33

Linear Systems Ch5 [Compatibility Mode]

Embed Size (px)

DESCRIPTION

LCS

Citation preview

Page 1: Linear Systems Ch5 [Compatibility Mode]
Page 2: Linear Systems Ch5 [Compatibility Mode]

Two Important Cases

Chapter-5

EE-826 Linear Control System

College of Electrical & Mechanical Engineering

National University of Sciences & Technology (NUST)

Page 3: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

Eigenvalues and Eigenvectors

Ax xλ=

( )A I xλ−

� ‘x’ lies in the null space of ( )A Iλ−

3

� ‘x’ lies in the null space of

� Null space is orthogonal to the space spanned by the rows

of a matrix

� Null space exists when a matrix is rank deficient

( )A Iλ−

Page 4: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

Example

1 2 3

1 0 1

0 1 0 , 1, 1, 2

0 0 2

A λ λ λ−

= = = =

Repeated eigenvalues

4

Repeated eigenvalues

Eigenvectors

1,2

0 0 1

( ) 0 0 0

0 0 1

A Iλ−

− =

Rank = 1

Dimension of null space = 2

Page 5: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

Example

1 2

1 0

0 , 1

0 0

x x

= =

1 0 1− −

5

Rank = 2

Dimension of null space = 1

3

1 0 1

( ) 0 1 0

0 0 0

A Iλ− − − = −

3

1

0

1

x

− =

Page 6: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

Diagonalization

1 2 3

1

[ ]P x x x

P AP−

=

= Λ

1 1 2

λ λ λ = = = =

Case 2

6

Rank = 2

Dimension of null space = 1

1 2 30 1 3 , 1, 1, 2

0 0 2

A λ λ λ = = = =

1,2

0 1 2

( ) 0 0 3

0 0 1

A Iλ − =

Page 7: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

Generalized Eigenvectors

2

0 0 5

( ) 0 0 3

0 0 1

A Iλ − =

Rank = 1 Dimension of null space = 2

7

Concept

There exists a vector ‘u’ such that but

2( ) 0A I uλ− = ( ) 0A I uλ− ≠

2

1 ( )

u u

u A I uλ

=

= −

Example

There exists a vector ‘u’ such that but

( ) 0k

A I uλ− = ( ) 10

kA I uλ −− ≠

Page 8: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

2

0

1

0

u u

= =

3 1 1 1 0 0−

1

0 1 2 0 1

( ) 0 0 3 1 0

0 0 1 0 0

u A I uλ = − = =

Example

8

3 1 1 1 0 0

1 1 1 1 0 0

0 0 2 0 1 1

0 0 0 2 1 1

0 0 0 0 1 1

0 0 0 0 1 1

A

− − −

= − −

1,2,3,4,5 62, 0λ λ= =

Page 9: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 1 12

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

A I

− − − −

− = − −

Rank = 4 Dimension of null space = 2

9

0 0 0 0 1 1−

( )2

0 0 2 2 0 0

0 0 2 2 0 0

0 0 0 0 0 02

0 0 0 0 0 0

0 0 0 0 2 2

0 0 0 0 2 2

A I

− = −

− −

Rank = 2 Dimension of null space = 4

Page 10: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

( )3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 02

0 0 0 0 0 0

0 0 0 0 4 4

0 0 0 0 4 4

A I

− = −

Rank = 1 Dimension of null space = 5

10

0 0 0 0 4 4

Grade 3 eigenvector ‘u’ such that

( )

( )( )

3

2

2 0

2 0

2 0

A I u

A I u

A I u

− =

− ≠

− ≠

( )

( )

3

2

2

1

2

2

u u

u A I u

u A I u

=

= −

= −

Page 11: Linear Systems Ch5 [Compatibility Mode]

Preliminaries

Grade 2 eigenvector ‘v’ such that( )( )

2

22 0, . 0

2 0

A I v u v

A I v

− = =

− ≠

( )2

1 2

v v

v A I v

=

= −

1 2 3 2 1[ ]Q u u u v v w=

11

1Q AQ J− =

2 1 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 0

J

=

Page 12: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

12

Page 13: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

13

1P AP− = Λ

Application

Standard Eigenvectors

Page 14: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

1A P P−= Λ

1At te Pe PΛ −=

Generalized Eigenvectors1Q AQ J− =

14

Q AQ J=1At Jte Qe Q−=

1

2

0 0

0 0

0 0 l

J

JJ

J

=

⋯ ⋯ ⋱ …

Page 15: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case1

2

0 0

0 0

0 0 l

J

J

Jt

J

e

ee

e

=

⋯ ⋯ ⋱ …

k k kJ I Nλ= +

15

k k kJ t It N te e e

λ=k k kJ t t N t

e e eλ=

,( )!

k

j iN t

ij

te i j

j i

= ≤ −

Page 16: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

16

Page 17: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

17

Proof

Condition for existence of scalar functions

Page 18: Linear Systems Ch5 [Compatibility Mode]

Cayley Hamilton Theorem

Proof

18

Page 19: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

Taking Laplace Transform of both sides

where

19

{ }1 1( )Ate L sI A− −= −

Inverse Laplace Transform

Page 20: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

Laplace Transform

20

Page 21: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

Output equation

21

Change of variables

Page 22: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

Impulse response

Laplace transform

22

Transfer function

Page 23: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

23

Proof

Definition

Page 24: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

Proof

24

Periodicity of P(t)

Page 25: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

Proof

25

By uniqueness of solution

Page 26: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

Comment about ‘R’

( )( )

,

t

A d

t eτσ σ

τ∫

Φ =

( ,0)RTe T= Φ

26

0

( )

T

A dRTe e

σ σ∫=

1( )

t

R A dT τ

σ σ= ∫

Page 27: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

Example

27

Page 28: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

verification

28

Page 29: Linear Systems Ch5 [Compatibility Mode]

Proof

Part 1

29

0

0

( )

0

( )

0

( )R t T t

R t t RT

z t T e z

e e z

+ −

+ =

=

Definition

Page 30: Linear Systems Ch5 [Compatibility Mode]

Proof

Part 2

30

Page 31: Linear Systems Ch5 [Compatibility Mode]

Discrete-time: Two Important

Cases

Chapter-21

EE-826 Linear Control System

College of Electrical & Mechanical Engineering

National University of Sciences & Technology (NUST)

Page 32: Linear Systems Ch5 [Compatibility Mode]

Time Invariant Case

32

Page 33: Linear Systems Ch5 [Compatibility Mode]

Periodic Case

33