10
LOUISIANA TECH UNIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

Embed Size (px)

Citation preview

Page 1: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

Turbulent Flat-Plate Flow*P7.34

Sarah JeffordsTravis KingScott Laura

Eric Post

Page 2: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

A thin equilateral-triangle plate is immersed parallel to a 12 m/s stream of water at 20°C.

Estimate the drag of the plate.

2 m

2 m

2 m

Page 3: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• Retr = 5 x 105

• Laminar, tubulent flat-plate flow

• Laminar leading edge

• 2-dimensional flow

• Constant temperature

• Constant viscosity

• Constant density

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 4: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• 30°-60°-90° triangle

1 m2 m

60°

30°√3 m

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 5: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• According to Table A.1 at 20°C

• Calculate Reynolds Number

→ Turbulent

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 6: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• Reynolds Transition Number

• Laminar Leading Edge

• Coefficient of Drag

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 7: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• Drag

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 8: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• Blood flow restrictions– Atherosclerosis

• Plaque build-up and break-off in arteries• Balloon catheter and stint for angioplasty

– Sickle-cell disease• Red blood cell grouping and blockage

– Central line• Wire with triangular barbed end for insertion• Drag caused by barbed wire

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 9: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

• Sensors– Determine flow rate of fluid over sensor– Sensitivity to turbulence, velocity, and

viscosity

• Birth Control– Flow restriction of “sponge” from vaginal

orifice to cervix

• Kidney stones– Crystals obstruct flow of nephrons to urethra

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS

Page 10: L OUISIANA T ECH U NIVERSITY BIOMEDICAL ENGINEERING Turbulent Flat-Plate Flow *P7.34 Sarah Jeffords Travis King Scott Laura Eric Post

LOUISIANA TECH UNIVERSITYBIOMEDICAL ENGINEERING

Questions?

PROBLEM ASSUMPTIONS DIAGRAM SOLUTION APPLICATIONS QUESTIONS