40
Ionic Liquids Tomohiro Yamamoto 2012/11/5

ionic liquids - gousei.f.u-tokyo.ac.jp

  • Upload
    others

  • View
    31

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ionic liquids - gousei.f.u-tokyo.ac.jp

Ionic Liquids

Tomohiro Yamamoto

2012/11/5

Page 2: ionic liquids - gousei.f.u-tokyo.ac.jp

Solvents - classification

H2O

Hydrogen bond

Organic solvents

Van der Waals

interaction

Ionic Liquids

Coulomb

interaction

Page 3: ionic liquids - gousei.f.u-tokyo.ac.jp

Contents

1. Basic

2. Application

2-1. Organic Reaction

2-2. Bioscience

2-3. Supported Ionic Liquid Phase (SILP)

3. Summary

Page 4: ionic liquids - gousei.f.u-tokyo.ac.jp

Definition

• Ionic Liquids are ionic compounds(salts) which

are liquid below 100 ℃. More commonly,

Ionic Liquids have melting points below room

temperature.

Free

Customization!

1. Basic

cation

anion

Page 5: ionic liquids - gousei.f.u-tokyo.ac.jp

History1. Basic

1914 – [EtNH3][NO3] (m.p. 12oC) was first described.

1970s~1980s – imidazolium and pyridinium cation, halide anion

1992 – [BF4]-, [PF6]-

2000s – [NTf2]-

Page 6: ionic liquids - gousei.f.u-tokyo.ac.jp

Designers solvent – ionic liquids ①1. Basic

Stability

1. Viscosity

2. Surface tension

3. Melting point

1. Oxygen balance

2. Density

3. High energy

content ion

Functionality

about 1000 ILs are described in the literature,

300 are commercially available.

Page 7: ionic liquids - gousei.f.u-tokyo.ac.jp

Designers solvent – ionic liquids ②1. Basic

Page 8: ionic liquids - gousei.f.u-tokyo.ac.jp

Characteristics①1. Basic

Fluorous ILs are immiscible

with both organic and aqueous solvents.

Page 9: ionic liquids - gousei.f.u-tokyo.ac.jp

Characteristics ②1. Basic

Page 10: ionic liquids - gousei.f.u-tokyo.ac.jp

Melting point ①m.p.

cation

and

anion size

largelow

high small

1. Basic

Page 11: ionic liquids - gousei.f.u-tokyo.ac.jp

Melting point ②1. Basic

Page 12: ionic liquids - gousei.f.u-tokyo.ac.jp

DSC (Differential Scanning Calorimetry)①

DSC is a thermoanalytical technique in which the difference in the amount of

heat required to increase the temperature of a sample and reference is

measured as a function of temperature.

1. Basic

Using this technique it is possible to observe fusion and crystallization

events as well as glass transition temperatures Tg

Fig.1 DSC

Fig.2 Fig.3 Fig.4

Page 13: ionic liquids - gousei.f.u-tokyo.ac.jp

DSC (Differential Scanning Calorimetry)②1. Basic

liquid

glass

m.p.

Supercooling

liquid

Phase transition is hard to happen.

Flexibility of the constituent ions

+

Conformational diversity

Page 14: ionic liquids - gousei.f.u-tokyo.ac.jp

Preparation and Purification1. Basic.

<Purification>

Negligible volatility distillation

Low melting point recrystallization at low temperature

Page 15: ionic liquids - gousei.f.u-tokyo.ac.jp

Catalog (Aldrich)1. Basic

Page 16: ionic liquids - gousei.f.u-tokyo.ac.jp

Database ①http://ilthermo.boulder.nist.gov/ILThermo/pureils.uix.do?event=NewSearch

Page 17: ionic liquids - gousei.f.u-tokyo.ac.jp

Database ②http://ilthermo.boulder.nist.gov/ILThermo/pureils.uix.do?event=NewSearch

Page 18: ionic liquids - gousei.f.u-tokyo.ac.jp

2. Application

Today’s Topics

Page 19: ionic liquids - gousei.f.u-tokyo.ac.jp

Organic Reaction (TEMPO oxidation) ①2-1.

Page 20: ionic liquids - gousei.f.u-tokyo.ac.jp

Organic Reaction (TEMPO oxidation)②

R. Gree, et al. Org. Lett. 2002, 4, 9.

2-1.

Page 21: ionic liquids - gousei.f.u-tokyo.ac.jp

Organic Reaction (TEMPO oxidation) ③

Et2O phase

[C4mim][PF6] phase

O2

2-1.

Page 22: ionic liquids - gousei.f.u-tokyo.ac.jp

Organic Reaction (other reactions)2-1.

and so on.

Figure 1. Pauson-Khand reaction

Figure 2. Heck Arylation

Figure 3. Tsuji-Trost reaction

Figure 4. Olefin Metathesis

Page 23: ionic liquids - gousei.f.u-tokyo.ac.jp

Bioscience (Biorefinery) ①

1st step : Extraction and dissolution of polysaccharides from biomass

2nd step : Hydrolysis of polysaccharides into mono-, di-, or oligo-saccharide

3rd step : Conversion of chemical energy, involving the resulting sugars, into

electric energy

2-2.

Page 24: ionic liquids - gousei.f.u-tokyo.ac.jp

Problem : Cellulose is insoluble in water and

common organic reagents.

2-2.

Bioscience (Biorefinery) ②

Page 25: ionic liquids - gousei.f.u-tokyo.ac.jp

N N

n-1

[Cnmim]+

(Cn-methylimidazolium)

The melting point of [C4mim]Cl is 70oC.

Extra energy is needed to operate with IL based on [C4mim]Cl

2-2.

R. D. Rogers, et al. J. Am. Chem. Soc. 2002, 124, 4974.

Bioscience (Biorefinery) ③

Page 26: ionic liquids - gousei.f.u-tokyo.ac.jp

@50 oC

H. Ohno, et al. Green Chem. 2010, 12, 1274.

2-2.

Chloride anion : 70 oC

Phosphonate anion : r.t.

Bioscience (Biorefinery) ④

Page 27: ionic liquids - gousei.f.u-tokyo.ac.jp

2-2.

R. D. Rogers, et al. J. Am. Chem. Soc. 2002, 124, 4974.

Bioscience (Biorefinery) ⑤

Page 28: ionic liquids - gousei.f.u-tokyo.ac.jp

H. Ohno, et al. Green Chem. 2010, 12, 1274.

2-2.

Bioscience (Biorefinery) ⑥

Page 29: ionic liquids - gousei.f.u-tokyo.ac.jp

B. Scrosati, et al. Nature. Mater. 2009, 7, 621.

2-2.

Bioscience (Biorefinery) ⑦

Page 30: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ①

Homogeneous

Catalyst

Heterogeneous

Catalystv.s.

difficult / expensive

poor

excellent

easy / cheap

good

poor

Recovery

Thermal Stability

Selectivity

2-3.

Page 31: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP)②- SILP catalysis is a concept which combines the advantages of

ionic liquids with those of heterogeneous support materials.

C. P. Mehnert, et al. J. Am. Chem. Soc. 2002, 124, 12932.

2-3.

Page 32: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ③

M. Haumann, A. Riisager, Chem. Rev. 2008, 108, 1474.

2-3.

Page 33: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ④

� SILP materials are prepared by

dispersing a solution of the catalyst

complex in an ionic liquid as a thin film

on porous solid materials.

� This layer serves as the reaction phase

in which the homogeneous catalist is

dissolved.

C. P. Mehnert, et al. Chem. Eur. J. 2005, 11, 50.

2-3.

Page 34: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ⑤

[Industrial process] Ruhrchemie-Rhone-Poulenc process

- Aqueous-organic biphasic catalist

Problem : Phosphite ligands decompose by hydrolysis in water.

~ For Hydroformylation~

2-3.

C. W. Kohlpaintner, et al. Appl. Catal. A. 2001, 221, 219.

cat.

Page 35: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ⑥

?

Mixed C4 Feedstocks

<Selectivity>

25.6% 43.1% 14.9% 0.3%trans:9.1%

cis:7.0%

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

2-3.

Page 36: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ⑦2-3.

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

Fig. Preparation of SILP catalyst

Page 37: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ⑧

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

2-3.

Diphosphite ligand 2 decomposition leads to

the formation of phosphoric acid.

80 oC

selectivity

100 oC

100 oC

conversion

80 oC

Page 38: ionic liquids - gousei.f.u-tokyo.ac.jp

Supported Ionic Liquid Phase (SILP) ⑨

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

2-3.

TON : 350000 !!

conversion

selectivity

Additive 3 works as acid scavenger that

does not interact or react with the active

catalytic species.

Page 39: ionic liquids - gousei.f.u-tokyo.ac.jp

3. Summary

• Ionic liquids are not simple fruids.

- the tunability of the cation and anion independently

offers almost unlimited access to targeted

combinations of physical and chemical properties.

• The scientific and technological importance of ionic

liquids today spans a wide range of applications.

Page 40: ionic liquids - gousei.f.u-tokyo.ac.jp

ReferencesT. Welton, Chem. Rev. 1999, 99, 2071.

V. I. Parvulescu, C. Hardacre, Chem. Rev. 2007, 107, 2615.

M. Haumann, A. Riisager, Chem. Rev. 2008, 108, 1474.

J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.

現代化学現代化学現代化学現代化学. 2007, 3.

現代化学現代化学現代化学現代化学. 2010, 10

Sigma-Aldrich, Aldrich ChemFiles. 2005, Vol.5, No.6.

B. Scrosati, et al. Nature. Mater. 2009, 7, 621.