34
Hop is an exceptional source of resveratrol for brewers Dr. Vesna Jerkovic 9 September 2008 Unité de brasserie et des industries alimentaires, UCL Prof. Sonia Collin

Hop is an exceptional source of resveratrol for brewers is an exceptional source of resveratrol for brewers Dr. Vesna Jerkovic 9 September 2008 Prof. Sonia Collin Unité de brasserie

  • Upload
    lamanh

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Hop is an exceptional source of resveratrol for brewers

Dr. Vesna Jerkovic 9 September 2008

Unité de brasserie et des industries alimentaires, UCL Prof. Sonia Collin

Polyphenols

Phenolic acids Flavonoids Stilbenes� Benzoic acid

� Cinnamic acid � Flavonols� Flavanoids

� Anthocyanidins

� Prenylchalcones

� Flavanones� 3,4-Flavanediols

� Flavan-3-ols� Flavones� Isoflavones

OH

(OH)n

(OH)n

O

(OH)n

(OH)n

COOH

(OH)n

(OH)n

COOH

Antioxidant, aroma precursors

Antioxidant, astringency, color, health benefits (cardioprotector, estrogenic activities,…)

Health benefits (cardioprotector, anti-carcinogenic, anti-inflammatory,…)

Resveratrol and glycoside

� Implication in the « French paradox »In grapes : 0.5 to 39 ppm

In red wines : up to 20 ppm

� anti-viral, anti-oxidant, anti-inflammatory and estrogenic activities

OH

OH

OH OGlc

OH

OH

trans-Resveratrol trans-Piceid

Low compared to flavonoids but

Anti-carcinogenic,

OH

O

OH

OM e

OH

OH

� Flavonoids (10000 – 50000 ppm) :

- flavonols (300 – 2000 ppm) :

quercetin, kaempferol,…

- prenylchalcones

(up to 6000 ppm) :

xanthohumol,…

- flavanols (10000 � 50000 ppm) : catechin, epicatechin, dimers, trimers � oligomers

Hop polyphenolsFermentation BeerMalt, water Mashing Boiling Hop

+

Fermentation BeerMalt, water Mashing Boiling Hop

+

1:500

O

OH

OHOH

OH

R3

R2

R1

(+)-catéchine: R1=H R2=OH R3=H(-)-épicatéchine: R1=OH R2=H R3=H(+)-gallocatéchine: R1=H R2=OH R3=OH(-)-galloépicatéchine: R1=OH R2=H R3=OH

1

2

3

456

7

3'

4'

5'

� Phenolic acids (10 – 60 ppm) : syringic acid, cafeic acid,…

OOH

OHO

OH

OH

OH

OH

OH

OH

OH

OH

4

8

OH

OH

OH OGlc

OH

OH

� Stilbenes : resveratrol piceid

OH

OH

O

OH

OH

O

OH

OH

OH

O

OH

OH

O

OH

OH

COOH

OH

OMe

MeO COOH

(1-20 ppm)(1 - 5 ppm) (1 - 15 ppm)

Context

2003 : Discovery of trans-resveratrol in hop

Callemien, Jerkovic, Rozenberg & Collin, Journal of Agricultural and Food Chemistry , 53,

2005, 424-429

Best cultivars ?

Impact of the harvest year ?

Impact of conditioning (pelletisation, …) ?

Fate of stilbenes through the brewing process ?

Hop processing

Harvest

Drying

Hop vines Hop cones

Pelletisation

Hop pellets

CO2 extraction

Solvent extraction

Hop extract

1. New methodologies

1.1. Standard synthesisJerkovic, Nguyen, Nizet & Collin, Rapid Communication in Mass spectrometry, 21, 2007, 2456-2466

One-pot approach

OH

R

R

OMe

R

R

Diazomethane in diethyletherRoom T°, 45 minutes

OH

OH

OH

KOH/ EtOH

Room T°, 1 week

OH

OH

OGlc

Acetobromo-α,D-glucose

O

O

O O

O

O

O

O

OBr

OH

OH

OH

KOH/ EtOH

Room T°, 1 week

OH

OH

OGlc

Acetobromo-α,D-glucose

O

O

O O

O

O

O

O

OBr

Synthesis of methoxylated stilbenesSynthesis of glycosylated stilbenes

a

d

cb

a

d

c

b

δδδδ

ββββ

χχχχ

a’

b’

b”

d’

Reactants with similar chemical properties

attended products

non attended products

a a

d d

ccb b

a a

d d

cc

b b

δδδδδδδδ

ββββββββ

χχχχχχχχ

a’ a’

b’ b’

b”b”

d’ d’

Reactants with similar chemical properties

attended products

non attended products

Synthesis and characterization of 22 analogs and 9 commercial standards

1.2. Optimization of analyses of trans-resveratrol and analogs in hopCallemien, Jerkovic, Rozenberg & Collin, Journal of Agricultural and Food Chemistry, 53, 2005, 424-429

1. Elimination of hydrophobic compounds by toluene and cyclohexane

2. Stilbene extraction by ethanol:water (80:20), 60°C

3. Concentration

4. Analysis by RP-HPLC-MS/MS-APCI(+)

RT: 12.95 - 24.84 SM: 9B

13 14 15 16 17 18 19 20 21 22 23 24Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100R

ela

tive

Abu

ndan

ce

NL:6.92E4

m/z= 134.5-135.5 MS Res-APCI36

60 80 100 120 140 160 180 200 220m/z

45

0

10

20

30

40

59

0

10

20

30

40

50

Rel

ativ

e A

bund

anc

e

100

0

20

40

60

80

Res-APCI36#826-843 RT: 16.16-16.50 AV: 18 NL: 3.80E4 T: + c APCI Full ms2 [email protected] [ 60.00-239.00]

Res-APCI36#903-918 RT: 17.65-17.94 AV: 16 NL: 2.25E4 T: + c APCI Full ms2 [email protected] [ 60.00-239.00]

Res-APCI36#1082-1097 RT: 21.16-21.46 AV: 16 NL: 1.72E4 T: + c APCI Full ms2 [email protected] [ 60.00-239.00]

Rel

ativ

e A

bund

anc

e

Rel

ativ

e A

bund

ance

100

0

0

100 135.0

211.0

135.0

135.0

211.0

211.0

107.0

119.1107.0

119.0107.0

119.0

228.7

228.2

229.1

100 200

17.78 (2)

21.38 (3)

16.38 (1)a. b.

(1)

(2)

(3)

Polar Apolar

trans-resveratrol

trans-piceid

cis-piceid

Prevail C18 (150 x 2.1 mm, 3 µm)Temp. 30°C, Inj. vol : 10 ml, Flow 0,2 ml/min.Linear gradient from 95 % water (0,1% ACF +1% ACN) / 5 %ACN to 100% ACNAPCI (+)

1.3. Quantification of trans-resveratrol and trans-piceidin beerJerkovic, Nguyen, Timmermans & Collin, submitted

Polyacrylate fiber

1. Extraction2. Derivatization

(BSTFA)3. GC-MS Liquid-liquid extraction

1. Extraction (Ethyl acetate)

2. Concentration

Solid-phase extraction

1. Conditioning

2. Loading of beer

3. Elution (Ethanol)4. Concentration

LOD : 5 ppb/ LOQ : 15 ppb

Elimination of hydrophobiccompounds(Toluene/Cyclohexane)

RP-HPLC-MS/MS-APCI(+)

+ trans-resveratrol+ trans-piceid- Bad recovery

+ trans-resveratrol+ trans-piceid+ High recovery (76%)- Long (8 h)

SPME - DIRECT ANALYSIS RP- HPLC ANALYSIS AFTER EXTRACT ION

Elimination of hydrophobiccompounds(Toluene/Cyclohexane)

RP-HPLC-MS/MS-APCI(+)

OH

OH

OH

NO

FF

F

Si Si+ 3

OSi(CH3)3

OSi(CH3)3

(CH3)3SiO F F F

NO

H

Si+ 3

+ Avoid pre-cleaning+ Easy and rapid (1.5 h)+ trans-resveratrol ok− trans-piceid N.D.− Bad reproducibility

Lager beer without adjunctPrevail C18 (150 x 2.1 mm, 3 µm)Temp. 30°C, Inj. vol : 10 ml, Flow 0,2 ml/minLinear gradient from 95 % water (0,1% ACF +1% ACN) / 5 %ACN to 100% ACNAPCI (+)

Polar Apolar

14 16 18 20 22 24Time (min)

0

10

20

30

40

50

60

70

80

90

1000 NL: 3.50E4

m/z= 134.5-135.5 F: + c APCI Full ms2 [email protected] [ 60.00-239.00] MS gv biere 090504 09

OG lc

OH

OH

OH

OH

OH

R T : 1 0 .0 0 - 4 0 .0 0

1 0 1 5 2 0 2 5 3 0 3 50

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 0 0 0 0

5 5 0 0 0

6 0 0 0 0

6 5 0 0 0

7 0 0 0 0

7 5 0 0 0

8 0 0 0 0

8 5 0 0 0

9 0 0 0 0

9 5 0 0 0

1 0 0 0 0 0

Inte

nsity

1 8 .1 8

1 6 .4 5

3 3 .3 9

3 4 .1 52 6 .9 2 2 9 .7 7

3 0 .9 02 2 .8 1 2 4 .6 41 9 .7 3 2 8 .5 5 3 7 .9 8

3 4 .5 3

1 3 .0 7

3 2 .9 3

3 5 .4 21 2 .5 3

1 5 .1 7

1 2 .2 3

SPME-DIRECT ANALYSIS RP-HPLC ANALYSIS

Lager beer without adjunctPolyacrylate fiberCP-Sil 5 CB columnDesorption 7 min at 280°C100 � 250°C at 10°C/min, 250°C for 30 minSIM m/z = 444Helium = 1 ml/min

trans-resveratrol

2. Stilbenes in hop and other raw materials

2.1. Secondary metabolite� relationship stilbenes/ α-acids (hop bitterness)Jerkovic, Callemien & Collin, Journal of Agricultural and Food Chemistry, 53, 2005, 4202 – 4206

AmarilloVanguard

R2 = 0,9793

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

α-acid (%)

Glo

bal

stilb

ene

cont

ent

(m

g/kg

)

American pellets

0

2

4

6

8

10

12

14

Ha

llertau M

ittelfruh

er (G) 2

00

5

He

rsbrucker S

pat (G

) 20

05

Sp

alter (G) 2

00

5

Ha

llertau M

agnum

(G) 2

00

5

Sm

aragd (G

) 20

05

Ha

llertau T

aurus (G) 2

00

5

Ha

llertau T

radition

(G) 2

00

5

Sap

hir (G

) 20

05

Wye T

arget (G) 2

00

5

Nugget (G

) 20

05

Wye T

arget (G) 2

00

6

Prem

ian

t (CZ

) 20

05

Ha

llertau M

ittlefrüher (G

) 20

06

Ha

llertau M

agnum

(G) 2

00

6

Sm

aragd (G

) 20

06

Ha

llertau T

radition

(G) 2

00

6

He

rsbrucker S

pat (G

) 20

06

To

mah

aw

k (USA

) 20

05

Ha

llertau T

aurus (G) 2

00

6

Sim

coe

(US

A) 2

00

5

Nugget (G

) 20

06

Sap

hir (G

) 20

06

Sp

alter (G) 2

00

6

Saa

z (CZ

) 20

05

Warrio

r (US

A) 2

00

5

Warrio

r (US

A) 2

00

6

Willa

me

tte (USA

) 20

05

Cascade (U

SA) 2

00

5

To

mah

aw

k (USA

) 20

06

Nugget (U

SA) 2

00

5

Sla

deck (C

Z) 2

00

6

Sim

coe

(US

A) 2

00

4

To

mah

aw

k (USA

) 20

04

Saa

z (CZ

) 20

06

Cascade (U

SA) 2

00

6

Nugget (U

SA) 2

00

4

Warrio

r (US

A) 2

00

4

Cascade (U

SA) 2

00

4

Willa

me

tte (USA

) 20

06

Willa

me

tte (USA

) 20

04

Stil

bene

con

cent

ratio

n (m

g/kg

)

trans-Piceid trans-Resveratrol

ALL GERMAN VARIETIES

4.9

2.75.4

� American varieties

� Low α-acids < 5.5 %

� ! Harvest-dependant

Necessary but not sufficient

Jerkovic & Collin, Journal of Agricultural and Food Chemistry, 55, 2007, 8754-8758

0

2

4

6

8

10

12

14

2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006

Stil

bene

con

cent

ratio

n (p

pm)

trans-Picied trans-Resveratrol TP TRWillamette Tomahawk

(a)

Cascade Warrior

2.2. Phytoalexin � strong influence of the harvest yearJerkovic & Collin, Journal of Agricultural and Food Chemistry, 55, 2007, 8754-8758

trans-Piceid

trans-Resveratrol

2.3. Influence of hop processing and storageStilbene � light sensitive � strong influence of hop processing Jerkovic & Collin, Journal of Agricultural and Food Chemistry, 2007, accepted

trans-Piceid in cones trans-Piceid in pellets trans-Resveratrol

Willamette 4.9% Cascade 5.4 % Warrior 13.2% Tomahawk 12.1%

0

2

4

6

8

10

12

14

cones pellets cones pellets cones pellets cones pellets cones pellets cones pellets

Stil

bene

con

cent

ratio

n (p

pm)

trans-Piceid trans-Resveratrol

Nugget 13.8% Simcoe 12.8%

Harvest 2004 : influence of pelletisation

0

2

4

6

8

10

12

cones pellets cones pellets cones pellets cones pellets

Stil

bene

con

cent

ratio

n (p

pm)

trans-Resveratrol

trans-Piceid in pellets

trans-Resveratrol

trans-Piceid in cones

Willamette (4.0%) Cascade (5.0%) Warrior (13.1%) Tomahawk (14.2%)

trans-Piceid in cones trans-Piceid in pellets trans-Resveratrol

Harvest 2006 : influence of pelletisation

No rules for cultivars sensibility

0

2

4

6

8

10

12

Willam

ette 0 month of storage (4.9%

)

4 months

8 months

12 months

Cascade 0 month of storage (5.4%

)

4 months

8 months

12 months

Tomahawk 1 0 m

onth of storage (14.4%)

4 months

8 months

12 months

Warrior 0 m

onth of storage (13.2%)

4 months

8 months

12 months

Nugget 0 month of storage (13.8%

)

4 months

8 months

12 months

Tomahawk 2 0 m

onth (12.1%)

4 months

8 months

12 months

Simcoe 0 m

onth of storage (12.8%)

4 months

8 months

12 months

Stil

bene

con

cent

ratio

n (m

g/kg

hop

)

trans-Piceid trans-Resveratrol

One-year storage at 4°C leads to a huge loss of resveratrol and its glucoside

Hop cones : influence of storage

0

2

4

6

8

10

12

14

Willamette 0 month of storage (4.9%

)

4 months 8 months 12 months

Cascade 0 month of storage (5.4%)

4 months 8 months 12 months

Warrior 0 month of storage (13.2%

)

4 months 8 months 12 months

Nugget 0 month of storage (13.8%)

4 months 8 months 12 months

Tomahawk 0 month (12.1%)

4 months8 months 12 months

Simcoe 0 month of storage (12.8%)

4 months8 months 12 months

Stil

bene

con

cent

ratio

n (m

g/kg

)trans-Resveratrol in pellets

trans-Piceid in pellets

Série5

Total trans-stilbene in cones at 0 and 12 months

0

2

4

6

8

10

12

14

Willamette 0 month of storage (4.9%

)

4 months 8 months 12 months

Cascade 0 month of storage (5.4%)

4 months 8 months 12 months

Warrior 0 month of storage (13.2%

)

4 months 8 months 12 months

Nugget 0 month of storage (13.8%)

4 months 8 months 12 months

Tomahawk 0 month (12.1%)

4 months8 months 12 months

Simcoe 0 month of storage (12.8%)

4 months8 months 12 months

Stil

bene

con

cent

ratio

n (m

g/kg

)trans-Resveratrol in pellets

trans-Piceid in pellets

Série5

Total trans-stilbene in cones at 0 and 12 months

Hop pellets : influence of storage

OGlc

OH

OH

OH

OH

OH

trans-Piceid

trans-Resveratrol cis-Resveratrol 15 16 17 18 19 2 0 21 22 23Tim e (m in )

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lativ

e A

bu

nda

nce

1 5 16 1 7 18 1 9 20 21 2 2 23Tim e (m in )

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

10 0

Re

lativ

e A

bun

da

nce

16.05 (1)

17.33 (2)

21.50 (3)

15.87 (1)

17.19 (2)

21.15 (3) 22.22

(4)

trans-piceid

trans-resveratrol

cis-piceid

cis-resveratrol

Fresh hop

Hop + 8 months

cis-Piceid

Glc

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12Times (months)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12Time (months)

2.3. Influence of hop processing and storage Jerkovic & Collin, Journal of Agricultural and Food Chemistry, 2007, accepted.

Close to hop pellets storage

4°C, nitrogen, dark

25°C, light

25°C, dark

trans-piceid recovery (%)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12Time (months)

trans-resveratrol recovery (%)

4°C, dark

25°C, light

25°C, non protection, light

25°C, nitrogen, light

cis-piceid recovery (%)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12Times (months)

25°C, non protection, light

25°C, nitrogen, light

cis-resveratrol recovery (%)

OGlc

OH

OHtrans-piceid

OH

HO

O

OHHO

OH

ESS

δ-Viniferin

2.4. Search for resveratrol analogs in hop Jerkovic & Collin, EBC, 2007, in press

(a)

(b) (c)

(d)

(d)

(e)

A

B

C

(d) in B and C

(e) in B

OMe

MeO

OH

107.0

Detection of a trans-pterostilbene analog (same M+1 = 257) : concentratio n close to 1 ppm in pterostilbene equivalents

m/z = 229

m/z = 257

m/z = 257

Standard

Unknown

trans-pterostilbenestandard

2.5. Other raw materials for brewers Jerkovic & Collin, EBC, 2007, in press

Adaptation of hop extraction : cyclohexane + ethanol:water

R T: 0.0 0 - 30 .10 SM : 15G

0 5 10 15 2 0 2 5 3 0Time (mi n)

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

NL: 2 .0 0E5m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 60 .0 0-3 29 .00 ] M S jf 0 20 40 7 st ilbe ne0 4

NL: 2 .0 0E5m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 6 0. 00 - 32 9 .00 ] M S vj cer eales

NL: 2 .0 0E5

m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 6 0. 00 - 32 9 .00 ] M S vj ce rea les0 2

NL : 1. 00 E 6

m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 6 0. 00 - 32 9 .00 ] M S vj ce rea les0 3

R T: 0 .0 0 - 30 .0 9 SM : 15G

0 5 10 15 2 0 25Time (mi n)

0

2 0

4 0

6 0

8 0

10 0R

ela

tive

Abu

nda

nce

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

15.4

20.4

15.320.4

OG lc

OH

O H

OH

O H

O HR T: 0.0 0 - 30 .10 SM : 15G

0 5 10 15 2 0 2 5 3 0Time (mi n)

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

NL: 2 .0 0E5m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 60 .0 0-3 29 .00 ] M S jf 0 20 40 7 st ilbe ne0 4

NL: 2 .0 0E5m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 6 0. 00 - 32 9 .00 ] M S vj cer eales

NL: 2 .0 0E5

m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 6 0. 00 - 32 9 .00 ] M S vj ce rea les0 2

NL : 1. 00 E 6

m/ z= 13 4.5 -13 5 .5 F : + c AP CI F ull ms 2 2 2 9.0 0@3 7.00 [ 6 0. 00 - 32 9 .00 ] M S vj ce rea les0 3

R T: 0 .0 0 - 30 .0 9 SM : 15G

0 5 10 15 2 0 25Time (mi n)

0

2 0

4 0

6 0

8 0

10 0R

ela

tive

Abu

nda

nce

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

0

2 0

4 0

6 0

8 0

10 0

Re

lativ

e A

bun

danc

e

15.4

20.4

15.320.4

OG lc

OH

O H

OH

O H

O H

malt + standard

pale malt

dark malt

barley

corn

white sorghum

redsorghum

wheat

For the first time, detection of traces of stilbenes in red sorghum : 0.5 – 1 ppm !

Matrix rich in flavonoids = potential source of stilbenes

2.6. Search for stilbene synthase in hop Jerkovic & Collin, EBC, 2007, in press

Method : PCR and DNA sequencingComparison with Stilbene synthase extracted from grapes

GRAPES SAMPLES

Grapes STS reference

Hop CHS references

H

O

P

S

A

M

P

L

E

S

H.lupulus Chs3 H.lupulus CHS-like 2 H.lupulus CHS-like 1 Hallertauer Merkur clone 7 Wye Target clone 1 Wye Target clone 2 Wye Target clone 5 Wye Target clone 3 Wye target clone 9 H.lupulus Chs4 Spalter select clone 6 Willamette clone 8 Wye Target clone 4 H.lupulus vps H.lupulus CHS-like 3 H.lupulus chs2 H.lupulus CHS-like 4 Pinus strobus STS Pinus strobus CHS Vitis sp.clone 10 Vitis sp.clone 13 Vitis STS2 A.hypogaea STS1 A.hypogaea CHS1 Cannabis CHS H.lupulus chs H1 V. vinifera CHS E Coli FA elongase

10099

99

98

94

96

32100

50

52

56

3152

100

4628

100

40

91

36

6979

91

9732

Hop CHS references

Target clone 9

No stilbene synthase was found in hop � chalcone synthase might be involved in

stilbene biosynthesis (Yamaguchi et al, 1999 )

3. Stilbenes in beer

Resveratrol in commercial beers ~ 5 µg/l

3.1 Stilbenes commercial beers Jerkovic, Nguyen, Timmermans & Collin, Journal of the Institute of brewing, 2008, in press.

<5<5TFL

<5<5TFP

>5*>5*TFA

>5*>5*TFW

<5<5LG4

>5*<5LG3

>5*>5*LG2

>5*>5*LG1

trans-Piceid(µg.L-1)

trans-Resveratrol (µg.L-1)

Beers

* Under the quantification limit (15 µg.L-1) of the SPE procedure.

How to increase resveratrol content ????���� Preparation of stilbene-rich hop extracts? Use of spent hops

0

20

40

60

80

100

120

0 minutes 7 minutes 75 minutes

Time of ebullition

Con

cent

ratio

n (

%)

trans-piceid trans-resveratrol

Ebullition = critical step

0

20

40

60

80

100

120

t=0 End of fermentation, without yeast End of fermentation, with yeast

tra

ns-s

tilbe

ne r

eco

very

(%)

- ini

tial c

once

ntra

tion

10

mg/

l

trans-Piceid trans-Resveratrol

Fermentation = release from the glucoside

Jerkovic, Callemien & Collin, Journal of Agricultural and Food Chemistry, 53, 2005, 4202 – 4206

0

1

2

3

4

5

6

7

8

9

Tomahawk Pellets Tomahawk Spent

trans-Piceid trans-Resveratrol

Pellets Spent

3.2 Enriched-hop extract CO2 extracts

CONCLUSIONS

Methods have been optimized for stilbenes analysis i n hop and beer

A new stilbene library is now available

� chalcone synthase could be involved in stilbene synthe sis.

E. Red sorghum is another source of stilbenes for br ewers

D. No stilbene synthase in hop

B. For hop stilbenes : � the American low- α-acid cultivars emerge as the most concentrated

before pelletization;

� strong influence of the harvest year;

� pelletization induces strong stilbene degradation;

� one-year storage at 4°C leads to a huge loss of res veratrol and its glucoside, especially in the case of hop cones.

A. Hop = exceptional source of polyphenols

C. Beer :

� resveratrol in commercial beers ~ 5 µg/l;

� spent hop extracts could be very interesting to inc rease and standardize resveratrol level in beer.

Thanks to…

� La fondation Inbev-Baillet Latour pour le soutien financier

� Prof. Sonia Collin

� L’équipe INBR : Fanny, Etienne,… � Les mémorants qui ont participé au projet

� Monsieur Stéphane Meulemans de chez Yakima Chief pour son aide précieuse dans l’obtention d’échantillons

� Ma famille

� Mes amis : Béné, Alexis, Aurore, Sabine, Delphine, …� Michaël

� Toutes les personnes qui de près ou de loin m’ont permises de mener à bien ce travail