33
Peter Asbeck Lots of Watts and Plenty of MHz: An Overview of Power Amplifier Research at UCSD

load

Embed Size (px)

DESCRIPTION

technology gadgets cellphone

Citation preview

  • Peter Asbeck

    Lots of Watts and Plenty of MHz:An Overview of Power Amplifier

    Research at UCSD

  • Power Amplifier Faculty & Researchers

    RF Integrated Circuit Group

    Prof. Larry Larson

    Prof. Gabriel RebeizApplied Electromagnetics Group

    High Speed Device GroupProf. Peter Asbeck

    Prof. James BuckwalterHigh Speed Integrated Circuits Group

    Don KimballCal IT2

    Center for Wireless Communications

    California Insitute for Telecommunications& Information Technology

    Center for WirelessCommunications

  • Center for Wireless Communications

    Center for WirelessCommunications

  • Wireless systems

    Advancement of Wireless Communications

  • EfficiencyBandwidthIntegrability, low costMultiband, adaptivityLow noise / interference

    Shannon limit R> receiver powerPA dissipation is critical

    Perversity of amplifier circuitsPAR and bandwidth are the enemies of efficiency!

    Critical Factors for Future Wireless Systems

    Challenges for Power Amplifiers

  • Agenda

    Path to high efficiency & bandwidth in Base-station PAs

    Handset PA development

    Future technology opportunities

  • Critical problem for power efficiency:Varying signal power level

    Power/Pave (dB scale)

    Prob

    abili

    ty~8 dB peak to average power ratio

    Class AClass B

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    Effic

    ienc

    y

    Average power

    Class A

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1Pout (normalized)

    Maximum power

    EER/ET

    0.0%

    1.0%

    2.0%

    3.0%

    4.0%

    5.0%

    -60 -50 -40 -30 -20 -10 0 10 20 30

    P out (dBm)

    Prob

    abili

    ty

    Power Control Variation

  • Envelope Tracking (ET) Technique

    Envelope Amplifier provides dynamic drain voltageMaximizes PA efficiency by keeping RF transistor

    closer to saturation for all envelope amplitudes

    EnvelopeAmplifier

    Dynamic Drain VoltageDCSupply

    RFSignal Out

    Volta

    ge

    Time

    RFSignal

    In

    RFAmplifier

    EnvelopeDetector

    Drain voltage tracks envelope

    of RF signal

    In Envelope Tracking, PA is quasi-linear.Input signal contains envelope and phase information.

  • Pout (dBm)

    Effic

    ienc

    y

    Vcc1Vcc2

    Vcc3 Vcc4 Vcc5

    ET System Maximizes Efficiency Vs Power By Adjusting Output Bias (Vcc or Vdd)

    Schematic Dependence of Efficiency on Output Power

    EfficiencyFor ET system

  • DAC

    DC/DC

    Drivers

    DC

    UpconDAC

    Drain Modulator

    WCDMA

    RFOutput

    Envelope

    PAFinal stage

    ET/E

    ER a

    ndPr

    edis

    tort

    ion

    DSPI

    Q

    DownconADC

    Experimental Envelope Tracking Amplifier

    High PowerRF Stage

    F= 2.1 GHz

    Complex system includingRF stage, analog/digital dynamic power supply, digital predistortion, up and down-converters

  • X1=0

    Harmonic Load TuningSimulated Efficiency vs Harmonic Load Reactance

    Class F-1Class F-1

    Class FClass F

    Class B

  • Envelope Amplifier Design

    EnvelopeSignal

    CurrentSense

    RF Power Transistor Drain Bias

    LinearStage

    VDC

    SwitcherStage

    Voltage SourceHigh BWEff = 50%

    Current SourceLow BW

    Eff > 90%

    Envelope Amplifier: Overall Efficiency >70%BW = 50 MHz

    VDC

    Kimball

  • Signal generation Switcher controlTime alignment

    DSP

    EnvelopeSignal

    CurrentSense

    RF Power Transistor Drain/Collector Bias

    LinearStage

    VDC

    Switcher

    Voltage SourceHigh BW

    Current SourceLow BW

    VDC

    iL1iLN iRVR

    Vsw1VS

    L1D1 isw1

    Main Switcher VDC Current SourceMedium BW

    iL2

    Vsw2

    L2 D2

    isw2

    L2 < L1

    Aux

    DSP-driven Main switcher provides high slew rate currentAux switcher compensates DC error between Linear stage and Main switcher

    Improved Envelope Amplifier Design

  • [dBc] ACPR1 ACPR2 NRMSEBefore DPD -35.4 -45.5 6.8%

    After ML DPD -45.3 -50.7 2.4%After Memory

    mitigation-55.5 -60.2 0.7%

    ET PA with Dual Switcher / HVHBT PA

    PDF

    CE Gain PAE RF PA Envelope Amplifier

    65.6% 12.3dB 61.7% 82% 80%

    WCDMA6.6 dB PAPR

    Before DPD

    After DPD

    After Memory Mitigation*

    Record

    Efficiency

    Probability

    Pout=67W

  • ET System: Path to Wider Bandwidth

    EnvelopeAmplifier

    DCSupply

    RF Signal Out

    Amplitude

    RFPowerAmplifierRF Signal In

    (WiMAX, 3GPP LTE)

    Enough Bandwidth

    Trade-off

    Efficiency vs BandwidthDoesnt need to be exact replica of input envelope as long as it does not clip output envelope

    Vdd

    New envelope: Power spectrumNew envelope: time domain

    time frequency

  • Mark-II PA Digital Predistortion Testbench100 MHz Instantaneous BandwidthTunable Carrier: 100 MHz to 4.0 GHz

    Can be extended to mm-waves using additional up/down converters

    210 MSamples/s 14-bits DACs & ADCs52 MHz Digital IF (no I/Q impairments)Up to 220 data vectors (5-ms sequence length)

    Can operate in EER, ET, or linear mode

    Memory effect compensation available

    Fully coded in Matlab, to allow development of new DPD algorithms

  • Digital Correction of Amplifier Output

    |Vout| vs |Vin|

    No correction Memoryless correctionFull correction(with memory effect)

    Measurements for commercial WLAN amplifier

    Nonlinearity and "memory effect" must be mitigated in order to achieve signal accuracy needed for complex signal constellations

    Input voltage (normalized) Input voltage (normalized) Input voltage (normalized)

  • AgendaPath to high efficiency & bandwidth in Base-station PAs

    Handset PA development How to make a CMOS PAHow to make a mostly digital PA

    Future technology opportunities

  • Stacked-FET Structure

    0.2 0.4 0.6 0.80.0 1.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0.0

    4.0

    time, nsec

    Vgs

    1, V

    Vds

    1, V

    Vgs

    2V

    ds2

    Vgs

    3V

    ds3

    Vds, i

    Vgs, i

    Vds and Vgs swing of each FET

    All FETs are operating in the safe region

  • 34-dBm 4-Stacked PA in SOI CMOS

    0.28-m SOI CMOS process(S T Microelectronics)

    Total device width = 5 mm x (4 devices) Chip size (include pads) = 0.43 x 1.56 mm2

    Rload=11 ohms

    In

    RL

    VG4

    VG3

    VDD

    VG2

    VG1

    Cm1

    Cm2

    C2

    C3

    C4

    m1

    m2

    m3

    m4

    Cm3

    Cm4

    Cm5

    Cf

    Rf

    TL1TL2

    TL3TL4

    TL5

    TL6

    TL7TL8In

    RL

    VG4

    VG3

    VDD

    VG2

    VG1

    Cm1

    Cm2

    C2

    C3

    C4

    m1

    m2

    m3

    m4

    Cm3

    Cm4

    Cm5

    Cf

    Rf

    TL1TL2

    TL3TL4

    TL5

    TL6

    TL7TL8

    In InIn In

    OutOutOutOut GND

    GNDGNDGNDGNDGND

    GNDGNDGNDGND

    VG2

    VG4

    VG3

    GND

    Gate capacitors

    CWC Project withS T Micro

  • 4-Stacked CMOS PA Performance with 1.9GHz WCDMA signal

    High powerGood efficiencyGood linearity

    Meets spec (-33dBc ACLR1)29.4 dBm output powerPAE=41.4 %

    Comparable to GaAs HBT PAs

    VDD=6.5V

  • On-Going Research in CMOS Envelope Amplifierfor LTE Handset Applications

    Linear Stage

    Switching Stage

    Sense & Control

    A combined class-AB and switch-mode regulator based supply modulator with a master-slave architecture is used to achieve wide bandwidth and high efficiency

    Anti-shoot Through &

    Gate Drivers

    M6

    V DD

    L

    M1

    M2

    M4

    M3

    OTA

    Env_in

    To PA

    Rsen

    M5

    OP AMP

    c

    idia

    R2R1

  • RL

    Q1 Q2

    Q3

    Q4

    BuckConverterw/ PWM

    SwitchedResonator

    (res)PM

    AM

    DSP

    Digital Envelope-Tracking CMOS Handset Switching Mode Power Amplifier

    Multi-mode, Multi-band

    Digital PA Techniques- RF pulse modulation- Unit-cell switching- Charge sampling regulator 0.01

    0.1

    1

    10

    100

    -10 0 10 20 30 40

    Output Power (dBm)

    Tota

    l Effi

    cien

    cy (%

    )All Cell, PWM1/10 Cell, PWM1/10 Cell, CMReference

    15dB back-off

    x2.4

    850MHz

    1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2-110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    Frequency (GHz)

    Pow

    er/fr

    eque

    ncy

    (dB

    /Hz)

    Slew ImpairmentNo Phase CorrectionSlew ImpairmentPhase PDM CorrectionNo Slew ImpairmentNo Phase Correction

    1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2-110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    Frequency (GHz)

    Pow

    er/fr

    eque

    ncy

    (dB

    /Hz)

    Slew ImpairmentNo Phase CorrectionSlew ImpairmentPhase PDM CorrectionNo Slew ImpairmentNo Phase Correction

    Slew ImpairmentNo Phase CorrectionSlew ImpairmentPhase PDM CorrectionNo Slew ImpairmentNo Phase CorrectionACPR improve

    CWC Project with Panasonic

  • Bin.-to-Therm. Decoder

    Amplitude Control Word

    TunableMatchingCircuit

    Vdd

    ModulatedSignal

    Phase-modulatedSignal

    127 Unit Cells

    3 Binary Cells

    1 x

    1 x

    1 x

    1/2 x

    1/8 x

    DPA core

    Decoder

    Decoder

    Input Output

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -20 -10 0 10 20 30

    Output Power [dBm]

    Pout

    /Pdc

    [%]

    Vdd = 2.1 V, throughVdd = 1.5 V, throughVdd = 1.0 V, throughVdd = 0.5 V, throughVdd = 2.1 V, input attenuationVdd = 1.5 V, input attenuationVdd = 1.0 V, input attenuationVdd = 0.5 V, input attenuation

    Digitally-Modulated CMOS PAPower controlled by number of "on" transistors

    CWC Project with S T Micro

  • DPD Application to Skyworks GaAs HBT WCDMA PA Module

    4mm x 4mm handset PA module, experimental variant of SKY77174 optimized for operation at 1.95GHz

    Features high linearity (better than 40 dB ACPR) up to 29 dBm in WCDMA mode

    WCDMA3.3 dB PAPR20 6 dBm1.95 GHz

    50 load(nominal)

    Currentreading

    Interstagematch

    Outputmatch

    bias and gain control

    DA PA

    3.4 V(nominal)

    Module

    Inputmatch

    MMIC

    |Vo,sat|

  • WCDMA Performance Using Digital PredistortionPerformance at high power

    Average power consumption assuming CDMA power usage profiles

    Hig

    h Po

    wer

    Pe

    rfor

    man

    ceAv

    erag

    e Pe

    rfor

    man

    ce 371

    189

    454

    269

    0

    100

    200

    300

    400

    500

    600

    Original PA Module Retuned PA w/ DPDAve

    rage

    Pow

    er C

    onsu

    mpt

    ion

    (mW

    )

    UrbanSub-urban

    Power Savings ~ 180mW

  • Agenda

    Path to high efficiency & bandwidth in Base-station PAs

    Handset PA development

    Future technology opportunitiesAdaptive PAsBroadband PAsHigh frequency PAs

  • n-GaN layerTi/Au/Pd/Au

    n+GaN layer

    c-Sapphire

    InGaN layer GaN cap layer

    Ni contact

    GaN buffer layer

    -+

    Wm

    ax

    W

    High Q High Voltage Varactors for Adaptive PAs

    GaN is 40x better than Si for high voltage varactor

    UCSD Varactor ObjectivesHigh voltage (>100V)Low Rseries=> High Q for basestations (>150)& design for high linearity

  • GaN Single-Chip Broadband Amplifier

    Simulated Drain Eff.

    Measured Drain Eff.

    Simulated PoutMeasured Pout

    Ranges from 41 dBm to 41.7 dBm

    Ranges from 54.4% to 76.6%

    C1C1RF

    CF

    Stack GaN for higher Zout, higher power>12W out single chip!Efficiency ~60% 400MHz to 1.8GHz

  • What's Coming in GaN: On-going Research in Scaled Devices

    HRL Laboratories

    Lg=40nmFmax=400GHz

    BV~42V

  • Quartz antenna bonded

    on a SiGe chip

    DigitalPredistorter DAC

    Upconverter

    downconverterADCVinMemVoutMem

    DSPAdaptation

    LUTDig

    ital

    Bas

    eban

    d M

    odul

    ator

    Dat

    a in am

    plifier/antenna array

    Signal Generator

    DSP

    SiGe HBT &45nm CMOS SOI

    UCSD mm-Wave Power Amplifier Arrays

    Program goals: 4W at 45GHz1W at 94 GHz0.25W at 138GHz

    All Si technology

    40-60% efficiency

  • Measured 33 W-Band Power Amplifier

    Quartzedge

    RF Input

    EIRP > 34 dBm at 90 99 GHz (@ 2.0 V)

    Array can be scaled to entire wafer, achieving EIRP in the MW rangeScanning phased arrays possible with incremental modifications

    Dramatic increase in radiated power density

  • SummaryUCSD has a wide variety of projects for handset and basestation PAs

    multiple technologies, frequencies & power levelsCMOS / HBT / GaN

    UCSD has expertise in Digital Predistortion Techniquesalong with state-of-the-art test benches

    State-of-art research is on-going in Envelope Tracking for both Basestation and Handset PAs

    => critical to the future of high performance PAsfor signals with high PAR (eg LTE!)

    Hear more details at this afternoon's sessions!

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Envelope Tracking (ET) TechniqueSlide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14ET System: Path to Wider BandwidthMark-II PA Digital Predistortion TestbenchSlide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Digital Envelope-Tracking CMOS Handset Switching Mode Power AmplifierMulti-mode, Multi-bandSlide Number 24Slide Number 25WCDMA Performance Using Digital PredistortionSlide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33