19
Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 1 Improving Nanoparticle Detection and Characterization using sP-ICP-MS with Microsecond Dwell Times Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Annual Meeting 2013 November 5, 2013

Improving Nanoparticle Detection and Characterization using sP

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 1

Improving Nanoparticle Detection and Characterization using sP-ICP-MS with Microsecond Dwell Times

Manuel David Montaño, James F. Ranville, Hamid R. Badiei

SNO Annual Meeting 2013 November 5, 2013

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 2

Need for ENP Characterization

Alvarez, Environ. Sci. & Tech. 2007

• Increasing production of ENPs will lead to inevitable release and exposure • All sources can potentially lead to impacting human health • Various environmental processes can effect the fate and transport of ENPs

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 3

ENP Questions and Challenges

National Nanotechnology Initiative Workshop, Arlington VA, 2009

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 4

Principles of single particle-ICP-MS

• Dissolved analyte gives a constant signal • NP solution dilute: single nanoparticle in a single dwell time • Assumption one pulse = one particle • Number of pulses = number of nanoparticles

Mitrano, D.; Lesher, E.; Bednar, A. et al. Environmental Toxicology and Chemistry, 2012

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 5

sP-ICP-MS Obstacles (Coincidence)

0 20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

1000

1200

1400

Counts

Time (sec)

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

50ppt 100nm Au NPs (10ms)

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 6

sP-ICP-MS Obstacles (Coincidence)

0 20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

1000

1200

1400

Counts

Time (sec)10.00 10.01 10.02 10.03 10.04 10.05

0

50

100

150

200

250

300

350

400

450

500

550

600

Counts

Time (sec)

~450 counts

50ppt Au NP (10ms)

NP event ~ 0.4ms 10ms / 0.4 = 25 NPs

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 7

sP-ICP-MS Obstacles (Coincidence)

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

10.00 10.01 10.02 10.03 10.04 10.05

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

510.91

7.00

786.16

968.27

2.00

394.54

2.00

Co

unts

Time (sec)2ppb 100nm Au NP (10ms)

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 8

sP-ICP-MS Obstacles (Coincidence)

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

2ppb 100nm Au NP (3ms)

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 9

sP-ICP-MS Obstacles (Coincidence)

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

11.110 11.115 11.120 11.125 11.130

0

20

40

60

80

100

120

140C

ounts

Time (sec)

392 counts

287 counts

352 counts10ms 10ms

3ms 3ms 3ms 3ms 3ms 3ms 3ms

2ppb 100nm Au NPs (0.1ms)

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 10

80 100 120 140 160 180 200 220 2400

100

200

300

400

500

600

700

800

Count

Diameter (nm)

5ppb Au NP #1

10.1%

17.2%

72.7%

Increase in Discrete Particle Readings

80 100 120 140 1600

5

10

15

20

25

30

35

Count

Diameter (nm)

50ppt Au NP #197.5%

2.1%0.4%

80 100 120 140 160 1800

200

400

600

800

1000

Co

unt

Diameter (nm)

2ppb Au NP #189.5%

8.9%1.6%

80 100 120 140 160 180 2000

100

200

300

400

500

600

700

800

900

1000

Count

Diameter (nm)

5ppb Au NP #179.5%

14.5%6.0%

Montaño, M.; Ranville, J.; Badiei, H. Unpublished Data, 2013

80 90 100 110 120 130 1400

20

40

60

80

100

120

Count

Diameter (nm)

50ppt Au NP #1

97.1%

2.8%0.1%

10ms

0.1ms

50ppt 100nm Au NPs 2ppb 100nm Au NPs 5ppb 100nm Au NPs

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 11

Improvements in Coincidence

Montaño, M.; Ranville, J.; Badiei, H. Unpublished Data, 2013

0 2 4 6 8 100

20

40

60

80

100

% S

ing

le N

P R

ea

din

gs

Au mass conc. (ppb)

Single NP - 0.1ms

Single NP - 3ms

Single NP - 10ms • Decrease in dwell time increases resolution • Allows for more accurate sizing determination by avoiding coincidence • Vastly improves working range of technique

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 12

sP-ICP-MS Obstacles (Dissolved Background)

50 51 52 53 54 55

0

200

400

600

800

1000

1200

Co

unts

Time (sec)

50 51 52 53 54 55

0

200

400

600

800

1000

1200

Counts

Time (sec)

50ppt Ag NP

50ppt Ag + 50ppt Ag NP

50 51 52 53 54 55

0

200

400

600

800

1000

1200

Counts

Time (sec)

50ppt Ag NP

50ppt Ag + 50ppt Ag NP

200ppt Ag + 50ppt Ag NP

50 51 52 53 54 55

0

200

400

600

800

1000

1200

Co

unts

Time (sec)

50ppt Ag NP

50ppt Ag + 50ppt Ag NP

200ppt Ag + 50ppt Ag NP

500ppt Ag + 50ppt Ag NP

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

• Dissolved analyte adds to baseline signal • Will typically subtract particle signal from dissolved signal to size particles • At high dissolved concentrations, impossible to distinguish between dissolved and particle signals

50ppt 60nm Ag NP

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 13

Dwell Time Effect on Dissolved Signal

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

20 22 24 26 28 30 32 34 36 38 400

200

400

600

800

1000

1200

1400

ICP

-MS

response (

counts

)

Time (sec)

0.1ms dwell time

3ms dwell time

10ms dwell time30.845 30.846 30.847 30.848 30.849 30.8500

20

40

60

80

ICP

-MS

respo

nse (

coun

ts)

Time (sec)

• Reducing dwell time results in a reduction of counts from dissolved analyte

• Lower dwell times allow for better resolution between background and analyte signals

500ppt Ag+ + 50ppt Ag NPs

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 14

Dwell Time Effect on Dissolved Signal

0 100 200 300 400 500 600 700 8000

50

100

150

200

250

300

350

400

Fre

qu

en

cy c

oun

ts

ICP-MS Response (counts)

10ms

0.1 ms

50ppt Ag+ / 50ppt Ag NP 200ppt Ag+ / 50ppt Ag NP 500ppt Ag+ / 50ppt Ag NP

400 600 800 1000 12000

50

100

150

200

250

Fre

quency

counts

ICP-MS Response (counts)

0 100 200 300 400 500 600 700 8000

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Fre

quency

counts

ICP-MS Response (counts)

0 25 50 75 100 125 150 175 200 225 250 275 3000

20

40

60

80

100

120

140

160

180

200

Fre

quency

counts

ICP-MS Response (counts)

0 25 50 75 100 125 150 175 200 225 2500

20

40

60

80

100

120

140

160

180

200

Fre

quency

counts

ICP-MS Response (counts)

0 25 50 75 100 125 150 175 200 225 2500

20

40

60

80

100

120

140

160

180

200

Fre

quency

counts

ICP-MS Response (counts)

Particle

Background Background

Particle?

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 15

Future Directions – Multi-element detection

Montaño, M.; Ranville, J.; Badiei, H. Manuscript in Preparation, 2013

• Multi-element capability allows for single particle isotopic / elemental ratios

• Potential use for differentiating between engineered and naturally occurring NPs

1ppb 60nm Ag NPs 1ppb 30nm Au core / 30nm Ag Shell NPs

0 5 10 15 20 25 30 35 40

0

20

40

60

80

100

ICP

-MS

Re

spo

nse

(co

un

ts)

Time (ms)

Ag-107

Ag-109

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

ICP

-MS

Re

spo

nse

(co

un

ts)

Time (ms)

Au-197

Ag-107

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 16

Conclusions

•Using micro-second dwell times for sP-ICP-MS can overcome some of the analytical challenges of millisecond analysis. • Shorter dwell times can improve particle resolution at high particle number concentrations • Microsecond dwell times reduce the background signal from dissolved analyte to improve particle detection • Multi-element sP-ICP-MS analysis can potentially be used to differentiate between engineered and naturally occurring nanomaterials.

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 17

2014 Winter Conference on Plasma Spectrochemistry Amelia Island, Florida, January 6 - 11, 2014

SA-03 Field Flow Fractionation – Inductively Coupled Plasma Mass Spectrometry/Atomic Spectrometry

Saturday, January 4, 8 AM

Ronald Beckett - FFF theory and methodology James F. Ranville, Colorado School of Mines - Interfacing FFF with ICPMS for Biological and Environmental Studies Soheyl Tadjiki, PostNova - FFF instrumentation and hands-on Sd FFF demonstration Hamid Badiei, Perkin Elmer - Single Particle ICPMS: Methodolology and interfacing to FFF

Instructor/Topic

Hands-on Short Course

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 18

Acknowledgements

Ranville Research Group • James F. Ranville • Denise Mitrano • Evan Grey • Robert Reed

Funding Sources • NSF Bridge to the Doctorate • Semiconductor Research Corporation (Task 425.040) • Perkin Elmer Travel Grant • SNO 2013 Travel Grant

Perkin Elmer, Inc. • Hamid Badiei • Kenneth Neubauer • Samad Bazargan

Manuel David Montaño, James F. Ranville, Hamid R. Badiei SNO Conference 2013 November 5, 2013 19

Questions?