27
3 Lecture 3 - Part 1: Realizable Suboptimal Protocols for Tumor Anti- Angiogenesis Urszula Ledzewicz Urszula Ledzewicz Department of Mathematics and Statistics Department of Mathematics and Statistics Southern Illinois University, Edwardsville, Southern Illinois University, Edwardsville, USA USA May 11-15, 2009 Department of Automatic Control Silesian University of Technology, Gliwice

Lecture 3 - Part 1: Realizable Suboptimal Protocols for Tumor Anti-Angiogenesis

Embed Size (px)

DESCRIPTION

3. Lecture 3 - Part 1: Realizable Suboptimal Protocols for Tumor Anti-Angiogenesis. Urszula Ledzewicz Department of Mathematics and Statistics Southern Illinois University, Edwardsville, USA. May 11-15, 2009 Department of Automatic Control Silesian University of Technology, Gliwice. - PowerPoint PPT Presentation

Citation preview

3Lecture 3 - Part 1: Realizable Suboptimal Protocols for Tumor Anti-Angiogenesis

Urszula LedzewiczUrszula LedzewiczDepartment of Mathematics and StatisticsDepartment of Mathematics and StatisticsSouthern Illinois University, Edwardsville, USASouthern Illinois University, Edwardsville, USA

May 11-15, 2009

Department of Automatic Control

Silesian University of Technology, Gliwice

Heinz SchättlerDept. of Electrical and Systems EngineeringWashington University, St. Louis, Missouri, USA

Collaborators

Helmut MaurerRheinisch Westfälische Wilhelms-Universität Münster,Münster, Germany

John MarriottDept. of Mathematics and Statistics,

Southern Illinois University, Edwardsville, USA

Research supported by NSF grantsResearch supported by NSF grants

DMS 0205093, DMS 0305965DMS 0205093, DMS 0305965

and collaborative research grants and collaborative research grants

DMS 0405827/0405848DMS 0405827/0405848

DMS 0707404/0707410DMS 0707404/0707410

Research Support

References

• U. Ledzewicz and H. Schättler, Optimal and Suboptimal Protocols for Tumor Anti-Angiogenesis, J. of

Theoretical Biology, 252, (2008), pp. 295-312,

• U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, The scheduling of angiogenic inhibitors minimizing tumor volume, J. of Medical Informatics and Technologies, 12, (2008), pp. 23-28

• U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Math. Med. And Biology, (2009), to appear

Synthesis of Optimal Controls for [Hahnfeldt et al.]

Full synthesis 0asa0 0asa0 typical synthesis - as0as0

0 2000 4000 6000 8000 10000 12000 14000 16000 180000

2000

4000

6000

8000

10000

12000

14000

16000

18000

endothelial cells

tum

or

cells

an optimal trajectorybegin of therapy

final point – minimum of p

end of “therapy”

p

q

u=au=0

An Optimal Controlled Trajectory for [Hahnfeldt et al.]

Initial condition: p0 = 12,000 q0 = 15,000

Optimal terminal value: 8533.4 time: 6.7221

Terminal value for a0-trajectory: 8707.4 time: 5.1934

0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

70

time

opt

imal

con

tro

l u

full dose

no dose

partial dose - singular

2000 4000 6000 8000 10000 12000 14000 160000.7

0.8

0.9

1

1.1

1.2

1.3x 10

4

carrying capacity, q

tum

or v

olum

e, p

singular arc

• full dose protocolfull dose protocol:

give over time

Suboptimal Protocols for [Hahnfeldt et al.]

• half dose protocolhalf dose protocol: give over time

• averaged optimal dose protocolaveraged optimal dose protocol: give over time where is the time when inhibitors are exhausted along the optimal solution and e.g., for p0=12,000

and q0=15,000

Minimum tumor volumes

Values of the minimum tumor volume for a fixed initial tumor volume as functions of the initial endothelial support

• full dose

• averaged optimal dose

• optimal control

pmin

q0

averaged optimal dose

u

q0

Minimum tumor volumes

Values of the minimum tumor volume for a fixed initial tumor volume as functions of the initial endothelial support

full dose

averaged optimal dose

u

optimal control

averaged optimal dose

half dose

pmin

q0 q0

Minimum tumor volumes

Values of the minimum tumor volume for a fixed initial tumor volume as functions of the initial endothelial support

full dose

averaged optimal dose

u

optimal control

averaged optimal dose

half dose

pmin

q0

q0

Comparison of Trajectories

averaged optimal dose

full dose

optimal control

0

0

singular arcsingular arc

half dose

Optimal Constant Dose Protocols

Minimal Tumor Size

dosages from u=10 to u=100

blow-up of the value for dosages from u=46 to u=47

Optimal 2-Stage Protocols

Cross-section of the Value

Cross-section of the Value

Optimal 1- and 2-Stage Controls

Optimal Daily Dosages

An Optimal Controlled Trajectory

Initial condition: p0 = 12,000 q0 = 15,000

Optimal terminal value: 8533.4 time: 6.7221

Terminal value for a0-trajectory: 8707.4 time: 5.1934

0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

70

time

opt

imal

con

tro

l u

full dose

no dose

partial dose - singular

2000 4000 6000 8000 10000 12000 14000 160000.7

0.8

0.9

1

1.1

1.2

1.3x 10

4

carrying capacity, q

tum

or v

olum

e, p

singular arc

For a free terminal time minimizeminimize

over all measurable functions that satisfy

subject to the dynamics

[Ergun, Camphausen and Wein], Bull. Math. Biol., 2003

Synthesis for Model by [Ergun et al.]

Full synthesis 0asa0, typical synthesis - as0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

carrying capacity of the vasculature, q

tum

or

volu

me,

p

beginning of therapy

(q(T),p(T)), point where minimum is realized

full dose

partial dose, singular control

no dose

Example of optimal control and corresponding trajectory for Model by Ergun et al.

Initial condition: p0 = 8,000 q0 = 10,000

0 2 4 6 8 10 12

-2

0

2

4

6

8

10

12

14

16

18

20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

1000

2000

3000

4000

5000

6000

7000

8000

9000

Value of tumor for one dose protocols

dosages from u=0 to u=15

blow-up of the value for dosages from u=8 to u=12

minimum at u=10.37, p(T)=2328.1

Cross-section of the Value

Optimal trajectory corresponding to 2-Stage Protocol

Optimal Daily Dosages

Conclusions

• The optimal control which has a singular piece is not medically

realizable (feedback), but it provides benchmark values and can

become the basis for the design of suboptimal, but realistic protocols.

• The averaged optimal dose protocol gives an excellent sub-optimal

protocol, generally within 1% of the optimal value. The averaged

optimal dose decreases with increasing initial tumor volume and is

very robust with respect to the endothelial support for fixed initial

tumor volume

• Optimal piecewise constant protocols can be constructed that

essentially reproduce the performance of the optimal controls