24
Instrumentation at Nanostructure Physics, KTH yuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Hav er Ågren, Jan Johansson, Jonas Rundqvist, Karin Andersson, Silvia C (not shown – Vladislav Korenivski)

Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Embed Size (px)

Citation preview

Page 1: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Instrumentation at Nanostructure Physics, KTH

Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David HavilandPeter Ågren, Jan Johansson, Jonas Rundqvist, Karin Andersson, Silvia Corlevi

(not shown – Vladislav Korenivski)

Page 2: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Our Realm in Experimental Physics

• Low energies (eV)

• Low Temperatures (20 mK)

• Small signals (nV, fA)

• Single charge (2e=1.3x10-18 C)

• Single flux quanta (0=2.06x10-15 W m2)

• Small dimensions (10 – 100 nm)

Page 3: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Typical Sample and Measurement

-30

-20

-10

0

10

20

30

-400 -200 0 200 400

I (pA)

V (µV)

B = 57 G

B = 66 G

B = 70 G

T=50mK

Page 4: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

KTH Nano-Fab Lab

•Nano and micro scale fabrication,imaging and metrology•Joint laboratory facility, broad user spectrum•Graduate students are users•Low overhead costs, flexible research environment

Philosophy

Page 5: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

K. A. Wallenberg Foundation

9 Msek, 1998•Electron-beam lithography•Plasma RIE•Wire bonder•clean benches, spinner, microscope, etc.

10 Msek , 2001•Atomic Force Microscope•Plasma RIE•Surface profilometer•photo lithography•clean benches

Page 6: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Low Cost (semi) clean room environment

E-beam lithography

Surface Profilometer

Atomic Force Microscope

Vacuum Deposition

System

Laminar flow benches(spinner, development)

Wet bench, hood

Light Microscope

Phase 2 Instruments – Phase 1 Instruments

Wire Bonder

Photo Lithography

Reactive IonEtcher(s)

Fluorescence MicroscopeCooled CCD camera

Page 7: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Low cost clean (enough) environment500 – 2000 particles per cubic foot

Page 8: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Ventilated clean air hoodsparticle count < 1/ft.3 after 2 minutes

Page 9: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Electron beam lithography•Versatile research tool•Beam writing and SEM capability, 6 inch laser stage.•High resolution (slow, nano features) and Low Resolution (fast, micro structure)

RaithTurnkey 150

Page 10: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Thickness measurement

0.1 Å vertical resolution0.5 m horizontalLow force (ca. N?)

Page 11: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Scanning Probe Microscope

Nanoscope IV Multi-mode: •AFM (air, liquid)•STM (air)•MFM, ESFM etc.•Image surface•Force measurement

Page 12: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

spin dependant transport in nano-scale junctions(Nanostructure Physics, KTH)

-400 -200 0 200 400

0

5

10

Left junction Right junction

MR (%)

Field (Oe)

Two closely spacedCo/AlOx/Co tunnel junctions

Room TemperatureMagneto-resistance (MR)

Page 13: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Superconducting nano-circuits as quantum bits(Nanostructure Physics, KTH; Quantum Field Theory, SU)

GateSQUID

SETelectrometerAl Tunnel

junction

Aulead

Page 14: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Nanostructured ferroelectrics for linear and nonlinear optics(Laser physics and quantum optics, KTH)

Photonic Bandgap Structures

ion-exchanged gratings in KTP = 800 nm, depth > 200 m • aspect ratio > 500:1• L= 2 mm, w=1mm

used as passive narrow band filters

Active devices – electrically addressable filters

sub-micron periodically domain inverted

structures fabricated for first time• = 720 nm, depth 500 m • aspect ratio > 500:1• L=1 mm, W= 1 mm

Top view

Bottomview

Page 15: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Nano fabricated X-ray lenses(Biomedical and X-ray Physics, KTH)

Diffractive Optics -- Zone PlateCompact X-ray Microscope

Page 16: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Nano-patterned surfaces for cell growth studies(Polymer Chemistry, KTH; Nanostructure Physics, KTH)

Optical microscope imageSine-wave grooves in PMMA

Electron-microscope image

Page 17: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Protein A cys - biotin - neutravidin fluoro spheres self assemble on nanometer scale pattern(Nanostructure physics, KTH, Protein Engineering, KTH)

Neutravidin

40 nm fluorescent sphere

S-H PEG 50 Å

Au 2000 Å

10 m

Page 18: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Measurement Equipment

• Low Temperatures (down to 20 mk)

• High Frequency (up to 2 GHz)

• Small Signals (fA, nV, Lockin, low noise AF)

• High Impedence (> G Ohm)

Page 19: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Low Temperature

Dilution Refrigerator (Tmin 250 mK)

He3 Crostat (Tmin 250 mK)

Page 20: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Low Frequency techniques

• Lockin Amplifier• Low noise preamplifiers

– Home-made based on BB OPA111, high source impedence, high CMR, symmetric baising circuit.

– Standford 560 (voltage) and 570 (current) preamps

• Noise Matching – match source impedance to input impedence of preamp at given frequency for minimum noise

Page 21: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Network Analyizer up to 2GHz

Reflected and transmitted signal, Amplitude and phase

•Impedance of high inductance microstrips•Permiability of magnetic films•Characterize transmission lines, couplings, filters

No picture - Digital Sampling Oscilloscope with TDR module (ps resolution)

Page 22: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Vibrating Sample Magnetometer

M vs. H of this magnetic filmsAlso “loop tracer”, real time rotation in plane of film

Page 23: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Magneto-optical Kerr Effect

Page 24: Instrumentation at Nanostructure Physics, KTH Rayuta Yagi, Anders Liljeborg, Jochen Walter, Mattias Urech, David Haviland Peter Ågren, Jan Johansson, Jonas

Future HF Techniques

• ns or sub-ns rise time pulses

• Broadband cabling in to cryostat

• CW generator greater than 2 GHz

• AWF generator

• Pulsed RF

• Field calculations around microstrips

• Tricks …. opto-electric? ……