26
High efficiency genome editing using a novel mutant AsCas12a Mark Behlke MD, PhD Chief Scientific Officer 1 February 27, 2019 CRISPR in Drug Discovery 2019 Oxford

High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

High efficiency genome editing using a

novel mutant AsCas12a

Mark Behlke MD, PhD

Chief Scientific Officer

1

February 27, 2019 CRISPR in Drug Discovery 2019 Oxford

Page 2: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Alternative CRISPR nucleases: A.s. Cas12a (Cpf1)

2

• ~1300 AA, smaller than Cas9

• Single 41-44mer RNA trigger

• “TTTV” PAM site – expands sequence space for editing vs. “NGG”

Page 3: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Like Cas9, Cas12a OTEs are reduced using RNP compared to plasmid

3Kim et al., Nature Biotech, 2016

OTE plasmidOTE RNP

background

Cas12a intrinsically has

lower OTEs than Cas9

Page 4: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Optimize Cas12a crRNA length and test for

compatibility with chemical modification

4

Page 5: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

AsCas12a crRNA protospacer length optimization

5

0

10

20

30

40

50

60

70

80

90

100

38171-AS 38254-AS 38325-S 38337-AS 38351-S 38538-AS

T7

EI E

dit

ing (

%)

HPRT1 crRNA location and guide strand

HEK293-Stable-Cas12a – 30 nM crRNA

22 mer

21 mer

19 mer

18 mer

17 mer

21 = 20 > 19 >> 18

Page 6: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

AsCas12a crRNA 2’OMe testing

6

Residues affected by 2’OMe modification

Page 7: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

AsCas12a crRNA modification tolerance map

7

UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’

U |||||

C |||||

uCAUCUUuaaU 5’

For routine applications,

simple end-block works as well as

expensive, complex modification patterns

Single 2’OMe base

sensitivity

2’OMe-modified bases = ACUG

2’F-modified bases = ACUG

RNA = acug

Blocks of

modifications

Page 8: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80

T7

EI To

tal E

dit

ing E

ffic

ien

cy

(%)

TTTA

TTTC

TTTG

TTTT

Cas12a editing efficiency is highly PAM-site dependent

8

“TTTV” not “TTTN”

233 Cas12a RNPs delivered

using electroporation into

HEK293 cells that target

multiple genes

Page 9: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Cas12a on-target efficiency adjusted for TTTV PAM site

9

Page 10: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Rationale and strategy for improving AsCas12a

• Problems with AsCas12a

– AsCas12a enzymatic activity < SpCas9

– TTTV is too restrictive

• Strategies to improve AsCas12a properties

– Protein engineering – optimize linkers, NLS, other features

– Primary bacterial mutagenesis screen

• Random low-fidelity PCR mutagenesis of a broadly targeted region

– Secondary focused saturation mutagenesis screen

• Comprehensive mutagenesis of critical AA positions from primary screen

– Results coupled to NGS

10

Page 11: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Improvement in Cas12a activity with protein engineering

11

0

10

20

30

40

50

60

70

80

90

100

T7

EI C

lea

va

ge

(%

)

Rank Order

Cas12a V1 - Replicate 1

Cas12a V1 - Replicate 2

Cas12a V3 - Replicate 1

Cas12a V3 - Replicate 2

Improved activity, still TTTV PAM

Page 12: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Bacterial mutagenesis primary screen

• Cas12a activity in human cells is relatively low

• TTTT PAM sequences are rarely cut by Cas12a

12

TTTC TTTT- toxin + toxin - toxin + toxin

Page 13: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Isolation of an AsCas12a mutant with increased activity

13

Page 14: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

14

Deep-characterization of libraries by NGS

5’ 3’

Mutagenized region

Mutant 1

Mutant 3

Mutant 2

Position

AsCas12a

2 AA positions

were “hot spots”

in the screen

Page 15: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Cell-free validation of AsCas12a mutant phenotypes

15

0 4 0 8 0 1 2 0

0

2 0

4 0

6 0

8 0

1 0 0

3 0 0 2 3 0 0 4 3 0 0

W T - T T T T

T im e (s )

% o

f D

NA

cle

av

ag

e

0 4 0 8 0 1 2 0

0

2 0

4 0

6 0

8 0

1 0 0

3 0 0 2 3 0 0 4 3 0 0

M u ta n t 3 - T T T T

T im e (s )

% o

f D

NA

cle

av

ag

e

0 4 0 8 0 1 2 0

0

2 0

4 0

6 0

8 0

1 0 0

3 0 0 2 3 0 0 4 3 0 0

M u ta n t 1 - T T T T

T im e (s )

% o

f D

NA

cle

av

ag

e

0 4 0 8 0 1 2 0

0

2 0

4 0

6 0

8 0

1 0 0

3 0 0 2 3 0 0 4 3 0 0

M u ta n t 1 + 3 - T T T T

T im e (s )

% o

f D

NA

cle

av

ag

e

Mutant 2 - TTTTWT - TTTT Mutant 2 - TTTT

Mutant 1 - TTTT Mutant 1+2 - TTTT

New v4 Cas12a

Page 16: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Cas12a v4 Functional Performance

16* = TTTT PAM

Page 17: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Cas12a v

1

Cas12a v

3

Mu

tan

t 1

Mu

tan

t 2

Cas12a v

4

2 0

4 0

6 0

8 0

1 0 0

T7

EI

Cle

av

ag

e (

%)

Cas12a v

1

Cas12a v

3

Mu

tan

t 1

Mu

tan

t 2

Cas12a v

4

2 0

4 0

6 0

8 0

1 0 0

T7

EI

Cle

av

ag

e (

%)

Cas12a v4 cleaves TTTN with high efficiency in human cells

17

TTTN TTTT TTTV

Cas12a v

1

Cas12a v

3

Mu

tan

t 1

Mu

tan

t 2

Cas12a v

4

2 0

4 0

6 0

8 0

1 0 0

T7

EI

Cle

av

ag

e (

%)

Page 18: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Summary of AsCas12a improvement studies

18

Page 19: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

19

Will the same changes also improve LbCas12a?

Page 20: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Other ways to improve Cas12a function as a genome editing tool

20

• Electroporation Enhancer

• HDR Enhancer

Page 21: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

T7

EI to

tal e

ditin

g e

ffic

ien

cy (

%)

Cas12a ribonucleoprotein complex concentration (µM)

HEK 293—RNP—Amaxa® Nucleofector® SystemHPRT1 38330-AS

No Enhancer

Equimolar Enhancer

3 µM Enhancer

21

* * = Toxicity

Like Cas9, Cas12a benefits from ssDNA “electroporation enhancer”

Page 22: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

22

Ultramer ssODN designed to insert 6 bp EcoRI recognition site

HDR Enhancer present in final incubation media (media change after 24 hours)

0

10

20

30

40

50

60

70

MET TNPO3 site1 TNPO3 site 2 HPRT control HPRT site 1 HPRT site 2 HPRT site 3 HPRT site 4

Alt-R S.p. Cas9 nuclease v3 Alt-R A.s. Cas12a (Cpf1) nuclease v3

Eco

RI c

leav

age

(%

)HDR Enhancer improves HDR efficiency for both Cas9 and Cas12a (Cpf1) nucleases

Neon electroporation, Jurkat cells - 3 µM ssODN

No treatment DMSO 30 µM HDR Enhancer

Page 23: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

23

Ultramer ssODN designed to insert 6 bp EcoRI recognition site

Increased nuclease activity = increased HDR efficiency

Page 24: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

24

Availability

Alt-R® A.s. Cas12a (Cpf1) v3 Catalog item

Alt-R® A.s. Cas12a (Cpf1) Ultra v4 May

Beta test samples can be obtained from IDT R&D now

[email protected]

[email protected]

Page 25: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Conclusions• WT AsCas12a editing in mammalian cells is inherently less robust than SpCas9

– More restrictive PAM (TTTV as opposed to NGG)

– Slightly lower enzymatic activity (more of an issue for RNP than plasmid/viral)

• Protein engineering can significantly improve performance at TTTV sites

• Directed evolution efforts led to a mutant variant (Alt-R AsCas12a V4) with

superior properties

– Higher overall editing efficiencies

– Enabled TTTT PAM cleavage

• Contrary to conventional wisdom, high HDR rates can be achieved using Cas12a;

new Cas12a mutant and use of “HDR Enhancer” helps

• Like Cas9, “Electroporation Enhancer” improves RNP activity

25

Page 26: High efficiency genome editing using a novel mutant AsCas12a · UgUAGAu/nnnnnnNNNNNNnNNnNNNNN 3’ U ||||| C ||||| uCAUCUUuaaU 5’ For routine applications, simple end-block works

Thanks to the scientists who contributed to these studies …

26

Integrated DNA Technologies

– Ashley Jacobi

– Garrett Rettig

– Mollie Schubert

– Rolf Turk

– Bernice Thommandru

– Matt McNeill

– Michael Christodoulou

– Chris Vakulskas

– Michael Collingwood

– Nicole Bode

– Sarah Beaudoin

– Liyang Zhang

Coralville, Iowa

USA

CRISPR Protein Team