32
Improving Students’ Improving Students’ Spatial Thinking Spatial Thinking Skills Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley, Temple University Basil Tikoff, UW-Madison

Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Embed Size (px)

Citation preview

Page 1: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Improving Students’ Improving Students’ Spatial Thinking SkillsSpatial Thinking Skills

Carol Ormand, SERC, Carleton College

Based on research with Cathy Manduca, SERC, Carleton CollegeThomas Shipley, Temple UniversityBasil Tikoff, UW-Madison

Page 2: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

What Research Tells UsWhat Research Tells Us

• Spatial skills cannot be measured and characterized with a single test; a suite of tests is required

• Spatial thinking skills improve with practice

• There is a wide range of spatial thinking abilities, even among geoscience majors in upper-level courses

• Although students can succeed in undergraduate geoscience courses with weak spatial thinking skills, incorporating spatial skills training is likely to have two benefits: • Increasing the pool of potential geoscientists• Improving gender equity in the geoscience workforce

Page 3: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

What is Spatial Thinking?What is Spatial Thinking?

• What are some of the tasks that you have your students do that have a spatial component?

• What are some of the tasks that you do as a geoscientist that have a spatial component?

• How can we help our students progress from where they are to where you are?

Page 4: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Examples of Spatial ThinkingExamples of Spatial Thinking

Expert tasks:

• Reconstruct spatial cross-section from time series from buoy and Gulf Stream

• Observe, interpret, and model what we see in outcrops (sedimentary rocks)

• Analyze nutrients in water to interpret inputs

• Contour maps – recognize errors in computer-generated contouring

• Groundwater – surface water interactions through time

• River scale flow modeling• Using isotopes to reconstruct

paleoclimate• Reconstruct the subsurface from

seismic data• Develop a GIS curriculum, including

teaching basic geographic concepts• Organizing classroom to maximize

student interactions

Student tasks:

• Interpret maps and aerial photos• Create physical geographic

profiles• Interpret and correlate well logs• Draw a diagram of isotopic

composition of water in different locations within a system

• Making maps in GIS; 3D mapping; drawing subsurface hydrology

• Calculate the variation of properties in space, statistically

• Make a beach profile, interpret sediment samples, compare to prior years’ data

• Develop computer models to solve characteristic equations

• Model 3D flow• Describe coastal upwelling

(narrative)

Page 5: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial thinking Spatial thinking includes (but is not includes (but is not

limited to)…limited to)…• Mental rotation: imagining rotating an object

• In cognitive science research, mental rotation skills have served as a proxy for all spatial thinking until quite recently. Data from many different sources (including our studies) suggest this is insufficient.

Page 6: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial thinking Spatial thinking includes (but is not includes (but is not

limited to)…limited to)…• Visualizing:

imagining a 3D object from a 2D representation

• Perspective taking: imagining looking at an object or scene from a different direction

Page 7: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial thinking Spatial thinking includes (but is not includes (but is not

limited to)…limited to)…• Penetrative thinking:

imagining what a slice thru an object would look like

• Disembedding: attending to one aspect of a complex scene

Page 8: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial thinking Spatial thinking includes (but is not includes (but is not

limited to)…limited to)…• Navigation

• Scaling

Page 9: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial Thinking in GeoscienceSpatial Thinking in Geoscience

• Spatial thinking appears to be essential in a number of subdisciplines in the geosciences• Faculty describe poor spatial skills as a barrier to success

• Spatial skills training in engineering has led to improved class performance and retention in the major

Page 10: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Mental rotation

Measuring Spatial SkillsMeasuring Spatial Skills

Page 11: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Penetrative thinking: imagining the shape of a slice through an object

Measuring Spatial SkillsMeasuring Spatial Skills

Page 12: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Penetrative thinking: imagining a slice through an object, including its interior

Measuring Spatial SkillsMeasuring Spatial Skills

Page 13: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Paper folding

• Disembedding *

Measuring Spatial SkillsMeasuring Spatial Skills

* Disembedding: isolating and attending to one aspect of a complex display or scene

Page 14: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Measuring Spatial SkillsMeasuring Spatial Skills

• Water level

Page 15: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Examples of the range of Examples of the range of test scores, geoscience test scores, geoscience

studentsstudents

Page 16: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Correlations between Correlations between spatial skills testsspatial skills tests

Page 17: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Measured improvement, Measured improvement, mental rotation, one mental rotation, one

academic termacademic term

Page 18: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Our ConclusionsOur Conclusions

• There is a wide range of spatial thinking abilities, even among geoscience majors in upper-level courses

• Spatial skills cannot be measured and characterized with a single test; a suite of tests is required

• Spatial thinking skills improve with practice

So… what kind of training/practice would be most effective?http://serc.carleton.edu/spatialworkbook/index.html

Page 19: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

What kinds of brief, weekly What kinds of brief, weekly exercises could you give your exercises could you give your

students?students? Take a few minutes to

brainstorm a list of 10-minute exercises you could have your students do to practice the kinds of spatial thinking that show up in your courses.

Suggestions:

• Focus on what you want them to be able to do.

• Start simple, and build up to more difficult tasks over time.

• Demonstrate how to approach the exercises. Work an example before having students tackle the first one.

Page 20: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial Workbook Project: Spatial Workbook Project: focuses on penetrative focuses on penetrative

thinkingthinking• Builds on prior work:

• From geoscience education:• Titus & Horsman’s exercises (JGE, 2009) • Steve Reynolds’ computer visualizations

of landscapes and structures• Visible geology tool (

http://app.visiblegeology.com/)

• Our studies thus far

Page 21: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Spatial Workbook ProjectSpatial Workbook Project

• Builds on prior work:• From cognitive science:

• Progressive alignment• Gesture

• From STEM education:• Sorby workbook for engineers

Page 22: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Detailed look at instructional Detailed look at instructional “intervention” at UW-“intervention” at UW-

MadisonMadison• Structural Geology class at the UW-Madison

• Test of 2011-2014 spatial thinking workbook concept

• Spring 2010: collect baseline data• Pre- and post-tests of students’ penetrative thinking, mental

rotation, and disembedding skills

• Spring 2011: • Same pre- and post-tests of penetrative thinking, mental

rotation, and disembedding skills• Weekly penetrative thinking exercises at the beginning of lab

• Designed to take 10-15 minutes• Variety of forms (pencil & paper, computer visualizations, play-

doh)• Geological and non-geological content• All required students to sketch one or more cross-sections

Page 23: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Weekly Exercises: analog Weekly Exercises: analog modelingmodeling

• Use play-doh to construct a model of

• An anticline• Boudinage• Lineation (for example, a

stretched pebble conglomerate)• Slice through your model in several

different directions• Sketch cross-sections parallel,

perpendicular, and oblique to the structural grain

• How would your cross-sections be different if the structure (or long axis of the strain ellipsoid) was plunging?

Page 24: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Construct a model of a faulted fold, like the one illustrated below, using play-doh. Slice the model • Parallel to the fold hinge• Perpendicular to the fold hinge, through the fault surface

Weekly Exercises: analog Weekly Exercises: analog modelingmodeling

• Sketch the resulting cross-sections

• Investigate similar structures:

• Faulted syncline• Faulted plunging

fold

Image by Titus and Horsman

Page 25: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Sketch a cross-section for the slicing plane indicated, as viewed from the right side of the block

• Sketch the 3 cross-sections of a human foot indicated in the diagram below

Weekly Exercises: Weekly Exercises: computer computer

visualizationsvisualizations

A B

C

Page 26: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Sketch a cross-section from A-A’

Weekly Exercises: thought Weekly Exercises: thought exercisesexercises

• Construct a structure contour map for the top of the gray unit, using 100m contour intervals; describe the orientation of this structure and the structure contour lines in words

Images & exercises by Titus and Horsman

Page 27: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Results: Penetrative Results: Penetrative Thinking (ETS planes of Thinking (ETS planes of

reference)reference)

UW-Madison, Structure, Spring 2010 UW-Madison, Structure, Spring 2011

Pre-test Post-test Gain T-test

2010 (N=17)

8.6 (3.2) 10.1 (2.2) 1.5 (2.6) 0.03

2011 (N=16)

7.3 (2.5) 9.0 (3.1) 1.7 (2.2) 0.01

Page 28: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Results: Mental Rotation Results: Mental Rotation (PVRT)(PVRT)

UW-Madison, Structure, Spring 2010

UW-Madison, Structure, Spring 2011

Pre-test Post-test Gain T-test

2010 6.0 (2.1) 6.4 (1.9) 0.4 (2.0) 0.48

2011 4.9 (1.8) 6.2 (2.0) 1.3 (1.5) 0.00

Page 29: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

Results: Disembedding Results: Disembedding (ETS hidden figures)(ETS hidden figures)

UW-Madison, Structure, Spring 2010

UW-Madison, Structure, Spring 2011

Pre-test Post-test Gain T-test

2010 8.0 (3.2) 9.3 (2.8) 1.3 (3.3) 0.12

2011 7.4 (3.0) 9.3 (3.7) 1.9 (2.8) 0.02

Page 30: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

• Spring 2010:• Students demonstrated a wide range of spatial

thinking skills• Students showed modest improvement (on

average) on all 3 measures, with statistically significant improvement in penetrative thinking

• Spring 2011:• Students demonstrated a wide range of spatial

thinking skills• Students showed greater average gains on all 3

measures, and all gains were statistically significant

UW Structure Class Study UW Structure Class Study ResultsResults

Page 31: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

ConclusionsConclusions

• Spatial thinking skills improve with practice (even 10-15 minutes each week can make a difference)• Interventions focused on strengthening penetrative

thinking may also help develop other aspects of spatial thinking

• Next year: testing progressive alignment and gesture exercises. Stay tuned.

Page 32: Improving Students’ Spatial Thinking Skills Carol Ormand, SERC, Carleton College Based on research with Cathy Manduca, SERC, Carleton College Thomas Shipley,

What kinds of brief, weekly What kinds of brief, weekly exercises could you give your exercises could you give your

students?students?