1
Large strain solid dynamics in OpenFOAM Jibran Haider a, b , Dr. Chun Hean Lee a , Dr. Antonio J. Gil a , Prof. Javier Bonet c & Prof. Antonio Huerta b a Zienkiewicz Centre for Computational Engineering, Swansea University, UK b Laboratori de C` alcul Num` eric (LaC` aN), UPC BarcelonaTech, Spain c University of Greenwich, London, UK Research outline Objectives: Simulate fast-transient solid dynamic problems. Develop a fast and efficient low order numerical scheme. Key features: X An upwind cell-centred FVM Total Lagrangian scheme (TOUCH). X Utilises an explicit Runge-Kutta time integrator. X Programmed in the open-source CFD software OpenFOAM. X Overcomes the shortcomings of linear tetrahedral elements in standard displacement based FEM/FVM formulations: Equal order of convergence for velocities and stresses. No volumetric locking for nearly incompressible materials. Excellent performance in bending and shock dominated scenarios. Q1-P 0 FEM Proposed FVM First order conservation laws 1. Linear momentum: 2. Deformation gradient: 3. Total energy: d dt Z Ω 0 p dΩ 0 = Z Ω 0 t dA + Z Ω 0 ρ 0 b dΩ 0 d dt Z Ω 0 F dΩ 0 = Z Ω 0 p ρ 0 N dA d dt Z Ω 0 E dΩ 0 = Z Ω 0 p ρ 0 · t dA - Z Ω 0 Q · N dA + Z Ω 0 sdΩ 0 Hyperbolic laws in differential form: U ∂t = F I ∂X I + S , I =1, 2, 3 Cell centred FVM discretisation Standard face-based CC-FVM e F C N ef C ef Ω e 0 dU e dt = 1 Ω e 0 X f Λ f e F C N ef (U - f , U + f ) kC ef k Node-based CC-FVM F C N ea C ea Ω e 0 e dU e dt = 1 Ω e 0 X aΛ a e F C N ea (U - a , U + a ) kC ea k Gradient calculation through least squares minimisation -→ G e Satisfaction of monotonicity through Barth and Jespersen limiter -→ φ e Linear reconstruction procedure for second order spatial accuracy -→ U +,- (φ e ,G e ) Lagrangian contact dynamics Contact flux: F C N = F I N I = t C 1 ρ 0 p C N 1 ρ 0 p C · t C - Q · N Acoustic Riemann solver: F C N = F C N Ave + F C N Stab = 1 2 h F N (U - f )+ F N (U + f ) i - 1 2 Z U + f U - f |A N | dU | {z } Upwinding stabilisation X, x Y, y Z, z Ω + 0 Ω - 0 N + N - n - n + Ω + (t) Ω - (t) φ + φ - n - n + c - s c + s c + p c - p Time t = 0 Time t Explicit time integration Total Variation Diminishing Runge-Kutta scheme: 1 st RK stage -→ U ? e = U n e t ˙ U n e (U n e ,t n ) 2 nd RK stage -→ U ?? e = U ? e t ˙ U ? e (U ? e ,t n+1 ) U n+1 e = 1 2 (U n e + U ?? e ) with stability criterion: Δt = α CFL h min c max p Numerical results Shock scenario 6 7 8 9 10 x 10 -3 -7.5 -5 -2.5 0 2.5 5 x 10 7 Time (sec) Stress (Pa) Analytical TOUCH (1st order) TOUCH (2nd order w/o limiter) TOUCH (2nd order with limiter) JST VCFVM Mesh convergence 10 -2 10 -1 10 0 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 Grid Size (m) Stress Error slope = 1 L 1 norm (1st order) L 2 norm (1st order) slope = 2 L 1 norm (2nd order) L 2 norm (2nd order) Structured vs Unstructured Pressure (Pa) Complex twisting Pressure (Pa) Flapping structure Pressure (Pa) Von Mises plasticity Constrained-TOUCH Penalised-TOUCH Hyperelastic-GLACE Plastic strain Bar rebound Pressure (Pa) Torus impact Pressure (Pa) On-going work 1. An advanced Roe’s Riemann solver. 2. Robust shock capturing algorithm. 3. Ability to handle tetrahedral elements. Future work 1. Extension to Fluid-Structure Interaction (FSI) problems. 2. Implementation of Arbitrary Lagrangian-Eulerian (ALE) formulation. References [1] J. Haider, C. H. Lee, A. J. Gil and J. Bonet. A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme, International Journal for Numerical Methods in Engineering, 109(3) : 407–456, 2017. [2] C. H. Lee, A. J. Gil and J. Bonet. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures, 118 : 13–38, 2013. Website: http://www.jibranhaider.weebly.com Email:{m.j.haider,c.h.lee,a.j.gil}@swansea.ac.uk

Large strain solid dynamics in OpenFOAM - Department …cs.swan.ac.uk/~csbob/research/poster/haider17large.pdf ·  · 2017-06-09First order conservation laws 1. ... Development of

Embed Size (px)

Citation preview

Page 1: Large strain solid dynamics in OpenFOAM - Department …cs.swan.ac.uk/~csbob/research/poster/haider17large.pdf ·  · 2017-06-09First order conservation laws 1. ... Development of

Large strain solid dynamics in OpenFOAM

Jibran Haider a, b, Dr. Chun Hean Lee a, Dr. Antonio J. Gil a,Prof. Javier Bonet c & Prof. Antonio Huerta b

a Zienkiewicz Centre for Computational Engineering, Swansea University, UKb Laboratori de Calcul Numeric (LaCaN), UPC BarcelonaTech, Spain

c University of Greenwich, London, UK

Research outline

Objectives:

• Simulate fast-transient solid dynamic problems.

• Develop a fast and efficient low order numerical

scheme.

Key features:

X An upwind cell-centred FVM Total Lagrangian scheme (TOUCH).

X Utilises an explicit Runge-Kutta time integrator.

X Programmed in the open-source CFD software OpenFOAM.

X Overcomes the shortcomings of linear tetrahedral

elements in standard displacement based

FEM/FVM formulations:

• Equal order of convergence for velocities and stresses.

• No volumetric locking for nearly incompressible materials.

• Excellent performance in bending and shock dominatedscenarios.

0 0.5 1

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.03s

-1

-0.5

0

0.5

1x 10

7

0 0.5 1

0

0.5

1

1.5

X-Coordinate

Y-C

oord

inate

t=0.03s

-1

-0.5

0

0.5

1x 10

7

Q1-P0 FEM Proposed FVM

First order conservation laws

1. Linear momentum:

2. Deformation gradient:

3. Total energy:

d

dt

∫Ω0

p dΩ0 =

∫∂Ω0

t dA +

∫Ω0

ρ0b dΩ0

d

dt

∫Ω0

F dΩ0 =

∫∂Ω0

p

ρ0⊗N dA

d

dt

∫Ω0

E dΩ0 =

∫∂Ω0

p

ρ0· t dA−

∫∂Ω0

Q ·N dA +

∫Ω0

s dΩ0

• Hyperbolic laws in differential form:∂U∂t

=∂F I

∂XI+ S, ∀ I = 1, 2, 3

Cell centred FVM discretisation

Standard face-based CC-FVM

e FCNe f

‖Ce f‖ Ωe0

dU e

dt=

1

Ωe0

∑f∈Λf

e

FCN ef

(U−f ,U+f ) ‖Cef‖

Node-based CC-FVM

FCNea

‖Cea‖

Ωe0

e

dU e

dt=

1

Ωe0

∑a∈Λa

e

FCN ea

(U−a ,U+a ) ‖Cea‖

• Gradient calculation through least squares minimisation −→ Ge

• Satisfaction of monotonicity through Barth and Jespersen limiter −→ φe

• Linear reconstruction procedure for second order spatial accuracy −→ U+,− (φe, Ge)

Lagrangian contact dynamics

Contact flux:

FCN = F INI =

tC

1ρ0pC ⊗N

1ρ0pC · tC −Q ·N

Acoustic Riemann solver:

FCN = FC

NAve+ FC

NStab

=1

2

[FN(U−f ) + FN(U+

f )]− 1

2

∫ U+f

U−f

|AN | dU︸ ︷︷ ︸Upwinding stabilisation

X, x

Y, y

Z, z

Ω+0

Ω−0

N+

N−

n−

n+

Ω+(t)

Ω−(t)

φ+

φ−

n−

n+

c−sc+s

c+pc−p

Time t = 0

Time t

Explicit time integrationTotal Variation Diminishing Runge-Kutta scheme:

1st RK stage −→ U?e = Un

e + ∆t Un

e (Une , t

n)

2nd RK stage −→ U??e = U?

e + ∆t U?

e(U?e, t

n+1)

Un+1e =

1

2(Un

e + U??e )

with stability criterion:

∆t = αCFLhmin

cmaxp

Numerical results

Shock scenario

6 7 8 9 10

x 10−3

−7.5

−5

−2.5

0

2.5

5x 10

7

Time (sec)

Str

ess

(Pa)

AnalyticalTOUCH (1st order)TOUCH (2nd order w/o limiter)TOUCH (2nd order with limiter)JST VCFVM

Mesh convergence

10−2 10−1 100

10−8

10−7

10−6

10−5

10−4

10−3

Grid Size (m)

Str

ess

Err

or

slope = 1L1 norm (1st order)

L2 norm (1st order)

slope = 2L1 norm (2nd order)

L2 norm (2nd order)

Structured vs Unstructured

Pressure (Pa)

Complex twisting

Pressure (Pa)

Flapping structure

Pressure (Pa)

Von Mises plasticity

Constrained-TOUCH Penalised-TOUCH Hyperelastic-GLACE

Plastic strain

Bar rebound

Pressure (Pa)

Torus impact

Pressure (Pa)

On-going work

1. An advanced Roe’s Riemann solver.

2. Robust shock capturing algorithm.

3. Ability to handle tetrahedral elements.

Future work

1. Extension to Fluid-Structure Interaction(FSI) problems.

2. Implementation of ArbitraryLagrangian-Eulerian (ALE) formulation.

References[1] J. Haider, C. H. Lee, A. J. Gil and J. Bonet. A first order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme, International Journal for Numerical Methods

in Engineering, 109(3) : 407–456, 2017.

[2] C. H. Lee, A. J. Gil and J. Bonet. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Computers and Structures, 118 : 13–38, 2013.

Website: http://www.jibranhaider.weebly.com Email:m.j.haider,c.h.lee,[email protected]