13
7/24/2019 Lecture13 Settling 2up http://slidepdf.com/reader/full/lecture13-settling-2up 1/13 EECS240 – Spring 2012 Lecture 13: Settling Elad Alon Dept. of EECS EECS240 Lecture 13 2 Settling Why interested in settling? Oscilloscope: track input waveform without ringing ADC (switched-cap amplifier): gain a signal up by a precise amount within T sample 2 C 1   1 C s   2             V i V o

Lecture13 Settling 2up

Embed Size (px)

Citation preview

Page 1: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 1/13

EECS240 – Spring 2012

Lecture 13: Settling

Elad AlonDept. of EECS

EECS240 Lecture 13 2

Settling

• Why interested in settling?

• Oscilloscope: track input waveform without

ringing

• ADC (switched-cap amplifier): gain a signal up

by a precise amount within Tsample

2

Cf 

1

Cs  

2

          

Vi

Vo

Page 2: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 2/13

EECS240 Lecture 13 3

Step Response

Vi

-Vo/A

v

time

• Two types of settling “errors”:

• Static

• Finite gain, capacitor mismatch

• Dynamic

• Takes time to reach final value

EECS240 Lecture 13 4

Static Error 

Vi

-Vo/A

v

time

static error 

oT 

vo

i

o

FA

c

11

KCL

 f 

 f s i

s

 f 

C F 

C C C 

C cC 

with

Page 3: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 3/13

EECS240 Lecture 13 5

Static Error (cont.)

• Example:

• Closed loop gain: c = -4, Cf = 1pF, Cs = 4pF, Ci = 1pF

• F = 1/6 (Ci hurts!)

• Error specification: <0.1%• FAvo > 1000

• Avo > 6000 over output range

relative error 

11

11

o

i vo

vo

V    cc

V FA

FA

EECS240 Lecture 13 6

Dynamic Errors• Many possible dynamic effects that impact

settling error:• Finite bandwidth

• Feedforward zero

• Non-dominant poles

• Doublets

• Slewing

• Approximate analysis approach:• Decompose each error source, isolate interactions

• Add all errors together 

Page 4: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 4/13

EECS240 Lecture 13 7

Single Time Constant Linear Settling

• For dynamic settling (and

for T0 >> 1), can generally

ignore r oGm

Cf 

Cs

Vi

VoCi

Vx

CL

m

 f  L

m

 f 

i

o

FG

C F C s

G

C s

cV 

1

1

1

EECS240 Lecture 13 8

Time Domain Step Response

,

1

1

step

o step

V s zV c

s p s

Frequency domain: Time domain:

Note: For p=z the error is zero and the

circuit has infinite bandwidth.

 Applications?

Page 5: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 5/13

EECS240 Lecture 13 9

Time Domain Step Response

,

, ,

input step:

output step:

1

1

1

1

step

i step

o step i step

step

V V 

s

s zV c V 

s p

V s zc

s p s

Frequency domain: Time domain:(inverse Laplace transform)

,

ideal response  in itial error (feedforward)

exponentially decaying error 

1 1  pt 

stepo step

 pv t V c e

 z

EECS240 Lecture 13 10

Case 1: |p/z| << 1Relative settling error:

ln

t o o s

o

s

v t v t t  e

v t 

  

  

   

stepstepo  ecV t v 1

responseideal

,

• Easiest number to remember: 2.3

per decade

• Example: 1% settling, 4.6ns clock cycle: = 1ns• CL,eff usually set by noise – use settling todetermine required gm

Page 6: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 6/13

EECS240 Lecture 13 11

Case 2: |p/z| not negligible

Relative settling error :

1

  ln1

t o o s

o

s

 f Leff 

v t v t t     pe

v t z

F C C 

  

 

 

 

 

 

 

  

 

   

stepstepo   e z

 pcV t v 11

responseideal

,

• Example:

• c = 0.25, Cf = 1pF, Cs = 250fF, Ci = 250fF, CL = 1pF

• F = 0.67, CL,eff = 1.33pF

•   ε = 0.1%:• ts (no feedforward) = 6.9

• ts (with feedforward) = -ln[1e-3/(1+0.67*0.75)]=7.3

EECS240 Lecture 13 12

Non-Dominant Pole• Ignore feed-forward zero for simplicity

• (Just increases final swing by 1+FCf  /CL,eff )

• Model for non-dominant pole:

m

 Leff in

o

FG

C s

cV 

V s H 

1

1

0

2

2

1

  is unity gain bandwidth of

m

m

u

u

G

G s s p

 p K 

T s

 

 

Page 7: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 7/13

EECS240 Lecture 13 13

Step Response

EECS240 Lecture 13 14

Non-Dominant Pole (cont.) ),(-1 :error Relative   K t vs 

Page 8: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 8/13

EECS240 Lecture 13 15

Settling Time

1 ,10forK  :timeSettling 3     st 

• Optimum at K=3.3

EECS240 Lecture 13 16

Non-Dominant Pole vs.

• Optimum K actually depends on required accuracy

• Still, always want to avoid K<~2

Page 9: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 9/13

EECS240 Lecture 13 17

Doublets

• Amplifier model:

• Closed-loop gain (ignore feedforward zero):

1( )

1

 zm mo

 p

sG s G

s

 

 

1 h  wit1

 of  bandwidthis , 33

 

   

 

  

    

 p

 z

dBdB p   sT 

with

3

11

1 1

1

o z

 Leff in dB pp

m

V    scc

C V s s

s FG s

 

 

 

3mo

dB

 Leff 

 pp p

FG

C  

 

 

with

EECS240 Lecture 13 18

Doublet Analysis

• Step response

  3

, 1   ppdB  t t 

o step stepv t cV Ae Be

      

2

1

1 1

 B

 A B

   

  

with

Page 10: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 10/13

EECS240 Lecture 13 19

Doublet Example

 =1 5

 

= 3

EECS240 Lecture 13 20

Doublet Conclusions• Case A:

• Doublet settles faster than amplifier 

• Has no impact on overall settling time

• Case B:

• Doublet settles more slowly than amplifier 

• Determines overall settling time(unless within settling accuracy requirements)

•  Avoid “slow” doublets!

1 i.e. 12        

12       

Page 11: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 11/13

EECS240 Lecture 13 21

Final Note on Doublets

EECS240 Lecture 13 22

Slewing• Transconductor ∆I vs. ∆V:

• Model for (nonlinear) slewing amplifier 

• Piecewise linear approximation:

• Slewing with constant current, followed by

• Linear settling exponential

• ts = tslew + ts,lin

Page 12: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 12/13

EECS240 Lecture 13 23

Slewing Analysis

• Circuit model during slewing:

Cs

Cp

  CL

Cf 

Vo

Vx

Vi

  ISS

EECS240 Lecture 13 24

Slewing Analysis (cont.)

time

Vi

Vx

Votslew

Vi,step

V*

tlin

Vx,step

Vo1,step

Page 13: Lecture13 Settling 2up

7/24/2019 Lecture13 Settling 2up

http://slidepdf.com/reader/full/lecture13-settling-2up 13/13

EECS240 Lecture 13 25

Slewing Analysis (cont.)

• Slewing period:

• Linear settling during final V* of swing at Vx:

• Step during linear settling:

• Linear settling time:

, , 2

2

,

  with

*

 f Ls x step i step i

s f L

 x x x step o

 x Leff oslew

SS 

C C C V V C C  

C C C C  

V V V V V  

V C V t 

SR FI  

*V F 

,,ln

*

i steps lin  cV F t 

V