48
7/23/2019 HetNets3Gand4GIEEECTW2012 http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 1/48 1 Heterogeneous Networks 3G and 4G Durga Malladi May 2012

HetNets3Gand4GIEEECTW2012

Embed Size (px)

Citation preview

Page 1: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 1/48

1

Heterogeneous Networks3G and 4G

Durga Malladi

May 2012

Page 2: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 2/48

2IEEE Communication Theory Workshop 2012

 Agenda

Introduction Heterogeneous Networks

Performance

What’s next

Page 3: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 3/48

3

Introduction

Page 4: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 4/48

4IEEE Communication Theory Workshop 2012

Mobile Data Demand Growth

Operators face increasing demand for mobile network datacapacity

 Adoption of smart phones and plethora of devices continue to drivetraffic growth

Users increasingly spending more time on the network

Spectrum is often limited in many markets

Dramatic increase in spectral efficiency per unit area needed

New topologies needed to provide the increasing demand

By 2014, monthly worldwide

mobile data traffic will exceed

the total for all of 2008

 –ABI Research, August 2009

Page 5: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 5/48

5IEEE Communication Theory Workshop 2012

Radio Link Improvement

Evolved 3G with Advanced Receivers(EV-DO Rev. B & HSPA+)

Data optimized 3G(EV-DO & HSPA)

3G (IMT-2000): Voice & Data(e.g. CDMA2000 1X & WCDMA)

2G: Voice Capacity(Digital e.g. GSM & IS-95)

1G: Voice(Analog e.g. AMPS)

LTE

(OFDMA)

Next Gen.

Leap

Next Gen.

Leap

Next Generation

Leap

2G 

3G 

1G 

Evolved 3G

 Approachingtheoretical limits  

R el   a t  i  v  e C  a p a c i   t   y 

M ul   t  i   pl   e s 

Page 6: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 6/48

6IEEE Communication Theory Workshop 2012

Multiple Dimensions for Growth

Higher Peak Rates

8x8 DL MIMO

4x4 UL MIMO

MU-MIMO

Higher CapacityHigher Peak Rates

Carrier AggregationMultiple Bands

Spectrum  Antennas

Higher

bps/Hz

Higher

bps

Higher Capacity

Pico cellsFemto cells

Remote Radio HeadsRelays

Optimized utilizationof resources

Network

Topology

Higher

bps/Hz/km2 

Page 7: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 7/487IEEE Communication Theory Workshop 2012

 Another View

More BandwidthCarrier aggregation across

multiple carriers and multiple bands

More Antennas 

Downlink MIMO up to 8x8, enhanced

MU-MIMO and uplink MIMO up to 4x4

Primarily higher

data rates(bps) 

Higher spectral

efficiency(bps/Hz)

Higher spectral

efficiency per

coverage area(bps/Hz/km 2) 

Dense Network  

Coexistence of high power (macro) and low power (pico,

femto, relay, remote radio head) nodes

Page 8: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 8/488

Heterogeneous Networks4G Overview

Page 9: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 9/489IEEE Communication Theory Workshop 2012

Conventional Cell Splitting

Macro cell splitting Site acquisition constraints

Small cells

Flexible ad-hoc deployment Co-channel deployment with macro cells

Heterogeneous NetworkCell Splitti ng

FemtoPico

Pico

PicoMacro

Page 10: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 10/4810IEEE Communication Theory Workshop 2012

UE Association Metric

Typically a UE is served by the cell with strongest SINR With co-channel small cells, strongest SINR metric is not efficient

Large disparity in transmit power between macro and pico cells

Macro cell (46 dBm), Pico cell (30 dBm)

Results in shrunken coverage/range of small cells

Equal pathloss

 Pico cell C/I = -16 dB

Need techniques to enable cell range expansion

Range

Expansion

Resource

Partitioning

Key Features for Pico Cell Range Expansion

Page 11: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 11/4811

IEEE Communication Theory Workshop 2012

Pico Cell Range Expansion (CRE)

Macro

Limited footprint of Pico due to Macro signal

Large Bias Operation Intentionally allow UEs to camp on weak (DL) pico cells RSRP = Reference signal received power (dBm)

Pico (serving) cell RSRP + Bias = Macro (interfering) cell RSRP

TDM subframe partitioning between macro/pico cells In reserved subframes, macro cell does not transmit any data

Reserved subframes  Almost Blank Subframes ( ABS)

Pico MacroPico Pico Pico

Increased footprint of Pico when Macro

frees up resource

In subframes reserved for Pico CellsIn subframes reserved for Macro Cells

Page 12: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 12/4812

IEEE Communication Theory Workshop 2012

 Almost Blank Subframes (ABS)

Macro cell behavior in ABS Signals transmitted

Common reference, sync and primary broadcast

Signals not transmitted

User specific traffic (data and control)

Co-existence of legacy and new devices in pico CRE zone Legacy devices served by macro cells

New devices served by pico cells

MacroRange

Expansion

Pico

Legacy Device

New Device

Page 13: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 13/4813

IEEE Communication Theory Workshop 2012

Residual Interference in Macro ABS

Enhanced receivers perform interference suppression ofresidual signals transmitted by macro cells

Incl. common reference signals and sync signals

Enhanced

Receiver

 ABS from Interfering Macro Cell “Blank” Subframe

… 

… 

Page 14: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 14/4814

IEEE Communication Theory Workshop 2012

Inter-Cell Load Balancing

Time-Domain partitioning Negotiated between macro and pico cells via backhaul (X2)

Macro cell frees up certain subframes (ABS) to minimizeinterference to a fraction of UEs served by pico cells

TDM partitioning granularity = 2.5%

Reserved subframes used by multiple small cells Increases spatial reuse

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0

Pico DL

Macro DL 2 6 0 1 2 3 4 5 6 7 8 92 6

Data served on subf rame Data not served on sub frame

Example:Semi-static allocation

50% Macro and

50% Picos

Page 15: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 15/4815

IEEE Communication Theory Workshop 2012

 Adaptive Time-Domain Partitioning

Example: 25% each to Macro and Pico Cell s; 50% adaptive

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0

Pico DL

Macro DL 2 6 0 1 2 3 4 5 6 7 8 92 6

Data not served on subframe

Data served on subframe

Data possibly served

on subframe

Load balancing is constantly performed in the network Macro and pico cells negotiate partitioning based on

spatial/temporal traffic distribution

Page 16: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 16/4816

IEEE Communication Theory Workshop 2012

Radio Link Monitoring and CSI Reporting

RLM Measurements performed on restricted subframes

CSI reports Devices report multiple CSIs on “clean” and “unclean” subframes

Designated subframes for Pico UE measurement and

reporting

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0

Pico DL

Macro DL 2 6 0 1 2 3 4 5 6 7 8 92 6Data served on subframe

Data not served on subframe

Page 17: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 17/4817

IEEE Communication Theory Workshop 2012

Frequency Domain Partitioning

Macro and Pico cells can use separate carriers to avoidstrong interference

Carrier aggregation (CA) allows additional flexibility tomanage interference

Macro cells transmit at full power on anchor carrier (f1) and lowerpower on second carrier (f2)

Pico cells use second carrier (f2) as anchor carrier

Pico / Femto

Macro

f 1 f 2Freq

f 1 f 2

CA-based Frequency Domain Partitioning

Page 18: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 18/4818

IEEE Communication Theory Workshop 2012

Frequency Domain Partitioning

Frequency partitioning Offers less granular resource allocation and lower flexibility

Does not scale with pico cell density variation within a macro cell

Partitioning ratio limited by number of carriers

Does not require network synchronization

Pico / Femto

Macro

f 1 f 2Freq

f 1f 2

CA-based Frequency Domain Partitioning

Page 19: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 19/4819

Heterogeneous Networks4G Performance

Page 20: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 20/48

20IEEE Communication Theory Workshop 2012

Downlink – Uniform UE Distribution

DL User Throughput Improvement

Median Cell Edge

Simulation results based on Qualcomm pro totype implementation and 3GPP evaluation methodology TR 36.814

Macro ISD = 500m, 2GHz carrier frequency, full-buffer traff ic, 10 degree antenna downtilt, cell edge user is defined as 5 percentile rate user4 Picos and 25 UEs per Macro cell, uniform random layout, PF scheduler, 10 MHz FDD, 2x2 MIMO, TU3 channel, NLOS, local partitioning algorithm

+ 4 P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C 

RE 

 an d P  ar  t  i   t  i   oni  n g

1.2X

1.0X

1.7X

1.0X

M a c r  o- onl   y 

2.2X

+ 4 P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C 

RE 

 an d P  ar  t  i   t  i   oni  n g

1.05X

M a c r  o- onl   y 

500m

ISD

Page 21: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 21/48

21IEEE Communication Theory Workshop 2012

0%

10%

20%

30%

40%

50%

60%

70%

80%

Downlink – Uniform Distribution

Percentage of users with 1Mbps DL throughput

Macro

only

No RE

No partitioningRE + Partitioning

Macro + 4 Pico Cells

78%

38%

22%

Results from 3GPP R1-101509, evaluation methodology TR 36.814, Macro ISD=500m, 10 degree Macro antenna downtilt4 Picos and 25 UEs per Macro cell, uniform random layout, PF scheduler, cell,10 MHz FDD, 2x2 MIMO, NLOS

Page 22: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 22/48

22

IEEE Communication Theory Workshop 2012

Pico Cell Association Statistics

Number of Pico Cells per Macro cell

37%

6%

12%

57%

26%

82%

2 4 10

Nominal Association

Range Expansion

Percentage of UEs offloaded to Pico Cells

Evaluation methodologyTR 36.814

Macro ISD=500m10 degree Macroantenna downtilt

25 UEs per Macro cell,

uniform random layout,

10 MHz FDD, 2x2 MIMO

Page 23: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 23/48

23IEEE Communication Theory Workshop 2012

Uplink – Uniform UE Distribution

UL User Throughput Improvement

Median Cell Edge

Simulation result s based on Qualcomm prot otype implementation and 3GPP evaluation methodology TR 36.814

Macro ISD = 500m, 2GHz carrier frequency, full-buffer traff ic, 10 degree antenna downtilt, cell edge user is defined as 5 percentile rate user4 Picos and 25 UEs per Macro cell, uniform random layout, PF scheduler, 10 MHz FDD, TU3 channel, NLOS, local partitioning algorithm.

+ 4 P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C R

E  an d P  ar  t  i   t  i   oni  n g

1.8X

1.0X

1.4X

1.0X

M a c r  o- onl   y 

1.2X

+ 4 P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n g

M a c r  o- onl   y 

1.1X

500m

ISD

Page 24: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 24/48

24IEEE Communication Theory Workshop 2012

Downlink – Hotspot Distribution

DL User Throughput Improvement

Median Cell Edge

2.8X 2.0X

1.0X

+ 4 P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C R

E  an d P  ar  t  i   t  i   oni  n g

1.0XM a c r  o- onl   y 

1.4X

+ 4 P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n g

M a c r  o- onl   y 

1.2X

Simulation results based on Qualcomm pro totype implementation and 3GPP evaluation methodology TR 36.814

Macro ISD = 500m, 2GHz carrier frequency, full-buffer traff ic, 10 degree antenna downtilt, cell edge user is defined as 5 percentile rate user, localpartitioningClustered configuration (4a): 4 Picos / Macro cell, 8 out of 25 UEs are dropped near Picos. PF scheduler, 10 MHz FDD, 2x2 MIMO, TU3 channel,NLOS

500m

ISD

Page 25: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 25/48

25IEEE Communication Theory Workshop 2012

Uplink – Hotspot Distribution

Simulation results based on Qualcomm prot otype implementation and 3GPP evaluation methodology TR 36.814

Macro ISD = 500m, 2GHz carrier frequency, full-buffer traff ic, 10 degree antenna downtilt, cell edge user is defined as 5 percentile rate user, local partitioning

Clustered configuration (4a): 4 Picos / Macro cell, 8 out of 25 UEs are dropped near Picos. PF scheduler, 10 MHz FDD, 2x2 MIMO, TU3 channel, NLOS

UL User Throughput Improvement

Median Cell Edge

+ 4 

P i   c  o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n

 g

3.0X

1.0X

1.9X

1.0X

M a c r  o- onl   y 

1.4X+ 4 P i   c 

 o s 

 C  o- C h  ann el  

+ 4 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n

 g

M a c r  o- onl   y 

1.2X

500m

ISD

Page 26: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 26/48

26IEEE Communication Theory Workshop 2012

Downlink – Uniform Distribution

DL User Throughput Improvement

Median Cell Edge

Simulation results based on Qualcomm prot otype implementation and 3GPP evaluation methodology TR 36.814

Macro ISD = 1.7km, 700MHz carrier frequency, full-buffer traffic, 6 degree antenna downtilt, cell edge user is defined as 5 percentile rate user8 Picos and 25 UEs per Macro cell, uniform random layout, PF scheduler, 10 MHz FDD, 2x2 MIMO, TU3 channel, NLOS, local partitioning algorithm

+  8 P i   c  o s 

 C  o- C h  ann el  

+  8 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n g

1.6X

1.0X

1.7X

1.0X

M a c r  o-

 onl   y 

3.0X

+  8 P i   c  o s 

 C  o- C h  ann el  

+  8 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n g

1.2X

M a c r  o- onl   y 

1732m

ISD

Page 27: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 27/48

27IEEE Communication Theory Workshop 2012

Uplink – Uniform Distribution

UL User Throughput Improvement

Median Cell Edge

Simulation results based on Qualcomm prot otype implementation and 3GPP evaluation methodology TR 36.814

Macro ISD = 1.7km, 700MHz carrier frequency, full-buffer traffic, 6 degree antenna downtilt, cell edge user is defined as 5 percentile rate user8 Picos and 25 UEs per Macro cell, uniform random layout, PF scheduler, 10 MHz FDD, 2x2 MIMO, TU3 channel, NLOS, local partitioning algorithm

+  8 P i   c  o

 s 

 C  o- C h  an

n el  

+  8 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n g

1.2X1.0X

1.6X

1.0X

M a c r  o- onl   y 

3.4X

+  8 P i   c  o s 

 C  o- C h  ann el  

+  8 P i   c  o s 

 C RE 

 an d P  ar  t  i   t  i   oni  n g

1.1X

M a c r  o- onl   y 

1732m

ISD

Page 28: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 28/48

28IEEE Communication Theory Workshop 2012

LTE HetNet OTA Testbed

Co-channel deployment of macro and pico cells

 Advanced Features X2 based interference management

TDM resource partitioning  Advanced receivers

Page 29: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 29/48

29

Heterogeneous Networks3G Closed Access Cells

Page 30: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 30/48

30IEEE Communication Theory Workshop 2012

Overview

Co-channel closed access femtocell deployment inresidential scenarios requires effective interference andmobility management Unplanned closed subscriber group (CSG) usage by residential

users cause complex interference problems that requires effective

SON features in femtocells Legacy devices

Need to address interference and mobility managementchallenges in residential CSG femto deployments Femto  Macro interference

Femto  Femto interference

Page 31: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 31/48

31IEEE Communication Theory Workshop 2012

Scenarios in Downlink

RF MismatchTraffic

Mismatch

 Apartment Size

Page 32: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 32/48

32IEEE Communication Theory Workshop 2012

Transmit Power Setting

Objective Provide good CSG coveragefor the home UEs whileprotecting macro UEs

Solutions Set CSG transmit power as a

function of RSSI from allneighbor NBs and pilotstrength of dominant macro NB

Fine tune Tx power based ondetection of macro UEs usinguplink RSSI

Femto

Macro NB

Macro UE

Home UE

Page 33: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 33/48

33IEEE Communication Theory Workshop 2012

Scenarios in Uplink

UL interference from

nearby macro

mobile can cause

high noise riseMacro

UE

JAMMING

Femto UE

JAMMING

Femto mobile can cause significant

UL interference near macro cell site

Page 34: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 34/48

34IEEE Communication Theory Workshop 2012

Uplink Rise Setting

Macrocell edge High femto noise

rise threshold

Provides enough tolerance for FUE UL

against nearby MUEs transmitting at high

power

Less likely to cause interference at themacrocell since FUEs also away from

macrocell site

MUE

Femto

Macro

Macro coverage FUE

FemtoMacro

Macro coverage

FUE

MUE

Macrocell site Low femto noise

rise threshold Less femto UL tolerance is needed since

MUEs at cell site transmit at lower power

Protects macro from nearby FUEs

Page 35: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 35/48

35

CoMP

Page 36: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 36/48

36IEEE Communication Theory Workshop 2012

CoMP Techniques

Coordinated Beamforming (CBF) Beamforming with spatial interference reduction

to a UE served by adjacent cells

Inter-cell scheduling and beam coordination tomaximize the aggregated utility metric

Need UE feedback of CSI from serving andinterfering cells

Joint Processing (JP) Multi-cell beam transmission to serve multiple

UEs together at the same time Balance between energy combining and transmit

interference nulling to UEs scheduled by other cells

Requires backhauls with large bandwidth andsmall delays (e.g. fiber-connected RRH)

Central Processor

/ Scheduler

RRH RRHMacro

eNB

CSI: Channel State Information

RRH: Remote Radio Head

Coordinated Beamforming

Joint Processing

Page 37: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 37/48

37IEEE Communication Theory Workshop 2012

Deployment

• Standalone low power pico cells• Relaxed backhaul requirements

• X2 interface to macro cells

• Diverse vendor selection

• RRHs as extensions of macro cells• High speed backhaul

• No inter-vendor operability

• Natural support for eICIC coordination

and centralized processing

Macro + Pico 

Macro + RRH 

Pico

Pico

PicoMacro

RRH RRHMacro Fiber

Fiber

Core Backhaul

Page 38: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 38/48

38IEEE Communication Theory Workshop 2012

Control Region

Common control across macro/RRHs limit capacity Control bottleneck  Scheduling loss

SNR combining gain

Independent cell IDs expand control dimensions

Time

   F  r  e  q  u

  e  n  c  y 

DL control region for macro UEs

PDSCH formacro UEs

DL control region for

RRH-associated UEs

Macro RRH(w/ independent Cell_IDs) 

PDSCH for RRH-

associated UEs

Page 39: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 39/48

39IEEE Communication Theory Workshop 2012

Demodulation Reference Signals

Same cell ID Decoupled data and control transmissions

 Additional demodulation reference signals used

Overhead = 9%

DL Control

DL TM9 Data

RRH RRHMacro

Decoupled control/data

Non TM9 DL Data

Same cell ID for macro/RRHs

Cell Range Expansion(CRE) for data segment

Backhaul

Page 40: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 40/48

40IEEE Communication Theory Workshop 2012

Boundary Artifacts

Macro cell boundary

UE cannot get control

from eNB1, therefore

needs to associatewith eNB2

Larger CRE region

due to CoMP

control

Decoupled control/data

data

UE1

UE2

Regular CRE region

near the macro

Macro cell boundary

UE can associate

with RRH2 due toCRS IC

UE1

UE2

CoMP with CRS-IC

Page 41: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 41/48

41IEEE Communication Theory Workshop 2012

Downlink – Uniform Distribution

DL User Throughput Improvement

Results from R1-xxxxxx, simulation based on 3GPP 36.819. Macro ISD = 500m, 2GHz carrier, 10 degree antenna downtilt, 10 MHz FDD, 2x2 MIMOConfiguration 1: 4 RRHs per Macro cell, cell, 25 UEs are uniform-randomly dropped, TU3 channel, NLOS, full-buffer traffic, PF schedulingRealistic CSI feedback. eICIC uses TM4, RRH-CoMP uses TM9 with centralized scheduler and multi-hypothesis CSI(3-bit codebook) with DM-RS overhead

Median Cell Edge

H e t  N e t   eI   C I   C 

1.0X

1.8X

 eI   C I   C 

+ RRH- C  oMP 

 C  o- c h  ann el  RR

H

1.9X

H e t  N e t   eI   C I   C 

1.0X

1.50X

 eI   C I   C 

+ RRH- C  oMP 

 C  o- c h  ann el  RRH

1.53X

500m

ISD

Page 42: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 42/48

42IEEE Communication Theory Workshop 2012

Downlink – Hotspot Distribution

DL User Throughput Improvement

Results from R1-xxxxxx, simulation based on 3GPP 36.819. Macro ISD = 500m, 2GHz carrier, 10 degree antenna downtilt, 10 MHz FDD, 2x2 MIMOClustered configuration 4b: 4 RRHs per Macro cell, 20 out of 30 UEs are dropped near RRHs, TU3 channel, NLOS, full-buffer traffic, PF schedulingRealistic CSI feedback. eICIC uses TM4, RRH-CoMP uses TM9 with centralized scheduler and multi-hypothesis CSI(3-bit codebook) with DM-RS overhead

Median Cell Edge

H e t  N e t   eI   C I   C 

1.0X

2.0X

 eI   C I   C 

+ RRH- C  oMP 

 C  o- c h  ann el  R

RH

2.2X

H e t  N e t   eI   C I   C 

1.0X

1.9X

 eI   C I   C 

+ RRH- C  oMP 

 C  o- c h  ann el  R

RH

1.93X

500m

ISD

Page 43: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 43/48

43IEEE Communication Theory Workshop 2012

Summary

HetNet CoMP provides limited capacity gain with thecurrent framework DL overhead

Imperfect feedback

Control bottleneck when one steps away from cell splitting

Page 44: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 44/48

44

What’s Next?

Page 45: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 45/48

45IEEE Communication Theory Workshop 2012

Goal

Meet 1000x data demand in 10 years 2x growth per year

Significant improvement in capacity

How do we get there?

More spectrum Today’s LTE FDD deployments are typically 10 MHz

We need ~100 MHz  Assuming we get there, that should yield 10x capacity increase

Where do we get the remaining 100x?

Page 46: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 46/48

46IEEE Communication Theory Workshop 2012

Hyperdense LTE Network

Viral deployment of small cells 200-300 small cells per typical macro cell coverage

 Approach 1:1 ratio with number of devices

Very small form factor for a flexible deployment Light poles, wall sockets, indoor malls

Innovative backhaul

Relays or inside-out coverage with open access femto cells

Opportunistic usage Small cells adapt to spatial/temporal traffic pattern and light

up/down accordingly

Page 47: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 47/48

47IEEE Communication Theory Workshop 2012

LTE HetNet 2.0

Page 48: HetNets3Gand4GIEEECTW2012

7/23/2019 HetNets3Gand4GIEEECTW2012

http://slidepdf.com/reader/full/hetnets3gand4gieeectw2012 48/48

Thank You!