62
LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine Boudrioua Encadrement : Mahmoud Chakaroun Assistance technologique Jeanne Solard Collaboration: Chii-Chang Chen ,National Central University , Taiwan Investigation of photonic properties of self Investigation of photonic properties of self organized nanoparticles monolayers : organized nanoparticles monolayers : application to photonic crystal cavities and application to photonic crystal cavities and patterned organic light emitting diodes patterned organic light emitting diodes Getachew T. AYENEW PhD defence : July 8th, 2014

LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Embed Size (px)

Citation preview

Page 1: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

LABORATOIRE DE PHYSIQUE DES LASERS

Photonique Organique et Photonique Organique et NanostructuresNanostructures

Support de thèse : ANR OLD-TEADirection de thèse : Alexis Fischer et Azzedine Boudrioua Encadrement : Mahmoud ChakarounAssistance technologique Jeanne Solard

Collaboration: Chii-Chang Chen ,National Central University , Taiwan

Investigation of photonic properties of Investigation of photonic properties of self organized nanoparticles self organized nanoparticles

monolayers : application to photonic monolayers : application to photonic crystal cavities and patterned organic crystal cavities and patterned organic

light emitting diodeslight emitting diodesGetachew T. AYENEW

PhD defence : July 8th, 2014

Thank you mister president.My name is Ayenew Getachew, and I'm going to present you my work entitled Photonic properties....This work was done under the supervision of....Prof Fischer and Boudrioua as thesis director in collaboration with Prof. Chii-chang Chen from NCU Taïwan
Page 2: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Outline

1. Introduction► Context

► State of the art

► Our approach

2. Photonic properties of monolayer of opals and inverse-opals► Numerical study of photonic band gaps

► Numerical study of microcavities

► Experimental approach of characterizing monolayer of opals

3. Nanoparticle based 2D patterning of OLED► 2D pattering of surfaces

► 2D patterning of OLEDs

4. Conclusion and perspectives

2

My talk is divided in two main section :I will first introduce my work and its context. In the second part I will present investigations on the photonic properties of nanostructures based onself organized nanoparticules.In the third chapter I will presetnn experimental results on nanoparticle based 2dimensional patterning of OLEDI will finish with a conclusion and perspectives.
Page 3: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

3

1D Vertical confinement

Top down Bottom up

Small Mode

volume

High Q

Extended cavity

1. Introduction

Context :ANR OLD-TEA 2010-2013

Axe 1

Organic Laser Diode : A Threshold-Less Experimental Approach

Axe 2

2D lateral confinement

Photonic Crystal Opals - Inverse Opals

Low threshold organic diode laser

2D DFB lasers

Light extraction in OLED

Potential Applications

The context of this work deals with the quest of the organic laser diode which has not been demonstrated so far. The Organic Photonic and Nanostructures group adress this quest with a low-threshold laser approach. The group is involved in embedding OLED in different type of microcavities. This requires high Q and or low mode volume laser cavities so as to lower the laser threshold at the level of the highest current density in OLED.Axe 1 deals with Fabry-perot type of microcavities, whereas axe 2 consider photonic crystal nanocavities. In a previous thesis done by Franocis Gorudon very low laser threshold were obtained with defect cavity in photonic crystal realize by a top-down approach with an e-beam and ICP etching.The goal of my thesis is to investigate if opals and inverse opals can be used in a bottom up approach to design and fabricate photonic crystal
Page 4: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Photonic properties of monolayer of nanoparticles and microcavities

► New patterning technique using nanoparticles 4

1. Introduction

Objectives of the study

Self-organized Nanoparticles

Photonic crystals OLED Nanostructuration

Photonic crystal laserwith defect microcavity

2D-DFB OLD Light extraction in OLED

Page 5: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Photonic properties of monolayer of nanoparticles and microcavities

► Making nanostructures using nanoparticles 5

1. Introduction

Objectives of the study

Self-organized Nanoparticles

Photonic crystals OLED Nanostructuration

Photonic crystal laserwith defect microcavity

2D-DFB OLD Light extraction in OLED

Page 6: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

6

State of the artPolymeric solid-state dye lasers resonator

Shi et al. Appl. Phys. Lett. 98, 093304 (2011)

Random lasingDye doped photonic crystal

Kim et al Chem. Mater., 2009, 21 (20), pp 4993–4999 Murai et al, Chemistry LettersVol. 39 (2010) , No. 6 p.532

porous photonic film enhanced stimulated emission Lasing by randomly dispersing nanoparticles into a gain material• multiple scattering

highly-efficient low threshold laser

Emission spectra of the resonator cavity below and above lasing threshold

2. Photonic properties of monolayer of opals and inverse-opals

Page 7: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

►General objective► Optimal design of planar photonic

crystal using nanoparticles ?► Microcavity ?

►Methodology

► Investigate numerically photonic band gaps in monolayer of dielectric spheres

► Investigate numerically quality factors of microcavities

► Experimental investigation of in-Plane propagation 7

glass

General objective/Methodology

0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Transmission spectrum

Cavity response

Normalized Frequency(a/)

Tra

ns

mis

sio

n

0

20

40

60

80

100

Inte

ns

ity

(a.u

.)

2. Photonic properties of monolayer of opals and inverse-opals

Page 8: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Opal without substrate

8

Structures

glass

air

air

air

2r

air

air r

air

glass

a

Inverse opal without substrate

Opal with substrate Inverse opal with substrate

r

a

a = period r = radius

2. Numerical study of photonic band gaps

Page 9: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Control parameters

2. Numerical study of photonic band gaps

ra

9

2__

33

4

___

__

a

r

cellun ito fV o lum

sphereso fV o lum eff ce llun itinspheres

Refractive index (n)• n of spheres in opals• n of infiltrated material in inverse-

opals

Compactness of spheres , r/a ratio ( for n = 2.5, anatase TiO2)

• r/a=0.5, compact spheres• r/a < 0.5 non- compact spheres• r/a ratio determines the filling factor

(ff)

Filling factor

Effective refractive indexneffective=√ϵ effective=√ff spheres ϵ spheres+(1−ff spheres)ϵ voidsUnit cell

Page 10: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

10

Parameters

► Direction of propagation of the incident field with respect to the crystal

► M ( TE, TM polarisations)

► ( TE, TM polarisations)► Symetries and rotation

2. Numerical study of photonic band gaps

K

M K

Page 11: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Boundary conditions► Perfectly matched layer (PML)► Periodic

11

2.1 Introduction to simulation Simulation condition► 3D finite-difference time-domain(3D-FDTD) method

2. Numerical study of photonic band gaps

Top view

Cross section

Page 12: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Photonic band gap ► Gap maps

12

Photonic band gap(PBG) and construction of gap maps

PBG

n=3

n=2.1PBG

n=1.5

Photonic gapmap

Transmission spectra

n=2.2

2. Numerical study of photonic band gaps

M direction , TE polarization

direction , TE polarization

(intersection) 'complete' bandgap

Page 13: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Gap maps►Different

polarizations►TE►TM

►Different directions of propagation►M►K

13

Photonic band gap(PBG) and construction of gap maps

2. Numerical study of photonic band gaps

Page 14: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

PBG

14

Inverse-opals without substrate

Region for TE polarization

r/a=0.5

TiO2(n=2.5)

► PBG exists for a wide range of refractive indices► PBG exists for a wide range of compactnesses► For n=2.5, Largest gap to mid-gap ratio for

r/a=0.4, (TE)

Δf

fwidth of PBG = gap-mid-gap ratio= Δf/f

2. Numerical study of photonic band gaps

n=2.5

r/a

Page 15: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Opals without substrate exhibit PBGs for different compactness

► PBG appears narrower15

n=2.5, TiO2

Opals without substrate

2. Numerical study of photonic band gaps

0.3 0.4 0.5 0.6 0.70.25

0.30

0.35

0.40

0.45

0.50r/

a

Normalized Frequency(a/)

Page 16: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► First conclusion- monolayer of inverse opal offers larger gap-to-midgap ratio

16

0.2 0.3 0.4 0.5 0.6 0.7

0.000.330.660.99

0.0000.0550.1100.165

0.000.330.660.990.000.080.160.24

0.0000.0860.1720.258

0.000.330.660.99

0.0000.0610.1220.183

Tra

ns

mis

sio

n

Normalized frequency (a/)

r/a = 0.25

r/a = 0.29

r/a = 0.33

r/a = 0.37

r/a = 0.41

r/a = 0.45

r/a = 0.5

0.2 0.3 0.4 0.5 0.6

0.000.330.660.99

0.0000.0250.0500.0750.1000.00

0.330.660.990.000.330.660.990.000.330.660.990.000.330.660.990.000.330.660.99

Normalized Frequency (a)

r/a = 0.25

r/a = 0.29

r/a = 0.33

r/a = 0.37

Tra

ns

mis

sio

n

r/a = 0.41

r/a = 0.45

r/a = 0.5

0.25 0.30 0.35 0.40 0.45 0.50

0.05

0.10

0.15

0.20

0.25

0.30

f/f

r/a

GMTE width-opal GMTE width-inverse opal

гM-TE гM-TE

Opal or inverse-opal ?

2. Numerical study of photonic band gaps

Opals Inverse-Opals

Page 17: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Losses to glass substrate► No PBG for low ref. index materials► Higher refractive index materials

required17

r/a=0.5

► PBG observed with non-compact spheres

► Overlap of TE mode for non-compact spheres

Substrate effect: inverse-opal with substrate

2. Numerical study of photonic band gaps

TiO2(n=2.5)

TiO2(n=2.5)

r/a

Page 18: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

0.3 0.4 0.5 0.6 0.7 0.8 0.90.25

0.30

0.35

0.40

0.45

0.50

r/a

Normalized Frequency(a/)

► Losses to glass substrate as r/a is lower► More compact spheres favorable

18

n=2.5

Lossy region

glass

Substrate effect : opal with substrate

2. Numerical study of photonic band gaps

Page 19: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Opals: as the spheres are more compact neff increases less loss ► Inverse opals: as the spheres are more compact neff decreases more

loss 19

n=2.5

0.2 0.3 0.4 0.5 0.6 0.7

0.000.330.660.990.000.330.660.990.000.330.660.990.000.330.660.990.000.330.660.990.000.250.500.750.000.250.500.75

Normalized frequency (a/)

Tra

nsm

issi

on

r/a = 0.5

r/a = 0.45

r/a = 0.41

r/a = 0.37

r/a = 0.33

r/a = 0.29

r/a = 0.25

n=2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.000.330.660.990.000.250.500.75

0.000.280.560.840.000.330.660.990.000.330.660.990.000.330.660.990.000.330.660.99

Normalized Frequency (a)

r/a = 0.5

r/a = 0.45

r/a = 0.41

r/a = 0.37

r/a = 0.33

r/a = 0.29

r/a = 0.25

Tra

nsm

issi

on

Substrate effect : effect of compactness on losses

2. Numerical study of photonic band gaps

compacthigh neff

non-compactlow neff

Less compactMore losses

compactlow neff

non-compact high neff

Morecompact

More losseslarger filling factor

smaller filling factor

Opals Inverse-opals

Page 20: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

air

opal, r/a = 0.5

glass

zy

x

glass

air

opal, r/a = 0.31

glass

air

inverse opal, r/a = 0.31

glass

air

opal, r/a = 0.31

20

Substrate effect : effect of compactness on losses

2. Numerical study of photonic band gaps

Compact opalshigh neff

Non compactlow neff

More losses

compactlow neff

Non compactInverse-opal

high neff

More losses

Page 21: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

►General objective► Optimal design of planar photonic

crystal using nanoparticles ?► Microcavity ?

►Methodology

► Investigate numerically photonic band gaps in monolayer of dielectric spheres

► Investigate numerically quality factors of microcavities

► Experimental investigation of in-Plane propagation 21

glass

General objective/Methodology

0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Transmission spectrum

Cavity response

Normalized Frequency(a/)

Tra

ns

mis

sio

n

0

20

40

60

80

100

Inte

ns

ity

(a.u

.)

2. Photonic properties of monolayer of opals and inverse-opals

Page 22: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Investigation with respect to► Various cavity geometries► The r/a ratio► with and without substrate (effect of the losses)

H1 L5L3H2

Microcavities

► Fixed refractive index n= 2.5► Defects in the periodicity

monitor source

2. Numerical study of microcavities

22

Page 23: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Without substrate:► Cavity resonance in the

PBG

► With substrate► Significant resonant peaks

observed for non-compact arrangement

Microcavities in inverse-opals

2. Numerical study of microcavities

23

Page 24: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Quality factor increases when r/a < 0.40► The presence of glass substrate reduces the quality factor► The maximum of the Q-factor is obtained for 0.3 < r/a < 0.35

24

Microcavities in inverse-opals with and without

2. Numerical study of microcavities

Page 25: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

0.1 0.2 0.3 0.4-5.00E+012

0.00E+000

5.00E+012

1.00E+013

1.50E+013

2.00E+013

2.50E+013

3.00E+013

3.50E+013

Inte

ns

ity

(a

.u.)

n=3,2 air resonance r/a=0,5 n=3,2 glass resonance r/a=0,5n=4, glass r/a=0,5

Normalized wavelength ( a/)

Inte

ns

ity

(a

.u.)

0.00E+000

2.00E+009

4.00E+009

6.00E+009

8.00E+009

1.00E+010

25

H2

Higher refractive index values needed in opals to achieve a resonance: (n~4 realistic?)

► The inverse-opal arrangement is more favorable to microcavities

Microcavities in opals

2. Numerical study of microcavities

n=4

n=3.2

n=3.2

Page 26: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

►General objective► Optimal design of planar photonic

crystal using nanoparticles ?► Microcavity ?

►Methodology

► Investigate numerically photonic band gaps in monolayer of dielectric spheres

► Investigate numerically quality factors of microcavities

► Experimental investigation of in-Plane propagation 26

glass

General objective/Methodology

0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Transmission spectrum

Cavity response

Normalized Frequency(a/)

Tra

ns

mis

sio

n

0

20

40

60

80

100

Inte

ns

ity

(a.u

.)

2. Photonic properties of monolayer of opals and inverse-opals

Page 27: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Objectives► Measure of the In-Plane

transmission spectra as a function of

► Polarization (TE, TM)

► Crystal direction (M, K)

► Problem ► Arrangement of spheres –

presence of multiple domains► Several directions are probed at

the same time

► Method► Fabrication of a single domain

monolayers ?► Characterization of single

domain ?27

2. Towards experimental study of in-plane propagation in opal monolayers

Problem and method

transmittedtransmitted

Direction of propagation

Page 28: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Light ΓM

ΓK

Reference

waveguide

nanoparticlesmicro-

hexagon

► Single domain fabrication► Fabrication of micro-hexagons

► force nanoparticles organizaton in ordered manner

► Orientation of hexagons to fixe the direction of propagation

► Dimension calculated for given nanoparticle diameter

► Single domain characterization► Waveguides

• Polymer waveguide on a glass substrate

• In- and out-coupling• Single domain probing

2. Towards experimental study of in-plane propagation in opal monolayers Approach: single domain samples and characterization

28

Page 29: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

29

10µm

2. Towards experimental study of in-plane propagation of opal monolayers

Preliminary experimental results: Fabricated waveguides

micro-hexagon

waveguide

► Clearly defined waveguide structure and micro-hexagon

► Different orientations of the micro-hexagons

Page 30: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► The diameter of the microneedle is too large as compared to the size of the micro-hexagon► Nanoparticles not in the target area 

30

► 1.5µm spheres used for optimization of the process

2. Towards experimental study of in-plane propagation of opal monolayers

Preliminary experimental results: Deposition of nanoparticles

Page 31: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

31

2. Towards experimental study of in-plane propagation of opal monolayers

Conclusion and perspectives on experiments part 1

► Conclusion► Method of micro-hexagon

promising to make single-domain monolayers

► Waveguides can enable in- and out- coupling from the nanoparticles

► Deposition by micro-needles not successful

► Perspective► Deposition by microfluidic channels

– easy to deliver the nanoparticle solution to micro-hexagon

Adv. Funct. Mater., Vol.19, 1247–1253(2009)

Page 32: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

32

Conclusion and perspectives part 1

► Numerical investigation on opals and Inverse opals► Photonics bandgap exist in Opals and Inverse-Opals ► The inverse-opal structure exhibits larger PBG than the

opal structure► Non-compact inverse-opal structure has highest Q-factor ► Opal micro-cavities require high refractive index to have

cavity resonances► Experimental study of propagation in opals

► In-plane propagation experiment of single domain opals►Micro-hexagons►Waveguide

► Perspectives :► Simulation: Mode volume calculation► Experiment: nanoparticle self-organization by micro-

channels

2. Photonic properties of monolayer of opals and inverse-opals

Page 33: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Photonic properties of monolayer of nanoparticles and microcavities

► Making nanostructures using nanoparticles 33

3. OLED Nanostruturation

Objectives of the study

Self-organized Nanoparticles

Photonic crystals OLED Nanostructuration

Photonic crystal laserwith defect microcavity

2D-DFB OLD Light extraction in OLED

Page 34: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Objectives► Patterning OLEDs

► Light extraction : requires period of lattice ~1-2.5 µm.

► 2D DFB laser : requires period of lattice < 500 nm.

► Issues► E-beam

► Time consuming

► Expensive

► Method► Principle of photolithography using nanoparticles► Simulations► Experiments► Analysis

34

3. OLED Nanostruturation

Objectives of the study

(Journal of Nanoscience, Volume 2014 (2014))

Page 35: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

35

State of the art: Microsphere based patterning and OLED patterning

3. 2D nanostructuration of OLED

► Laser ablation

Optical Engineering 491, 014201

Laser exposure

► Micro-lens focusing

Nanoscale Res Lett., Vol. 3, 123–127(2008)

OPTICS EXPRESS / 2005 / Vol. 13, No. 5

► Electron-beam lithography

► Nanosphere lithography Nano Letters, 2002, 2 (4), pp 333–335

Page 36: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

36

Our approach : self-organized nanoparticle photolithography

3. 2D nanostructuration of OLED

Monolayer of nanoparticles

UV

development

► Nanoparticle based reusable photolithographic mask► Photomask made with

nanoparticles

► Light exposure

► Development and reproducing close-packed microsphere pattern on photoresist

► Process advantages• Reusable mask

• Simple

• Cheap

• Large area

to OLED processing

patternedphotoresist

patternedOLED

Page 37: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

37

Experiment : The process

3. 2D nanostructuration of OLED

► Process parameters► Spin coating: 6000rpm► Soft bake: @100°C, 90 sec.► UV exposure: @405nm,

0.9sec► Developmenet: 9 sec

► Materials used► Size and type of microspheres:► SiO2- 800nm, 1µm, 1.25µm,

1.53µm, 1.68µm, 1.96µm, 2.34µm

► Polystyrene- 1.68µm► Photoresist, Az-1505► Developer- MF-319

Page 38: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Large area microsphere thin-film on the substrate

38

2.5cm

1.7cm

► SEM: Periodically arranged monolayer of micro nanoparticles – presence of defects in the crystal

Results: photomask made with self-organized nanoparticles

3. 2D nanostructuration of OLED

Page 39: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

1µmMade by 2.34 µmsize microspheres microspheres mask

Result: Patterned photoresist

39

►Homogenous pattern made by self-organized nanoparticles

photolithography

3. 2D nanostructuration of OLED

Page 40: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

On the same sample

40

Results: 2 kinds of patterns on the same sample !

UV

half of the period of the monolayer mask

the period of the monolayer mask reproduced

3. 2D nanostructuration of OLED

Page 41: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Period of lattice less than 750nm

► hole diameter less than 405 nm

► Reduced-Period not observed for microsphere sizes of 800nm and 1μm

41

Results: Different size of micro nanoparticles

► Different size of microspheres: 800nm, 1µm, 1.25µm, 1.53µm, 1.68µm, 1.96µm, 2.34µm

► Two contact modes of the mask aligner: hard contact and soft contact

3. 2D nanostructuration of OLED

Page 42: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

42

Micro-ball Lens effect Phase-mask effect

Simulation: 2 kinds of patterns

► Hard-contact and soft-contact modes of the mask

aligner

period of pattern = ½ * (period of microspheres)

period of pattern = period of microspheres

3. 2D nanostructuration of OLED

Page 43: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Micro ball-lens► focal length► Numerical aperture

max 43

Phase-mask► Fundamental low of

grating► Transmitted angle 1

Analysis : self-oganized microparticles

3. 2D nanostructuration of OLED

The array of self-organized micro nanoparticles is both a collection of ball-lenses and a 2D-phase mask

1

Page 44: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

44

Red OLED

Green OLED

3. 2D nanostructuration of OLED

glassITO

patterned photoresist

Micro-OLEDS: Organic hetero-structures - band diagram

Page 45: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

45

3. 2D nanostructuration of OLED

Micro-OLEDs: Images

► Micro-OLED sizes = 1.27µm

► Method compatible with OLED operation

Page 46: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

46

3. 2D nanostructuration of OLED

Micro-OLEDs: Spectra

► Emission under normal incidence► Small spectral modification of

emitted light as compared to large area OLED

► Perspectives► Measurements for other angles of

emission► Edge emission► Smaller period of pattern

glass

Page 47: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Conclusion► Cheap, simple method to pattern 2D surfaces on large area► The patterning method is compatible with OLED deposition

47

Conclusion and perspective part 2

► Perspective► Characterization of the emission

• Measurement of the emission diagram• Edge emission

► Towards 2D-DFB laser :• Smaller lattices : 200-300 nm• Lower exposure wavelength (<405nm) to increase the

resolution of the nanoparticles lithography process• Deep UV (DUV) lithography and DUV photoresist

► Use negative photoresist to make periodic pattern of micro nano-pillars

3. 2D nanostructuration of OLED

Page 48: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

48

Photonic properties of opal and inverse-opal monolayers► Monolayers of O and I-O do exhibit photonic bandgap► The inverse-opal structure exhibits larger PBG► Non-compact (r/a=0.4) TiO2 inverse-opals exhibit the largest PBG► Highest Q-factor is obtained in inverse –opals for r/a ratio ~ 0.32.► Opal micro-cavities require high refractive index to exhibits cavity

resonances

► Nanoparticle photolithography► Monolayers of nanoparticles used to make periodic pattern on

photoresist• Lattice down to 750 nm• Holes down to 450 nm

► Array of micro-OLEDs (size = 1.27µm) fabricated ► Perspectives :

• 2D-DFB organic laser fabrication requires Deep-UV photolithography (193 nm)• Applications of the nanoparticle photolithography technique : Patterning

surface with metal (SERS, Molecules detection, OLED efficiency increases via Surface Enhanced Plasmon Resonance.

4. General Conclusion

Page 49: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Thank you for your attention

49

Page 50: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Conclusion ► Structures without substrate exhibit PBGs for wide range of

refractive indices and compactness► Generally inverse opals have larger photonic bandgap

width► Structures with substrate have losses for lower refractive index

materials► Considering n=2.5, lower compactness in inverse opals

and higher compactness in opals result in lower losses to glass substrate

► Inverse-opal with lower compactness on glass substrate seems to be a good compromise between the losses and the width of PBG

► Thus microcavities designed in non-compact sphere inverse-opals are expected to have better confinement► Calculation of quality factors is necessary to optimize the

optimum r/a value for a given refractive index50

Conclusion

2. Numerical study of photonic band gaps

Page 51: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

► Highest Q-factor(~300) obtained for non-compact spheres in inverse-opals.

► With a glass substrate the Q factor is limited to Q~200

► Glass substrate reduces Q-factors

► Micro-cavities in opals require refractive index larger than n=3.2 which is hardly feasible

► The literature presents much higher Q-factor in conventional Phc Slabs.

51

Conclusion on Microcavities

2. Numerical study of microcavities

Page 52: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

52

sample

2. Towards experimental study of in-plane propagation of opal monolayers

Preliminary experimental results: Deposition of nanoparticles

Micro-needle and micro-syringe

Page 53: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

53

► Light extraction

(lattice ~ 1-2.5 µm)

► Light extraction

► DFB lasing ► DFB lasing

Deep UV litho.Smaller lattice(<500 nm)

Etching ITO

Etching glass substrate

Etching glass substrate

Conclusion and perspectives

3. 2D nanostructuration of OLED

Page 54: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

54

Conferences and papers

► Papers► Getachew T. Ayenew, Alexis P.A. Fischer, Chia-Hua Chan, Chii-Chang Chen, Mahmoud Chakaroun, Jeanne Solard, Azzedine Boudrioua,”Two-dimensional patterning of organic light

emitting diode based on self-organized nanoparticles photolithography” Submitted to optics Express (may 2014)

► F. Gourdon, A.P.A. Fischer, M. Chakaroun, G. Ayenew and Azzedine Boudrioua “Study of the organic layer thickness effect in a hybrid photonic crystal L3 nanocavity under optical

pumping”, Accepted in Journal of Nanophotonics, 5 may 2014

► Min Won Lee, Siegfried Chicot, Chii-Chang Chen, Mahmoud Chakaroun, Getachew Ayenew, Alexis Fischer, and Azzedine Boudrioua, Study of the Light Coupling Efficiency of OLEDs Using

a Nanostructured Glass Substrate , Journal of Nanoscience, Volume 2014 (2014)

► Getachew T. Ayenew ; Mahmoud Chakaroun ; Nathalie Fabre ; Jean Solard ; Alexis Fischer ; Chii-Chang Chen ; Azzedine Boudrioua ; Chia-Hua Chan Photonic properties

of two-dimensional photonic crystals based on monolayer of dielectric microspheres , Proc. SPIE 8424, Nanophotonics IV, 84242X (April 30, 2012);

► Sokha Khiev, Lionel Derue, Getachew Ayenew, Hussein Medlej, Ross Brown, Laurent Rubatat, Roger C. Hiorns, Guillaume Wantz and Christine Dagron-

Lartigau,"Enhanced thermal stability of organic solar cells byusing photolinkable end-capped polythiophenes", Polym. Chem., 2013,volume 4, 4145-4150 (2013)

► Conference

► Getachew T. Ayenew, Mahmoud Chakaroun, Nathalie Fabre, Jeanne Solard, Alexis Fischer, Azzedine Boudrioua, Chii-Chang Chen, Chia-Hua Chan, « Photonic properties

of two-dimensional photonic crystals based on monolayer of dielectric nanospheres » Poster SPIE 16 - 19 April 2012, Square Brussels Meeting Centre Brussels, Belgium.

► Getachew T. Ayenew, Anthony Coens, Mahmoud Chakaroun, Jean Solard, Alexis P. A. Fischer, Chii-Chang Chen, Chia-Hua Chan, Azzedine Boudrioua, Micro-Oled

fabricated by microsphere based lithography, Optique Paris 13, 8 au 11 juillet 2013, Villetaneuse, Présentation Orale.

► Getachew T. Ayenew, Anthony Coens, Mahmoud Chakaroun, Jeanne Solard, Alexis P. A. Fischer, Chii-Chang Chen, Chia-Hua Chan, Azzedine Boudrioua, Micro-OLED

fabricated by microsphere based photolithography, JNRDM 2013, Journées National du Réseau Doctoral en Micro-Nanotechnologies, 10-12 juin 2013, Minatec Phelma,

Grenoble, Poster

Page 55: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

30 à 50%

Analyse du problème de l'émission lumineuse

La structure OLED• Interfaces

– ITO / Verre

– Verre /air

Impact sur l'extraction lumineuse• Réflexions aux interfaces :

– 0,8%<R ITO/Verre <19%

– R Verre/air 4%

• Angles limites : lim = Arcsin(n2/n1)

• Réflexion totale interne (TIR)

• Modes guidés dans le verre : 30%

• Modes guidées dans l'ITO : 50%

Taux de couplage : 15 à 20 %

Aluminium

Organiquen=1,7

n=1,8 à 2,2

n=1,5

Verre

2

1

lim

TIR

50 à 30%

Modes guidés

Modes guidés

TIRITO

2

lim

Lumière extraite15% à 20%

R=(n1−n2

n1+n2)2

Page 56: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Impact des angles limites

A partir de la loi de Descartes• n2sin() = n1sin()

• Angles limites : lim = Arcsin(n2/n1)

• ITO/verre : 43°lim<56°

• Verre/Air : lim 42°

• ITO/air : 27°lim<33° (limpour n=2)

• Au delà de l'angle limite il y a réflexion totale interne (TIR) (onde guidée)

Taux de couplage• Ce qui est transmis : T() r2 sind• T() transmittance en fonction de l'angle

• Couplage externe ITO/Air : 15 %

Transmission au delà des angles limites?• Modification de la géométrie grâce aux

nanoparticules ?

lim

=5

lim

=42

°

Cône d'émission ITO /verre

Cône d'émission verre/air

lim

=30°

Cône d'émission ITO/air

Page 57: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

57

Organic compounds for OLED

Standard chemical products

Alq3; tris(8-hydroxyquinolinato)aluminum;copper

phthalocyanines

4,4'-Bis(2,2-diphenylvinyl)-1,1'-biphenyl

2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline/Bathocuproine

N,N’-Di(naphthalen-1-yl)-N,N’-diphenyl-benzidine

Page 58: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Organic semiconductors

Photonique Organique

Page 59: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

DFB lasing

Photonique Organique

Page 60: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

DFB lasing

Photonique Organique

Page 61: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Q-factor , mode volume

Photonique Organique

cav=03Q

42V eff

( n)

3

F P=3Q

42V eff

( n)

3

Q=−ω(t−t 0)

( ln (U ( t )

U ( t0)))

Page 62: LABORATOIRE DE PHYSIQUE DES LASERS Photonique Organique et Nanostructures Support de thèse : ANR OLD-TEA Direction de thèse : Alexis Fischer et Azzedine

Finite difference

Photonique Organique