25
How to optimize comfort in stereoscopic displays Martina Rasch, Manuel Wyss and Florian Zoubek

How to optimize comfort in stereoscopic displays

  • Upload
    latham

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

How to optimize comfort in stereoscopic displays. Martina Rasch, Manuel Wyss and Florian Zoubek. Motivation. [1]. 2. Vergence-Accommodation Conflict. [2]. 3. Vergence / Accommodation-Coupling. [3]. 4. How to measure comfort?. [4]. [5]. 5. Random Dot Stereograms. [6]. vs . 6. - PowerPoint PPT Presentation

Citation preview

Page 1: How to optimize comfort in stereoscopic displays

How to optimize comfort in stereoscopic displays

Martina Rasch, Manuel Wyss and Florian Zoubek

Page 2: How to optimize comfort in stereoscopic displays

Motivation

2

[1]

Page 3: How to optimize comfort in stereoscopic displays

Vergence-Accommodation Conflict

3

[2]

Page 4: How to optimize comfort in stereoscopic displays

Vergence/Accommodation-Coupling

4

[3]

Page 5: How to optimize comfort in stereoscopic displays

How to measure comfort?

5

[4] [5]

Page 6: How to optimize comfort in stereoscopic displays

Random Dot Stereograms

6

[6]

vs.

Page 7: How to optimize comfort in stereoscopic displays

Disparity Manipulation

7

Depth Range

Dis

parit

y

Page 8: How to optimize comfort in stereoscopic displays

Disparity Manipulation

8

Depth Range

Dis

parit

y Comfort Zone

Page 9: How to optimize comfort in stereoscopic displays

Disparity Manipulation

9

Depth Range

Dis

parit

y Comfort Zone

Page 10: How to optimize comfort in stereoscopic displays

Disparity Manipulation

10

Depth Range

Dis

parit

y Comfort Zone

Page 11: How to optimize comfort in stereoscopic displays

Creating a Metric

11

vs.

Page 12: How to optimize comfort in stereoscopic displays

Quality Model

12

Page 13: How to optimize comfort in stereoscopic displays

Disparity Frequency Model

13

Resp

onse

[JN

D]Disparity [arcmin]

1

2

3

4

5

*Different for each frequency

[7]

Page 14: How to optimize comfort in stereoscopic displays

14

Pipeline

[8]

Page 15: How to optimize comfort in stereoscopic displays

Further Applications

15

Standard stereo Backward-compatible stereo

[9]

Page 16: How to optimize comfort in stereoscopic displays

Disparity Mapping in Post-Production

16

[10]

Page 17: How to optimize comfort in stereoscopic displays

Algorithms

17

[11]

View-interpolation

Multi-rigging[12]

Page 18: How to optimize comfort in stereoscopic displays

Method

18

Disparitymap

extraction

Disparity map

optimization

Disparity manipulation

Computing Correspondence

Features

Minimize error and

maximize comfort

Warping

Page 19: How to optimize comfort in stereoscopic displays

Disparity map extraction

19[13]

Page 20: How to optimize comfort in stereoscopic displays

Disparity optimization

20

[14]

Page 21: How to optimize comfort in stereoscopic displays

Disparity manipulation with warping

21[15]

Page 22: How to optimize comfort in stereoscopic displays

Temporal constraints

22

[16]

Page 23: How to optimize comfort in stereoscopic displays

Applications

23

[17]

Page 24: How to optimize comfort in stereoscopic displays

Thank you foryour attention!

Page 25: How to optimize comfort in stereoscopic displays

List of Figures[1] Oculus Rift: http://pixelvolt.com/wp-content/uploads/2013/11/Oculus-Rift-GDC-2013.jpg

[2] Figure 1, Hoffman, David M., et al. "Vergence–accommodation conflicts hinder visual performance and cause visual fatigue." Journal of vision 8.3 (2008).

[3] Adaptation of Figure 1, Lambooij, Marc, et al. "Visual discomfort and visual fatigue of stereoscopic displays: a review." Journal of Imaging Science and Technology 53.3 (2009): 30201-1.

[4] Questionaire: selfmade (Shown questionnaire created by David M. Hoffman et. al)

[5] Stopwatch: http://www.flickr.com/photos/purplemattfish/3020016417/

[6] Random dot stereogram: http://www.jrg3.net/presentations/random_dot.jpg

[7] Slide 10, http://people.csail.mit.edu/pdidyk/projects/LuminanceDisparityModel/LuminanceDisparityModel.pptx

[8] Figure 4, Didyk, Piotr, et al. "A perceptual model for disparity." ACM Transactions on Graphics (TOG). Vol. 30. No. 4. ACM, 2011.

[9] Figure 11, Didyk, Piotr, et al. "A perceptual model for disparity." ACM Transactions on Graphics (TOG). Vol. 30. No. 4. ACM, 2011.

[10] Adaptation of Figure 10, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics (TOG) 29.4 (2010): 75.

[11] View interpolation: http://research.microsoft.com/en-us/um/people/larryz/ZitnickSig04.pdf

[12] Multi-rig: http://www.3dfocus.co.uk/3d-news-2/3d-technology/mio3d-push-for-stereo-rigs-with-3-or-more-cameras/6282

[13] SIFT: http://groups.csail.mit.edu/graphics/classes/CompPhoto07/PPT/12_Phototourism.key/SIFT_fade.png

[14] Adaptation of Figure 1, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics (TOG) 29.4 (2010): 75.

[15] Adaptation of Figure 14, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics (TOG) 29.4 (2010): 75.

[16] Figure 9, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics (TOG) 29.4 (2010): 75.

[17] Adaptation of Figures 11 and 12, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics (TOG) 29.4 (2010): 75.

25