutlet540DegreeC3.Steampressureatreheaterinlet37.6kg/cm24.Steampressureatreheateroutlet36.1kg/cm25.Steamtemp.atreheaterinlet342DegreeC6.Steamtemp.atreheateroutlet540DegreeC7.Feedwatertemp.enteringeconomizer243DegreeC8.Ambientairtemp.40DegreeCFILLINGOFBOILERThefollowingportionoftheboilerhastobefilledwithwaterbeforethefurnaceislightedup:1.Waterwallportionofboiler2.Economizer3.Boilerdrumupto60mmlevelTheinitialfillingoftheboilerisdonebyboilerfillpump.Normalfillingisdonebyboilerfeedpump.47FEEDREGULATINGSTATIONThelocationofthisstationisatfiringfloorandfeedwatersupplytotheboilerisregulatedthroughthisstation.Duringtheinitialperiodofstartingtheunit,feedisregulatedthrough30%linebecausetherequirementofwaterissmallduringthisperiod.Lateronduringnormaloperation,eitherofthe100%lineontheleftorrightischarged,otherisstandby.AllthevalvesareoperatablefromUCB.BeforetakingtheabovelinesintoservicethewholepipinghastobethoroughlyventedtoavoidpossibilityofairlockinthesystemSOOTBLOWERSootblowershavebeenprovidedforcleaningandsootblowingthewaterwalls,superheaterandreheatertubesforefficientheattransfer.FILLINGCAPACITYOFBOILER1.Boilerdrum35Ton2.Economizer25Ton3.Waterwall130Ton4.Superheaters95Ton5.Reheaters50Ton6.Waterrequiredfornormallightup190Ton48COALPULVERISINGSYSTEMAtGHTP,bowlmillshavebeeninstalledforpulverizingtherawcoal.Coalofmaximumsizeof25mmisreceivedinRawCoalBunkersfr

    TeamEmail: [email protected]

    TeamContactNumber: 9814745928

    GuideContactNumber: 9646819199

    GuideEmail: [email protected]

  • 8/1/2015 GuruHargobindThermalPowerPlant,LehraMahobbat

    http://techpedia.sristi.org/projects/guruhargobindthermalpowerplantlehramahobbat/181449 8/8

    Techpedia

    Home

    Aboutus

    Projects

    Feedback

    Contactus

    Solutions

    SearchProject

    AppreciationMessage

    Challenges

    IDP

    UDP

    All

    Registration

    Student

    Faculty

    Mentor

    Industries

    College

    QuickLinks

    TechpediaNew(BetaVersion)

    InnovationEcosystem

    IPR

    Incubation

    AcademicProject

    2014TechPedia,allrightsreserved

    0Comments Sortby

    FacebookCommentsPlugin

    Top

    Addacomment...