19
Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment of WO 2

Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Embed Size (px)

Citation preview

Page 1: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Jennifer MannIndiana University

Caroline Jarrold Group67th International Symposium on Molecular Spectroscopy

June 18, 2012

Resonant two-photon detachment of WO2

Page 2: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Introduction

[1] M. Tulej, D. A. Kirkwood, G. Maccaferri, O. Dopfer, and J. P. Maier, Chem. Phys. 228 (1998) 293.; A. E. Bragg, J. R. R. Verlet, A. Kammrath, and D. M. Neumark, J. Chem. Phys. 121 (2004) 3515.; W. C. Lineberger and T. Patterson, Chem. Phys. Lett. 13 (1972) 40. ; M. Tulej, T. Pino, M. Pachkov, and J. P. Maier, Mol. Phys. 108 (2010) 865. ; T. Pino, M. Tulej, F. Guthe, M. Pachkov, and J. P. Maier, J. Chem. Phys. 116 (2002) 6126.[2] G. B. Griffin, A. Kammrath, O. T. Ehrler, R. M. Young, O. Cheshnovsky, and D. M. Neumark, Chem. Phys. 350 (2008) 69.[3] N. I. Hammer, R. N. Compton, L. Adamowicz, and S. G. Stepanian, Phys. Rev. Lett. 94 (2005) 153004.; C. Desfrançois, B. Baillon, J. P. Schermann, S. T. Arnold, J. H. Hendricks, and K. H. Bowen, Phys. Rev. Lett. 72 (1994) 48.[4] T. Andersen, K. R. Lykke, D. M. Neumark, and W. C. Lineberger, J. Chem. Phys. 86 (1987) 1858.; K. K. Murray, K. R. Lykke, and W. C. Lineberger, Phys. Rev. A 36 (1987) 699.

• Anion PE spectroscopy commonly used to characterize ground electronic states of anions• Far fewer studies on excited states of anions

• Typically not bound relative to neutral + e− continuum• Delocalized nature of high-lying electrons makes excited states difficult to characterize

computationally• Classes of anions where bound excited states are common

• Cumulenic carbon chains: Cn− , CnHm

−, and C2nH − [1]• Metal clusters: Hgn

− [2]• Molecules where neutral has a > 2 Debye dipole moment

• Dipole Bound State • Bound by less than 100 cm−1 to the neutral + e− continuum• e− bound in a delocalized orbital, does not perturb core• Acetone, water-ammonia dimer [3]• Transition-metal containing diatomics: PtN− FeO− [4]

• Current Study• WO2

− open shell, near degenerate d-like orbitals• High electron affinity• WO2 3.5 Debye dipole moment

Page 3: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Resonant Two-Photon Detachment

Anion Ground State

Anion Excited State

NeutralGround State

Detachment Continuum

Photon EnergyEl

ectr

on c

ount

s

EAEA

Ener

gy

Qsym

Page 4: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Experimental• Ions - laser ablation (532 nm) of W rod in pulse (30Hz) of UHP He• Mass selected by time-of-flight

• WO2– intersected by a Nd:YAG pumped OPO (410 – 709 nm, 5 cm-1 resolution)

• Photodetached e− extracted by weak field (2 Vcm−1) up to dual MCP detector• Ion signal, electron signal and laser power are sent to three gated integrators (SRS SR250)• Absolute line positions within 28 cm-1 accuracy, relative spacings 7 cm-1

Page 5: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Computational Methods• Density Functional Theory (DFT) Calculations

• Gaussian 09 Suite [1]• B3LYP• SDD pseudopotentials• Triple-ζ Level

• aug-cc-PVTZ • Time-dependent DFT (TDDFT)

• Electronic excitations predicted compared to experiment• Excitations to high-lying orbitals not suitably treated by exchange

functional• CAM-B3LYP[2] - Coulomb-attenuated method

• combines hybrid B3LYP with long range correction

• Method, Basis Set advice provided by Raghavachari Group

[1] M. J. T. Frisch, et. Al, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford, CT, 2009).[2] T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393 (2004) 51.

Page 6: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

R2PD and PE Spectra

R2PDSpectrum

PESpectrum

EA

• PE spectrum• Anion: 2B1

• Neutral: 1A1

• EA not definitively assigned• ≤ 1.998 (10) eV• 3B1 ⟵ 2B1, 320 cm-1 progression

• Significant portion of R2PD spectrum above detachment continuum

• R2PD bears resemblance to PE Spectrum

G. E. Davico, R. L. Schwartz, T. M. Ramond, and W. C. Lineberger, J. Phys. Chem. A 103 (1999) 6167.

Page 7: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

1.8 1.9 2.0 2.1 2.2 2.3 2.4Photon Energy (eV)

Rela

tive

Elec

tron

Sig

nal

R2PD Spectrum

220 cm-1

890 cm-1

220 cm-1

944 cm-1

40 cm-1

56 cm-1

65 cm-1

B

A

Band A : • Single peaks• Transitions are doublet ⟵ 2B1

Band B :• Doublets

• Spin-forbidden quartet ⟵ 2B1

• W ζ(5d) = 2085 cm-1

• Anion ground state E1/2

• Splitting is too small – not expected in doublet states• Quartet states resolve into two E1/2 sub-states• Similar splitting (47 cm-1) seen in R2PI of Bi3 [1]

• Assigned as transition from 4Aʺ(E3/2, E5/2) ⟵ 2Eʺ (E1/2)

ν1 symmetric stretchν2 bend

* *

*

1072 cm-1

823 cm-1

[1] C. A. Arrington and M. D. Morse, J. Phys. Chem. B 112 (2008) 16182.

x10

Page 8: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Simulations of Bands A and B

∠OWO(°) W−O (Å) ν1 (cm-1) ν2 (cm-1) ν3 (cm-1) Anion

2B1 116.5 1.735 965 264 8984B1 130.0 1.768 918 222 836

Neutral1A1 104.5 1.685 1072 374 10143B1 113.4 1.712 1017 314 945

ν1 (cm-1) ν2 (cm-1)

Band A 855 255

Band B 945 229

Band B

Band A

s-wave

1.831

2.0762.081

• Anion structure• Bond lengths and angles larger than neutral• Lower vibrational frequenciesExp.

Sim.

• Band A and B• Frequencies are more consistent with anion• Valence bound state

Page 9: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

TDDFT Results• Which electrons are involved in the excitation?• Excitations below 3.7 eV involve HOMO and HOMO-1• Same orbitals as in the photoelectron spectrum• Transitions to W-local unoccupied orbitals• Multiconfigurational in nature• Orbital description and transitions energies vary for method used• Uncorrected B3LYP

• 26 states between 709 nm – 410 nm• CAM-B3LYP (Coulomb attenuating method) [1]

• 11 states between 709 nm – 410 nm

[1] T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393 (2004) 51.

Page 10: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Photoelectron Spectrum

R2PDSpectrum

PESpectrum

EA

Unoccupiedorbitals

15a1

14b2

Anion Ground State, 2B1Neutral Ground State, 1A1

16b1

Neutral Excited State, 1B1Neutral Excited State, 3B1

Page 11: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

ConclusionsR2PD of WO2

• At least two distinct electronic states observed• Assigned to valence bound states

• Bending and stretching frequencies similar to anion frequencies• Doublet fine structure in Band B• Spin forbidden quartet ⟵ 2B1 transition• Large spin-orbit splitting of W atom• Quartet state resolves to two E1/2 sub-states

• Diverging peaks in band B• Mimics frequencies of neutral• Coupling to a DBS?

• Unidentified peaks likely due to more than one additional electronic state• TDDFT

• Need a more sophisticated level of theory?• CASSCF, MRSDCI, FOCI, SOCI levels• Generated potential curves and spectroscopic constants • Transition metal containing carbides, WC [1]

[1] K. Balasubramanian, J. Chem. Phys. 112 (2000) 7425.

Page 12: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Acknowledgements

Prof. Caroline JarroldSarah Waller

Raghavachari Group

Page 13: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment
Page 14: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Frequency anharm ΔQ

Band A225 3 0.75

855 2 0.40

Band B229 3 0.38

945 3 0.10

Peak

Energy Spacing (cm-1)

Assignment

Spin-Orbit Splitting

(cm-1)

a0 0 0

a1 226

a2 218

a3 234

a4 0 895

a5 169

a6 210

a7 218

a8, bʹ 0 823

a9 210

a10 210

a11 202

b0 0 0 40

b1 226 40

b2 202 56

b3 0 944 65

b4 339 65

Term symbo

l

Relative energy

(eV)2B1 0.04B1 0.22

6Aʺ 4.211A1 2.043B1 2.185A2 4.62

Computational Results

Anion

Neutral

Page 15: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Current Study• Resonant two-photon detachment• Characterize anion bound states of transition metal containing oxides• WO2

• Neutral dipole moment: 3.53 Debye • PE spectrum previously assigned by Lineberger[1]• Anion: 2B1

• Neutral: 1A1

• C2v symmetry• Anion is open shell, many near degenerate 5d-like orbitals

• Observation of at least two different excited electronic states of WO2−

• Valence bound state• Possibly some DBS character• Spin allowed doublet doublet transition⟵• Spin-forbidden quartet doublet transition⟵

[1] G. E. Davico, R. L. Schwartz, T. M. Ramond, and W. C. Lineberger, J. Phys. Chem. A 103 (1999) 6167.

Page 16: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Doublets in Band B

• W ζ(5d) = 2085 cm-1

• Extended point group for selection rules• For a S = 1/2 ground state, B1 E1/2 = E1/2

• WO2– ground state is doubly degenerate 2E1/2

• Degeneracy broken by magnetic field or rotation (too small for our resolution!)

• Band B• Doublet Peaks• Quartet states (S = 3/2) resolve to two E1/2 sub-states• Arrington and Morse [1]

• Similar splitting (47 cm-1) seen in photon ionization of Bi3

• Assigned as transition from 4Aʺ(E3/2, E5/2) ⟵ 2Eʺ (E1/2)

16b1

15a1

14b2

17a1

BA

[1] C. A. Arrington and M. D. Morse, J. Phys. Chem. B 112 (2008) 16182.

Page 17: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Introduction

[1] P. J. Silva, R. A. Carlin, and K. A. Prather, Atmos. Environ. 34 (2000) 1811.[2] L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. X. Su, and K. A. Prather, Environ. Sci. Technol. 45 (2011) 5105.[3] M. Agundez, et al., Astron. Astrophys. 517 (2010) L2.

• Spectroscopic and computational studies characterizing cations far exceed that of anions

• Importance of negative ions increasingly evident• Atmospheric: Silicates, phosphates,[1] organosulfates (ROSO3H)[2]• Interstellar medium: C6H−, C4H−, C8H−, C3N−, C5N− and CN− [3]

• Negative ion photoelectron spectroscopy commonly used to characterize ground electronic states of anions

• Far fewer studies of excited states of anions• Excited states typically not bound relative to neutral + e− continuum

• Delocalized nature of high-lying electrons makes excited electronic states of anions difficult to characterize computationally

Page 18: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Anion doublet

Anion quartet

17

Page 19: Jennifer Mann Indiana University Caroline Jarrold Group 67 th International Symposium on Molecular Spectroscopy June 18, 2012 Resonant two-photon detachment

Term symbo

l

Relative energy

(eV)2B1 0.04B1 0.22

6Aʺ 4.211A1 2.043B1 2.185A2 4.62

Computational Results

Anion

Neutral