37
InGaAs MOSFET Electronics J. A. del Alamo Microsystems Technology Laboratories, MIT Acknowledgements: D. Antoniadis, A. Guo, L. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, W. Lu, A. Vardi, N. Waldron, L. Xia Sponsors: Intel, FCRP-MSD, ARL, SRC, NSF, Sematech, Samsung Labs at MIT: MTL, NSL, SEBL The 17 th International Symposium Physics of Semiconductors and Applications Jeju, Korea, December 7-11, 2014 1

InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs MOSFET Electronics

J. A. del AlamoMicrosystems Technology Laboratories, MIT

Acknowledgements:• D. Antoniadis, A. Guo, L. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, W.

Lu, A. Vardi, N. Waldron, L. Xia• Sponsors: Intel, FCRP-MSD, ARL, SRC, NSF, Sematech, Samsung• Labs at MIT: MTL, NSL, SEBL

The 17th International SymposiumPhysics of Semiconductors and ApplicationsJeju, Korea, December 7-11, 2014

1

Page 2: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs electronics in your pocket!

2

Page 3: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

• Invention of AlGaAs/GaAs HEMT: Fujitsu Labs. 1980 • First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982• First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985• Main attraction of InGaAs: RT μe = 6,000~30,000 cm2/V.s

A bit of perspective…

Mimura, JJAPL 1980 Ketterson, EDL 1985Chen, EDL 1982

3

Page 4: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs High Electron Mobility Transistor (HEMT)

Modulation doping: 2-Dimensional Electron Gas in narrow-bandgap channel

4

Page 5: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

0

100

200

300

400

500

600

700

800

1980 1990 2000 2010

f T(G

Hz)

Year

InGaAs HEMT

InGaAs HEMT: high-frequency record vs. time

Highest fT of any FET on any material system

Teledyne/MIT: fT=688 GHz

Devices fabricated at MIT

fT=710 GHzChang, APEX 2013 (NCTU)

Kim, EDL 2010

5

Page 6: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs HEMTs: circuit demonstrations9-stage 850 GHz LNA

80 Gb/s multiplexer IC

Wurfl, GAAS 2004

25 Gb/s wireless data at 113 GHz

Thome, MTT-S 2014

Deal, MTT-S 2014

Sarkozy, IPRM 20136

Page 7: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs HEMTs map infant universe

Full-sky map of Cosmic MicrowaveBackground radiation (oldest light in Universe) age of Universe: 13.73B years (±1%)

WMAP=Wilkinson Microwave Anisotropy ProbeLaunched 2001

0.1 µm InGaAs HEMT LNA Pospieszalski, MTT-S 2000http://map.gsfc.nasa.gov/ 7

Page 8: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Record fT InGaAs HEMTs: megatrends

• Classic scaling trajectory: Lg↓, tins↓ • Recently: Lg, tins saturated no more progress possible?

8

Page 9: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Limit to HEMT barrier scaling: gate leakage current

InGaAsHEMTs

At Lg=30-40 nm, modern HEMTs are at the limit of scaling!

Lg=40 nmVDS=0.5 V

Kim, EDL 2013

practical limit

9

Page 10: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Solution: introduce gate oxide!

Need high-K gate dielectric: HEMT MOSFET!

InGaAsHEMTs

10-5x!

Lg=40 nmVDS=0.5 V

Kim, EDL 2013

Al2O3 (3 nm)/InP (2 nm)/InGaAs MOSFET

10

Page 11: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs MOSFET with fT=370 GHz

• Channel: 10 nm In0.7Ga0.3As• Barrier: 1 nm InP + 2 nm Al2O3

Kim, APL 2012

• Lg = 60 nm• fT = 370 GHz• gm = 2 mS/μm

11

Page 12: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs HEMT vs. MOSFET

Since when can we make III-V MOSFETs?

12

Page 13: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Historical evolution: InGaAs MOSFETs vs. HEMTs

Lin, IEDM 2014

Recent progress due to improvement of oxide/III-V interface

*

*inversion-mode

gm=3.1 mS/μm

Transconductance (gm):

13

Page 14: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Huang, APL 2005

ALD eliminates native oxides that pin Fermi level “Self cleaning”

Clean, smooth interface without native oxides

What made the difference?Atomic Layer Deposition (ALD) of oxide

• First observed with Al2O3, then with other high-K dielectrics• First seen in GaAs, then in other III-Vs

14

Page 15: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Interface quality: Al2O3/InGaAs vs. Al2O3/Si

Close to Ec, Al2O3/InGaAs comparable Dit to Al2O3/Si interface

Werner, JAP 2011

Al2O3/SiAl2O3/InGaAs

Brammertz, APL 2009

EcEv Ev Ec

15

Page 16: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Measurements of electron injection velocity in HEMTs:

• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

• ~100% ballistic transport at Lg~30 nm

Electron velocity: InGaAs vs. Si

16

del Alamo, Nature 2011

Page 17: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Logic InGaAs MOSFET: possible designs

Enhanced gate control enhanced scalability

17

Page 18: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

Recess-gate process:• CMOS-compatible• Refractory ohmic contacts (W/Mo)• Extensive use of RIE

WMo

18

Page 19: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Fabrication process

• Ohmic contact first, gate last • Precise control of vertical (~1 nm), lateral (~5 nm) dimensions • MOS interface exposed late in process

W/Mon+ InGaAs/InPInGaAs/InAsInAlAs

SiO2

InPδ-Si

Resist

MoPad

HfO2

Mo/W ohmic contact + SiO2 hardmask

SF6, CF4 anisotropic RIE CF4:O2 isotropic RIE

Cl2:N2 anisotropic RIE Digital etch O2 plasma diluted H2SO4

Waldron, IEDM 2007

Gate stack and pads

Lin, EDL 2014

19

Page 20: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Lin, IEDM 2013

Ti/Au pad

Spacer: OxideGate: Mo

Contact: Mo

Lg = 20 nm, Laccess= 15 nm MOSFET tightest III-V MOSFET ever made?

Lg=20 nm InGaAs MOSFET

n+ cap

Channel

Mo

W

Mo/HfO2

20 nm

Buffer

SiO2

InAs 0.0 0.1 0.2 0.3 0.4 0.50.00.20.40.60.81.0 Lg=20 nm

Ron=224 Ω.µm 0.4 V

I d (m

A/µm

)Vds (V)

Vgs-Vt= 0.5 V

20 nm

15 nm

20

Page 21: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Highest performance InGaAs MOSFET

• Record gm,max = 3.1 mS/µm at Vds= 0.5 V• Ron = 190 Ω.µm

-0.4 -0.2 0.0 0.20.00.51.01.52.02.53.03.5

gm,max= 3.1 mS/µm

Lg = 80 nmVds= 0.5 V

g m (m

S/µ m

)Vgs (V)

0.0 0.1 0.2 0.3 0.4 0.50.00.20.40.60.81.01.21.4

I d (m

A/µm

)

Vds (V)

Vgs = -0.3 to 0.4 V in 0.1 V stepLg = 80 nmRon=190 Ω.µm

Lg =80 nm, EOT=0.5 nm (2.5 nm HfO2), tc=9 nm, Laccess=15 nm

Lin, IEDM 201421

Page 22: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

-0.4 -0.2 0.0 0.210-8

10-7

10-6

10-5

10-4

10-3I d (

A/µm

)

Vgs (V)

Subthreshold characteristics

• Modest subthreshold swing, DIBL explore channel thickness scaling• Excess OFF current at Vds=0.5 V Band-to-Band Tunneling (BTBT)

Lin, IEDM 2014

BTBT

Lg =80 nm, EOT=0.5 nm (2.5 nm HfO2), tc=9 nm, Laccess=15 nm

Vds=0.5 V:Smin=159 mV/decDIBL=310 mV/V

Vds=0.5 V

Vds=0.05 V

22

Page 23: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Impact of channel thickness scaling

• tc ↓ S ↓ but also gm,max ↓• Even at tc=3 nm, Lg,min~40 nm

planar MOSFET at limit of scaling

Lin, IEDM 2014

0.01 0.1 1 100

1

2

3

g m,m

ax (m

S/µm

)Lg(µm)

4 nm

tc=9 nm

11 nm

12 nm7 nm

3 nm

8 nmVds=0.5 V

0.01 0.1 1 100

100

200

300

400

S min (m

V/de

c)

Lg(µm)

Vds=0.5 Vtc ↓

3 nm

Vds=0.5 V

tc=12 nm

23

Page 24: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Excess OFF-state current

OFF-state current enhanced with Vds

Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL)

Lin, IEDM 2013

-0.6 -0.4 -0.2 0.010-11

10-9

10-7

10-5 Lg=500 nm

Vds=0.3~0.7 Vstep=50 mV

I d(A/µ

m)

Vgs (V)

Transistor fails to turn off:

Vds ↑

24

Page 25: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

-0.4 -0.2 0.0 0.210-11

10-9

10-7

10-5 W/ BTBT+BJT W/O BTBT

Vds=0.3~0.7 Vstep=50 mV

I d (A/µm

)Vgs (V)

Excess OFF-state current

Lg↓ OFF-state current ↑ additional bipolar gain effect due to floating body

Lin, EDL 2014

-0.6 -0.4 -0.2 0.010-11

10-9

10-7

10-5 Lg=500 nm

Vds=0.3~0.7 Vstep=50 mV

I d(A/µ

m)

Vgs (V)-0.6 -0.4 -0.2 0.0

10-8

10-7

10-6

10-5

10-4

500 nm280 nm

120 nm

T=200 KVds=0.7 V

I d (A/µm

)

Vgs-Vt (V)

Lg=80 nm

Vds ↑

Simulationsw/ BTBT+BJTw/o BTBT+BJT

Lg=500 nm

25

Page 26: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Planar Regrown-contact InGaAs MOSFET

Regrown contact MOSFET:• Avoids RIE in intrinsic region• Contacts self-aligned to dummy

gate

Lee, EDL 2014

selective MOCVD

gm=2.5 mS/μm

26

Page 27: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

0.01 0.1 1 100

100

200

300

400

S min (m

V/de

c)

Lg(µm)

Vds=0.5 Vtc ↓

3 nm

Vds=0.5 V

tc=12 nm

InGaAs Trigate MOSFET

Kim, IEDM 2013

60 nm

Lg=60 nm WF=30 nm

gm=1.5 mS/µm, S=77 mV/dec, DIBL=10 mV/V27

Page 28: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

InGaAs double-gate MOSFET

Key enabling technologies: • BCl3/SiCl4/Ar RIE • digital etch

Zhao, EDL 2014; Vardi, DRC 2014

40 nm 30 nm

28

Page 29: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

0.0 0.1 0.2 0.3 0.4 0.50

5

10

15

20 Wf=12 nm

VGS=0 VI D [µ

A/µm

]

VDS [V]

VGS=0.5 V

InGaAs double-gate MOSFET

At sidewall: Dit,min ~ 3x1012 eV-1.cm-2

Lg=5 μm

Vardi, DRC 2014

Long-channel MOSFET characteristics (Wf=12~37 nm):

29

Page 30: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Vertical nanowire InGaAs MOSFET

• Nanowire MOSFET: ultimate scalable transistor• Vertical NW: uncouples footprint scaling from Lg scaling• Top-down approach based on RIE + digital etch

Zhao, IEDM 2013 Zhao, EDL 2014

30 nm diameterInGaAs NW-MOSFET

30

Page 31: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Process flowTomioka, Nature 2012Persson, DRC 2012

31

Page 32: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Trade-off between transport and short-channel effects

D↓ S↓ but also gm↓

Persson, DRC 2012

Tomioka, Nature 2012

Bottom up

Tanaka, APEX 2010

Persson, EDL 2012

Top down

32

Page 33: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Si integration: SOI-like InGaAs planar MOSFETs

InGaAs channel

BOX: Al2O3

1. MBE growth 2. ALD Al2O3 3. Wafer bonding 4. InP etch back

InP donor wafer

n+ cap

BOXp-Si

BOXp-Si

III-V bonded SOI process:Czornomaz, IEDM 2012

Mo

InGaAs channeln+ cap

BOXp-Si

InP donor wafer

InPdonor wafer

Lin, DRC 2014

33

Page 34: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Si integration: SOI-like InGaAs planar MOSFETs

InGaAs n-MOSFET

Czornomaz,IEDM 2013

SiGep-MOSFET

CMOS inverter transfer characteristics

34

Page 35: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Si integration: InGaAs Trigate MOSFETs by Aspect Ratio Trapping

Waldron, VLSI Tech 2014

• Fin growth in narrow trench• Mg-doped InP buffer Si

35

Page 36: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Si integration: InGaAs Vertical Nanowire MOSFETs by direct growth

Björk, JCG 2012

Selective-Area Epitaxy

Au seed

Vapor-Solid-Liquid (VLS) Technique

InAs NWs on Si by SAE

Riel, MRS Bull 201436

Page 37: InGaAs MOSFET Electronics · 2015. 7. 24. · (InGaAs) increases with InAs fraction in channel • v. inj (InGaAs) > 2v. inj (Si) at less than half V. DD • ~100% ballistic transport

Conclusion: exciting future for InGaAs electronics

37