20
Kreb’s Cycle (aka, tricarboxylic acid (TCA)cycle, citric acid cycle) “The wheel is turnin’ and the sugar’s a burnin’” www.freelivedoctor.com

Krebs Cycle

Embed Size (px)

Citation preview

Page 1: Krebs Cycle

Kreb’s Cycle (aka, tricarboxylic acid

(TCA)cycle, citric acid cycle)“The wheel is turnin’ and the sugar’s a

burnin’”

www.freelivedoctor.com

Page 2: Krebs Cycle

Overall goal

• Makes ATP

• Makes NADH

• Makes FADH2

• Requires some carbohydrate to run

www.freelivedoctor.com

Page 3: Krebs Cycle

Geography

• Glycolysis in the cytosol• Krebs in mitochondrial matrix• Mitochondrion

– Outer membrane very permeable• Space between membranes called intermembrane space

(clever huh!)

– Inner membrane (cristae)• Permeable to pyruvate,• Impermeable to fatty acids, NAD, etc

– Matrix is inside inner membrane

www.freelivedoctor.com

Page 4: Krebs Cycle

Conversion of pyruvate to Acetyl CoA

CH3

O

O

O

pyruvate

CO2HSCoA

CH3 SCoA

O

acetyl CoA

NADHNAD+

pyruvate dehydrogenase complex

• 2 per glucose (all of Kreb’s)• Oxidative decarboxylation• Makes NADH• -33.4kJ

www.freelivedoctor.com

Page 5: Krebs Cycle

Fates of Acetyl CoA

CH3 SCoA

O

acetyl CoA

Kreb's

CO2, ATP, NADH...energy

ketone bodies

no CHO present

TAG's

• In the presence of CHO an using energy– Metabolized to CO2, NADH, FADH2,GTP and, ultimately, ATP

• If energy not being used (Lots of ATP present)– Made into fat

• If energy being used, but no CHO present– Starvation– Forms ketone bodies (see fat metabolism slides)– Danger!

www.freelivedoctor.com

Page 6: Krebs Cycle

Kreb’s CycleCH3 C

O

SCoAacetyl CoA

C O

CH2C

O

COO

O

oxaloacetate

CoASH

citrate synthase

COO

CH2CCH2

C

OH C O

O

O Ocitrate

aconitase

COO

CHCHCH2C

C O

O

OO

OH

isocitrate

NADNADH

CO2

COO

CCH2CH2

COO

O

isocitrate dehydrogenase

alpha ketoglutarate

NADNADH

CoASHCO2

CCH2

CH2C

OO

OSCoA

succinyl CoA

alpha ketoglutaratedehydrogenase

GDP

GTPCoASH

CC

CC

OO

O O

H

H

succinate

succinyl CoAsynthetase

FAD

FADH2succinatedehydrogenase

CCH2

CH2

COO

OO

fumarate

OH2

CCH

CH2

COO

O O

OH

malatefumarase

NADNADH

malatedehydrogenase

Kreb's Cycle

OH2+

www.freelivedoctor.com

Page 7: Krebs Cycle

Net From Kreb’s

• Oxidative process– 3 NADH– FADH2

– GTP

• X 2 per glucose– 6 NADH– 2 FADH2

– 2 GTP

• All ultimately turned into ATP (oxidative phosphorylation…later)

www.freelivedoctor.com

Page 8: Krebs Cycle

Citrate Synthase Reaction (First)

acetyl CoAoxaloacetate

CoASH

citrate synthase

citrate

OH2

CH3 C

O

SCoA

C O

CH2C

O

COO

O

COO

CH2CCH2

C

OH C O

O

O O

+

• Claisen condensation• -32.2kJ

www.freelivedoctor.com

Page 9: Krebs Cycle

Aconitase Reaction

citrate

aconitase

isocitrate

COO

CH2CCH2

C

OH C O

O

O O

COO

CHCHCH2C

C O

O

OO

OH

• Forms isocitrate• Goes through alkene intermediate (cis-aconitate)

– elimination then addition

• 13.3kJ

www.freelivedoctor.com

Page 10: Krebs Cycle

Isocitrate Dehydrogenase

isocitrate

NAD NADH CO2

isocitrate dehydrogenase

alpha ketoglutarate

COO

CHCHCH2C

C O

O

OO

OH

COO

CCH2CH2

COO

O

• All dehydrogenase reactions make NADH or FADH2

• Oxidative decarboxylation• -20.9kJ• Energy from increased entropy in gas formation

www.freelivedoctor.com

Page 11: Krebs Cycle

α-ketoglutarate dehydrogenase

alpha ketoglutarate

NAD NADHCoASH

CO2

succinyl CoA

alpha ketoglutaratedehydrogenase

COO

CCH2CH2

COO

OCCH2

CH2C

OO

OSCoA

• Same as pyruvate dehydrogenase reaction• Formation of thioester

– endergonic – driven by loss of CO2

• increases entropy• exergonic

• -33.5kJ

www.freelivedoctor.com

Page 12: Krebs Cycle

Succinyl CoA synthetase

succinyl CoA

GDP GTP CoASH

succinate

succinyl CoAsynthetase

CCH2

CH2C

OO

OSCoA

CCH2

CH2

COO

OO

• Hydrolysis of thioester – Releases CoASH– Exergonic

• Coupled to synthesis of GTP– Endergonic– GTP very similar to ATP and interconverted later

• -2.9kJ

www.freelivedoctor.com

Page 13: Krebs Cycle

Succinate dehydrogenase

succinate

FAD FADH2

succinyl CoAdehydrogenase

fumarate

CCH2

CH2

COO

OO

CC

CC

OO

O O

H

H

• Dehydrogenation• Uses FAD

– NAD used to oxidize oxygen-containing groups• Aldehydes• alcohols

– FAD used to oxidize C-C bonds– 0kJ

www.freelivedoctor.com

Page 14: Krebs Cycle

Fumarase

fumarate

OH2

malate

fumarase

CC

CC

OO

O O

H

H

CCH

CH2

COO

O

OH

O

• Addition of water to a double bond• -3.8kJ

www.freelivedoctor.com

Page 15: Krebs Cycle

Malate Dehydrogenase

oxaloacetatemalate

NAD NADH

malatedehydrogenase

CCH

CH2

COO

O

OH

O

C O

CH2C

O

COO

O

• Oxidation of secondary alcohol to ketone• Makes NADH• Regenerates oxaloacetate for another round• 29.7 kJ

www.freelivedoctor.com

Page 16: Krebs Cycle

Net From Kreb’s

• Oxidative process– 3 NADH– FADH2

– GTP

• X 2 per glucose– 6 NADH– 2 FADH2

– 2 GTP

• All ultimately turned into ATP (oxidative phosphorylation…later)

www.freelivedoctor.com

Page 17: Krebs Cycle

Total Energy per glucose

• Cytosol– Glycolysis

• 2 NADH• 2 ATP

• Mitochondrion– Pyruvate dehydrogenase

• 2 NADH

• Krebs– 6 NADH– 2 FADH2

– 2 GTP

www.freelivedoctor.com

Page 18: Krebs Cycle

Total Energy/glucose

• In mitochondrion:– Each NADH makes 2.5 ATP

– Each FADH2 makes 1.5 ATP

– GTP makes ATP

• So…– From in mitochondrion

• 8 NADH X 2.5 ATP/NADH = 20 ATP

• 2 FADH2 X 1.5 ATP/FADH2= 3 ATP

• 2 GTP X 1 ATP / GTP = 2 ATP• TOTAL in mitochondrion 25 ATP

www.freelivedoctor.com

Page 19: Krebs Cycle

Total Energy/ glucose

• Cytosol– 2 ATP– 2 NADH

• NADH can’t get into mitochondrion• In eukaryotes two pathways,

– transferred to FADH2

» get 1.5 ATP/ FADH2

– Or transferred to NADH» Get 2.5 ATP/ NADH

– (Not a problem in prokaryotes (why?))

– 2 NADH X 1.5 ATP = 3 ATP– Or 2 NADH X 2.5 ATP = 5 ATP

» + =2 ATP» Total 3+ 2 or 5 + 2 so either 5 or 7

www.freelivedoctor.com

Page 20: Krebs Cycle

ATP/glucose

• Eukaryotes– Mitochondrial: 25 ATP– Cytosolic: 5 or 7 ATP– Total 30 or 32 ATP/glucose– 30 ATP X 7.3kcal X 4.18 kJ = 915 kJ

ATP kcal

If 32 ATP = 976 kJ

• Prokaryotes– 32 ATP X 7.3kcal X 4.18 kJ = 976 kJ

ATP kcal

www.freelivedoctor.com