LaplacePolar

Embed Size (px)

Citation preview

  • 8/7/2019 LaplacePolar

    1/34

  • 8/7/2019 LaplacePolar

    2/34

    Laplaces equation

    Laplaces equation in (x, y) coordinates

    2f= 0

    i.e.2f

    x2+

    2f

    y2= 0

    Laplaces equation in polar coordinates

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    3/34

    Laplaces equation

    In polar coordinates...

    2f=1

    r

    r

    r

    f

    r

    =

    1

    r22f

    2= r2

    2f

    r2+ r

    f

    r+

    2f

    2

    i.e. 2f= 0 becomes

    r22f

    r2+ r

    f

    r+

    2f

    2= 0

    Laplaces equation in polar coordinates

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    4/34

    Laplaces equation

    Why do it?

    We use particular co-ordinate systems to solve problems withparticular geometries.

    Consider a circular plate withsome temperature distributionon its boundary. The correctco-ordinates to use are polar

    co-ordinates.

    Laplaces equation in polar coordinates

    L l i

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    5/34

    Laplaces equation

    Two new ideas

    Check that the solution doesnt become infinite at some point inspace. If it does get rid of the solution.

    Check that the solution at = 2 is the same as the solution at = 0. If the solution doesnt satisfy this condition get rid of itimmediately.

    Laplaces equation in polar coordinates

    L l ti

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    6/34

    Laplaces equation

    Separation of variables

    We look for solutions of the form

    f(r, ) = R(r)T()

    Substituting into

    r22f

    r2+ r

    f

    r+

    2f

    2= 0

    gives r2R

    (r)T() + rR

    (r)T() + R(r)T

    () = 0

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    7/34

    Laplaces equation

    Separation of variables

    Rearranging

    r2R

    (r)T() + rR

    (r)T() + R(r)T

    () = 0

    gives

    r2R

    (r) + rR

    (r)R(r)

    = T

    ()T()

    Each side is a function of a different variable, so both must beequal to a constant:

    r2R

    (r) + rR

    (r)

    R(r)=

    T

    ()

    T()= const.

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    8/34

    Laplace s equation

    Case 1: positive constant

    We call the constant 2 and assume = 0

    r2R

    (r) + rR

    (r) = 2R(r)

    i.e.r2R

    (r) + rR

    (r) 2R(r) = 0

    This is an ODE with coefficients which are powers matching the

    derivative. So we look for solutions of the form rm

    .

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    9/34

    Laplace s equation

    Case 1: positive constant

    Substituting R(r) = rm into

    r2R

    (r) + rR

    (r) 2R(r) = 0gives

    m(m 1)rm + mrm 2rm = 0 i.e. m(m 1) + m 2 = 0i.e.

    m2 2 = 0 i.e. m = So the general solution is

    R(r) = c1r + c2r

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    10/34

    Laplace s equation

    Using some physical knowledge

    Consider the general solution

    R(r) = c1r + c2r

    What happens to r at r = 0? To avoid solutions which becomeinfinite we discard the term c2r

    , leaving

    R(r) = c1r

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    11/34

    Laplace s equation

    Case 1: positive constant

    The equation is:

    T

    () = 2T() i.e. T

    () + 2T() = 0

    We know that this is solved by linear combinations of sin() andcos(). Again we need some physical knowledge. is an angle, so

    the value ofT() must be the same at 0 and at 2, i.e.

    cos(0) = cos(2) and sin(0) = sin(2)i.e.

    1 = cos(2) and 0 = sin(2)

    The first is only satisfied if is an integer n. In this case thesecond equation is also satisfied. I.e.

    = n

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    12/34

    p q

    Case 1: positive constant

    So finally in the case of a positive constant we get the solution

    f(r, ) = c1rn(d1 cos n + d2 sin n)

    Renaming some constants gives

    f(r, ) = rn(A cos n + Bsin n)

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    13/34

    Case 2: negative constant

    We call the constant 2 and assume = 0. Looking first at the equation:

    T

    () = 2 i.e. T

    () 2 = 0

    The general solution of this equation consists of linearcombinations ofe and e. As before, since is an angle werequire T(0) = T(2), i.e.

    e0 = 1 = e2 and e0 = 1 = e2

    This only has solution = 0 whereas we have assumed that = 0.So there are no physically meaningful solutions with a

    negative constant.

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    14/34

    Case 3: zero constant

    The equation becomes

    T

    () = 0

    i.e.

    T() = c3 + c4

    Insisting that T(2) = T(0) gives

    c32 + c4 = c30 + c4

    i.e.c3 = 0

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    15/34

    Case 3: zero constant

    The r equation becomes

    r2R

    (r) + rR

    (r) = 0

    We try rm giving

    m(m 1) + m = 0 i.e. m2 = 0 i.e. m = 0

    This is a repeated root, so the two solutions are

    r0 and ln r

    givingR(r) = d3r

    0 + d4 ln r

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    16/34

    Case 3: zero constant

    What happens to ln r as r 0? As before we get rid of unphysicalbehaviour and get

    R(r) = d3r0 = d3

    So in the case of a zero constant, both R(r) and T() are justconstants so we can write

    R(r)T() = C

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    17/34

    The general solution

    We thus get the general solution:

    f(r, ) = C+n

    rn(An cos n + Bn sin n)

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    18/34

    A circular plate with radius r0

    Consider a circular plate with radius r0 and some temperatureT = g() along the boundary (i.e. at r = r0).

    r0

    outer perimeter:

    f(r0, ) = g()

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    19/34

    Substituting in the boundary conditions

    f(r, ) = C+n

    rn(An cos n + Bn sin n)

    Substituting in the boundary condition:

    g() = f(r0, ) = C+n

    r0n(An cos n + Bn sin n)

    Remember that the Fourier series for g() is

    g() = 12a0 +

    n

    (an cos n + bn sin n)

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    20/34

    Substituting in the boundary conditions

    Comparing

    g() = f(r0, ) = C+n

    r0n(An cos n + Bn sin n)

    andg() =

    1

    2a0 +

    n

    (an cos n + bn sin n)

    gives

    C =1

    2a0, An =

    an

    rn0

    , Bn =bn

    rn0

    where an and bn are the Fourier coefficients for g().

    Laplaces equation in polar coordinates

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    21/34

    Laplaces equation

  • 8/7/2019 LaplacePolar

    22/34

    Example 1

    The temperature varies periodically around the perimeter

    g() = 1 + sin

    Here the Fourier series is in the function itself, so

    a0 = 2, an = 0 (n 1), b1 = 1, bn = 0 (n 2)

    The general solution

    f(r, ) =1

    2

    a0 +nr

    r0n

    (an cos n + bn sin n)

    reduces to:

    f(r, ) = 1 +

    r

    r0

    sin

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    23/34

    What the solution looks like

    0

    0

    0

    0

    0

    1

    1

    1

    1

    1

    2

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    24/34

    Example 2

    The temperature varies periodically around the perimeter,

    oscillating faster

    g() = 1 + sin 5

    Here the Fourier series isin the function itself, so

    a0 = 2, an = 0 (n 1)

    b5 = 1, bn = 0 (n = 5) -1 -0.50

    0.51x -1

    -0.50

    0.5

    y

    0

    0.5

    1

    1.5

    2

    T

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    25/34

    Example 2

    The general solution

    f(r, ) =1

    2a0 +

    n

    rr0n

    (an cos n + bn sin n)

    reduces to:

    f(r, ) = 1 +

    r

    r0

    5

    sin 5

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    26/34

    What the solution looks like

    -1-0.5

    00.5

    1x -1-0.5

    0 0.5

    1

    y

    0

    0.5

    1

    1.5

    2

    T

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    27/34

    What the solution looks like

    0

    0

    0

    0

    0

    1

    1

    1

    1

    1

    2

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    28/34

    Example 3

    Consider

    g() = 0 < 0

    1 0

    < So that the top half of theplate is held at a temperatureof 1 while the bottom half is

    held at a temperature of 0

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    29/34

    Example 1

    Calculating the Fourier series of

    g() =

    0 < 01 0 <

    gives

    a0 = 1, an = 0 (for n 2), bn =

    0 n even(2/n) n odd

    So the full solution is

    f(r, ) =1

    2+

    2

    n odd

    r

    r0

    n sin n

    n

    Laplaces equation in polar coordinates

    Laplaces equation

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    30/34

    What the solution looks like

    Approximation: 1 term

    -0

    0

    0

    0

    0

    0

    1

    1

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    Laplaces equation

    Wh h l l k l k

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    31/34

    What the solution looks like

    Approximation: 2 terms

    -0

    0

    0

    0

    0

    0

    1

    1

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    Laplaces equation

    Wh h l i l k lik

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    32/34

    What the solution looks like

    Approximation: 5 terms

    -0

    0

    0

    0

    0

    0

    1

    1

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    Laplaces equation

    Wh h l i l k lik

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    33/34

    What the solution looks like

    Approximation: 20 terms

    -0

    0

    0

    0

    0

    0

    1

    1

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    Laplaces equation

    Wh t th l ti l k lik

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/7/2019 LaplacePolar

    34/34

    What the solution looks like

    Approximation: 60 terms

    -0

    0

    0

    0

    0

    0

    1

    1

    -1 -0.5 0 0.5 1

    x

    -1

    -0.5

    0

    0.5

    1

    y

    Laplaces equation in polar coordinates

    http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-