Matematika danas

Embed Size (px)

Citation preview

  • 8/19/2019 Matematika danas

    1/89

  • 8/19/2019 Matematika danas

    2/89

    MATHEMATICS TODAY | JANUARY ’15 7

    Maths and Science & Technology

    Proficiency in Mathematics is always considered to be important inengineering. One does not know where suddenly one finds the needof mathematics till one is pushed to a corner. Earlier, students of agriculture

    were not very much bothered about mathematics. Yet there is no research

    without application of mathematics in one form or another.

    How does one know whether a particular treatment is useful to get better

    cotton, jute, silk or even artificial fibres? First we have to know what is a

    good cotton. One studies all the physical properties such as fibre-length,

    strength, ability to form strong threads and so on. Changes due to varioustreatments have to be significant statistically.

    The minimum number of experiments that are needed to determine a

    particular property – even energy levels of atoms, the wavelengths of the

    various lines of spectra, the calculation of energy levels are all determined

    by statistics. To determine the structure of molecules or crystals, group

    theory is the main tool. There are no hard-bound barriers dividing any

    two branches in science. To study in a systematic manner, we divide it

    into Maths, Physics, Chemistry, Agriculture or Industrial research. ‘Science

    is a single field’.

      Anil Ahlawat

    Editor

    Vol. XXXIII No. 1 January 2015

    Corporate OfficePlot 99, Sector 44 Institutional Area, Gurgaon, (HR).

    Tel : 0124-4951200

    e-mail : [email protected] website : www.mtg.in

    Regd. Office406, Taj Apartment, Near Safdarjung Hospital,

    Ring Road, New Delhi - 110 029.

    Managing Editor  : Mahabir Singh

    Editor  : Anil Ahlawat (BE, MBA)

    CONTENTS  Maths Musing Problem Set - 145 8

      Practice Paper 10

      JEE Main - 2015

      Mock Test Paper 14

      JEE Main - 2015

      Enrich Your Concepts 17

      Class XI (Series-8)

      Junior Mathematical Olympiad 24  Maths Musing - Solutions 29

      You Asked, We Answered 30

      Concept Boosters (XI) 31

      Concept Boosters (XII) 47

      CBSE Board 2015 67

      Chapterwise Practice Paper (Series-8)

      Math Archives 75

      Mock Test Paper 77

      JEE (Main & Advanced) (Series-7)

      Practice Paper 89

      JEE (Main & Advanced) & Other PETs

    rialedit

    Owned, Printed and Published by Mahabir Singh from 406, Taj Apartment,

     New Delhi - 29 and printed by Personal Graphics and Advertisers (P) Ltd., Okhla

    Industrial Area, Phase-II, New Delhi. Readers are adviced to make appropriate thorough

    enquiries before acting upon any advertisements published in this magazine. Focus/Infocus

    features are marketing incentives MTG does not vouch or subscribe to the claims and

    representations made by advertisers. All disputes are subject to Delhi jurisdiction only.

    Editor : Anil Ahlawat

    Copyright© MTG Learning Media (P) Ltd.

    All rights reserved. Reproduction in any form is prohibited.

    Send D.D/M.O in favour of MTG Learning Media (P) Ltd.

    Payments should be made directly to : MTG Learning Media (P) Ltd,

    Plot No. 99, Sector 44 Institutional Area, Gurgaon - 122003 (Haryana)

    We have not appointed any subscription agent.

    Subscribe online at www.mtg.in

      Individual Subscription Rates Combined Subscription Rates

      1 yr. 2 yrs. 3 yrs. 1 yr. 2 yrs. 3 yrs.

    Mathematics Today 300 500 675 PCM 800 1200 1700

    Chemistry Today 300 500 675 PCB 800 1200 1700

    Physics For You 300 500 675 PCMB 900 1500 2100

    Biology Today 300 500 675

  • 8/19/2019 Matematika danas

    3/89

    8 MATHEMATICS TODAY | JANUARY ’15

    JEE MAIN

    1. 0 < x  

  • 8/19/2019 Matematika danas

    4/89

  • 8/19/2019 Matematika danas

    5/89

    10 MATHEMATICS TODAY | JANUARY ’15

    1. lim sin sin ...n

    n

    n

    n

    n→∞   +

      

        +

    +

      

        +

    2 2 2 21 2

    .... sin++

      

        =

    n

    n n2 2

    (a)p

      (b)p

    /2 (c)p

    /4 (d)p

    /6

    2. Let f be defined by  f x x 

    x ( ) sin ,=     

         

      ≠1

    0

      = c, x  = 0

    where c ∈ [–1, 1]. For which value of c does there

    exist an antiderivative of  f ?(a) –1/2 (b) 1/2 (c) 0 (d) –1

    3. Te function  f dx 

    x ( )

    cos,

    /

    λ λ 

    π=

    −∫ 

    1 20

    2

    l ∈ (0, 1) is(a) increasing (b) decreasing(c) increasing on (0, 1/2) and decreasing on (1/2, 1)(d) increasing on (1/2, 1) and decreasing on (0, 1/2)

    4. lim (log ) logn k

    n

    k

    n

    nk

    nk

    →∞ = =−

      

     

     

      

     

     

     

     

       =∑ ∑1 12

    1 1

    2

    (a) 0 (b) 1 (c) 2 (d) 4

    5. For positive a and b define,

    B a b x x dx  a b( , ) ( ) .= −− −∫  1 10

    1

    1 For a ∈ (0, 1),

      y 

     y dy 

    a−∞

    +  =∫ 

    1

    01

    (a) B(a, 1 – a) (b) B(a, 1 + a)

    (c) B aa

    12

    −  

         

    ,   (d) Ba

    a2

    ,  

         

    6. Suppose, f  is continuous on [a, b], f (a) = 0 = f  (b)

    and  f x dx 

    a

    b2 1( ) .∫    =  Ten xf x f x dx  

    a

    b

    ( ) ( )′   =∫   

    (a) 0 (b) 1/2 (c) –1/2 (d) 1

    7.

    Suppose,  f   is continuous on [0, c] and strictlyincreasing on [0, c] with  f (0) = 0, then for any

    x ∈ [0, c],  f t dt f t dt x   f x 

    ( ) ( )

    ( )

    0

    1

    0∫ ∫ + =−

    (a) x   (b)  f  (x )(c)  x   f  (x ) (d) x + f  (x )

    8. Te function f is twice differentiable on (0, ∞)

    with  f (5) = 3,  f   ′(5) = 2 and  f x dx ( )   =∫  51

    5

    , then

    ( ) ( )x f x dx  − ′′ =∫  1 21

    5

    (a) 15 (b) 18 (c) 20 (d) 0

    9. For what value of a (> 1)1 1

    32

    2

    a

    a

    ⋅  −  

         ∫  log is

    minimum?(a) 2 (b) 2.5 (c) 3 (d) 3.5

    10. Let f satisfy the equation x = f (x ) · e  f  (x ), then

     f x dx e

    ( )   =∫ 0

    (a) 1 (b) e – 1 (c) e + 1 (d) 0

    11. Call a function g as a lower-approximation for f

    on the interval [a, b] if for all x ∈ [a, b], f (x ) ≥  g (x ).

    Te maximum possible value of  g x dx ( ) ,

    1

    2

    ∫    where

    By : ER Tapas Kr. Yogi, (BHUBANESWAR) Mob : 09778158718

    JEE MainJEE Main Integral Calculus

  • 8/19/2019 Matematika danas

    6/89

    MATHEMATICS TODAY | JANUARY ’15 11

     g (x ) is a linear lower-approximation for f (x ) = x x  on[1, 2] is

    (a)3 6

    4  (b)

    3 6

    3  (c)

    3 6

    2  (d) 3 6

    12.

     

    ( ( ) ( ) )/ /x x x x dx  − + + − − − − =∫    1 1 1 13

    0

    1

    2 3 3 2 23

    (a) 1/2 (b) 1/3 (c) 1/4 (d) 1/5

    13. Suppose  f : R → R be a continuous functionwhich satisfies f  (–5) = 8, f (0) = 2 and is even.

    Let  g x  f x x 

     f x x  g x dx ( )

    ( ),

    ( ),, ( )=

      ≤− >

    =−∫ 

    0

    4 05

    5

    then

    (a) 0 (b) 10 (c) 20 (d) 40

    14.

    Let D be the region in  XY plane which isbounded by the parabola y = 1 – x 2 and the x -axis.For which +ve real no. c, does the parabola y = cx 2 divides D into three smaller regions of equal area?(a) 1 (b) 2 (c) 4 (d) 8

    15.

    dt 

    dt 

    t 1 14 40

    1

    0

    1

    −÷

    +=∫ ∫ 

    (a) 1 (b) 2 (c) 2   (d) 2 2

    16.  f  (x ) = x , x  ∈ [–1, 1]  = x 3, x  ∈ (1, 2)  = x 2 + 4, x  ∈ [2, 3)(a) primitive of f for x  ∈ [–1, 1] is x 3.

    (b) primitive of f  for x  ∈ (1, 2) is1

    44x  .

    (c) primitive of f for x ∈ [2, 3) isx 

    x 3

    34

    77

    12+ −

    (d) none of these

    17. Let f  (x ) = 1, x ∈ (0, 1]  = 0, x ∈ (1, 2](a) primitive of f (x ) for x ∈ (0, 1] is x + c1.(b) primitive of f (x ) for x ∈ (1, 2] is 1 + c1.(c) primitive of f (x ) for x ∈ (1, 2] is c2.(d) no primitive of f (x ) is possible.

    18. Given e dx k x | | ,

    −∞

    ∫    = 1  then constant k =

    (a) 1 (b) –1 (c) 2 (d) –2

    19. lim

    /

    n

    nn

    n→∞

     

      

        =

    21

    (a) 1 (b) 2 (c) 1/2 (d) 4

    20. For every q ∈ (0, p], we have

    (a) 1 2

    0

    2 2+ > +∫  cos sintdt θ

    θ θ

    (b) 1 2

    0

    2 2+ = +∫  cos sintdt θ

    θ θ

    (c) 1 2

    0

    2 2+ < +∫  cos sintdt θ

    θ θ

    (d) 11

    2

    2

    0

    2 2

    + = +∫ cos sintdt 

    θ

    θ θ21. Let n ≥  1 be an integer. Te real numbera  ∈  (0, 1) that minimizes the integral

    I a x a dx an n( ) | |= −∫ 0

    1

     is =

    (a) 1/2 (b) 1/3 (c) 1/4 (d) 2/3

    22. I d I d  I 

    I 18

    26

    0

    21

    20

    2

    = = =∫ ∫ cos , cos ,//

    θ θ θ θππ

     then

    (a) 7/8 (b) 8/7 (c) 8/9 (d) 9/8

    23. In the diagram l ( AB) = l 1, l ( AC ) = l 2, l (BP ) = x

    and l (BC ) = l , then (cos )( )θ x l 

    dx  =∫ 0

    l 1

      l 2

     A

    B   x    P    C 

    (a) l 2 + l 1  (b) l 2 – l 1(c) 2l 1 + l 2  (d) 2l 1 – l 2

    24.  y (x ) satisfies the differential equation

    dy 

    dx  y y yex = +log . If y (0) = 1, then y (1) =

    (a) ee  (b) e–e  (c) e1/e  (d) e

    25. (( ) log( ) )e ex x e dx  x − + − + =∫  1 12

    0

    1

    (a) 1 (b) e  (c) 1 + e  (d) e – 1

  • 8/19/2019 Matematika danas

    7/89

    12   MATHEMATICS TODAY | JANUARY ’15

    26. Let I d x 

    =  +

    −∫ 3 21

    17 80

    cos

    cos

    θθ

      θ . If q ∈ (0, p) and

    tan ,I  =2

    3 then x =

    (a) p/3 (b) 2p/3 (c) p/6 (d) p/2

    27. (sin (sin ) cos (cos ))/

    2 2

    0

    2

    x x dx  + =∫ π

    (a) p/4 (b) p/2 (c)  p  (d) 2p

    28. Te shortest possible length of an interval

    [a, b]for which4

    1 2+=∫ 

    x dx 

    a

    b

    π  is

    (a) 2   (b) 2 2

    (c) 2 2 2+   (d) 2 2 2−29. Suppose f and g are differentiable functions on

    R, satisfying f (0) = g (0) = f  ′(0) = g ′(0) = 1 and

     f  ′′(x )  g (x ) = 4 f (x )  g (x ) –  f  ′(x ) g ′(x )

       g ′′(x )  f(x ) = 5 f (x )  g (x ) –  f ′(x )  g ′(x ).

    If f (1) = 1, then  g (1) = ae3 + be–3, where a =(a) 5/6 (b) 2/3 (c) 6/5 (d) 3/2

    30. Let  f : R →  R  be a continuous non-constant

    periodic function of period T and let F denote an

    antiderivative of f . Let g : R→

     R be such that

    F x T 

     f t dt x g x T 

    ( ) ( ) ( ),= 

     

     

       

      +∫ 1

    0

     then

    (a)  g (x ) is periodic with period = T .(b)  g (x ) is periodic with period = 2T .(c)  g (x ) is periodic with period = T /2.(d)  g (x ) is not periodic.

    SOLUTIONS

    1. (c) : In the inequality θ  θ

    θ θ− < <3

    3!sin , replace

    q byn

    n kk n

    2 21

    +=, to .

    and use limn k

    n n

    n k

    dx 

    x →∞ =   +=

    +=∫ ∑ 2 2 2

    0

    1

    1 1 4

    π

    2. (c) : Define

    F x x x 

    t t 

    dt x x 

    ( ) cos cos ,=  1 

        

      −    

          

      ≠∫ 20

    21

    0

      = 0, x = 0

    Ten F ′(x ) = f  (x ) for x  ∈ R Tus F is an antiderivative

    of f in the case when c = 0.

    3. (a) : For 0 ≤ l1 < l2 < 1, x  ∈ (0, p/2)

      –l1cos2x  > –l2cos

    2x 

    So,1

    1

    1

    11 2 2 2−

    <

    −λ λ cos cosx x 

       f  (l1) <  f (l2), increasing.

    4. (b) : Rewrite the term as

    1 12

    1

    12

    1

    1

    n

    k

    n n

    k

    nk

    n

    k

    n

    log log  

         

      −     

         

     

     

     

      

    =

    =

    ∑∑

    So, given limit = − 

     

     

       

      =∫ ∫ (log ) logx dx xdx  20

    12

    0

    1

    1

    5. (a) : Substitute x   y  y 

    =+1

     and b = 1 – a in B(a, b).

    6. (c) :

     

    x f x f x dx x f x dx  

    a

    b

    a

    b

    ( ) ( ) ( ( ))∫ ∫ ′ = ′1

    22

     

    = − 

     

     

        = −∫ 

    1

    2

    1

    22 2xf x f x dx  

    a

    b

    a

    b

    ( ) ( )

    7. (c) : Put u = f –1(t ) and integrate by parts,

     f t dt f t dt f t dt uf u du

    x   f x  x x 

    ( ) ( ) ( ) ( )

    ( )

    0

    1

    0 0 0∫ ∫ ∫ ∫  + = + ′−

      = x f (x )

    8. (b) : Use integration by parts to get

    ( ) ( ) ( ) ( ) ( ) ( )x f x dx x f x x f x dx  −   ′′   = −   ′   − −   ′∫ ∫ 1 1 2 12 2

    1

    5

    1

    5

    1

    5

    =   ′   − − + ∫ 16 5 2 1 215

    1

    5

     f x f x f x dx ( ) ( ) ( ) ( )

    = 32 – 24 + 10 = 18

    9. (c) : Using Newton-Leibnitz formula,

     ′ =

      + − −I a

    a a

    a( )

    ( ) log( ) log1 1 322

    So, for a ∈ (1, 3), I ′(a) < 0 and for a > 3. I ′(a) > 0.

    So, minimum at a = 3.

    10. (b) : Note that f is inverse function of

     g ( y ) = ye y  and f (e) = 1

     

     f x dx e g y dy e ye dy ee

     y ( ) ( )

    0 0

    1

    0

    1

    1∫ ∫ ∫ = − = − = −

  • 8/19/2019 Matematika danas

    8/89

    MATHEMATICS TODAY | JANUARY ’15 13

    11. (a) : Because  g is linear, the area is actually atrapezium, with area A = hm, where m is the lengtho mid-line. For g (x ) ≤  f  (x ), x  ∈ [1, 2]

    m g f =     

          ≤    

        

       =  

        

        =

    3

    2

    3

    2

    3

    2

    3 6

    4

    3 2/

    So,  g x dx hm( )   ≤ =∫  3 641

    2

    12. (d) : Notice that ( )x x dx  − + − − =∫  1 1 1 03 230

    1

    inverse unctions and shifed.

    So, given integral = x x dx  2 3 3 2

    0

    1

    11

    5/ /( )− − =∫ 

    13. (c) : Define h(x ) = g (x ) – 2 and notice that h(x )

    is odd.

    So,  g x h x ( ) ( )= +−−∫ ∫  25

    5

    5

    5

     

    = + =−−∫ ∫ h x dx  ( ) 2 205

    5

    5

    5

    14. (d) : Area o D = 2 14

    32

    0

    1

    ( ) .− =∫  x dx 

    Te two curves intersect at x c

    2 1

    1=

    +.  Hence

    2 11

    3

    4

    32 2

    0

    1

    1(( ) )− − = ×+∫  x cx dx c

    c gives = 8

    15. (c) : Fordt 

    t 1 40

    1

    −∫  , put t 2 = sinq to simpliy to

    1

    20

    2d θ

    θ

    π

    sin.

    /

    ∫  

    Fordt 

    t 1 40

    1

    +∫  , put t 2  = tan(b/2) to

    simpliy to

    1

    2 20

    2d β

    β

    π

    sin .

    /

    ∫ 16. (c) : Any primitive o   f is o the ollowing

    orm,

     

    x x 

    c x 

    x c x 

    x x c x 

    ( ) , [ , ]

    , ( , )

    , [ , )

    = + ∈ −

    = + ∈

    = + + ∈

    2

    1

    4

    2

    3

    3

    21 1

    41 2

    34 2 3

    For F  to be continuous,1

    2

    1

    41 2+ = +c c  and

    16

    4

    1

    4

    8

    381 3+ + = + +c c

    17. (d) : Any primitive o f  is o the orm

      F (x ) = x + c1, x ∈ [0, 1]  = c2, x  ∈ (1, 2]So, F continuity gives 1 + c1 = c2So, F (x ) = x + c1, x  ∈  [0, 1] = 1 + c2, x  ∈ (1, 2]But this unction is not differentiable.

    18. (d) :

     

    e dx e dx  k

    ek

    k x kx  

    kx | | lim

    −∞

    ∞ ∞

    →∞∫ ∫ = = −  

          =2

    2 21

    0

    (given)So, k < 0 and0

    21 2− = ⇒ = −

    kk

    19. (d) : Notice that

      lim lim( )!

    (( )!)

    ( !)

    ( )!nn

    n n

    a

    a

    n

    n

    n

    n→∞+

    →∞=

      +

    +×1

    2

    22 2

    1 2

    where an =2nC n

     =

      + +

    +=

    →∞lim

    ( )( )

    ( )n

    n n

    n

    2 1 2 2

    14

    and lim /

    nn

    na→∞

    =1 4

    20. (a) : Notice that 1 2

    0

    +∫  cos tdt θ

     is the arc length

    o the curve  y = sinx   rom (0, 0) to (q, sinq) andθ θ2 2+ sin  is the normal distance between these

    same points.

    21. (a) : Since  f (x ) = x n  is an increasing unctionon [0, 1].

    I a x a dx  n n( ) | |= −∫ 0

    1

     = − + −∫ ∫ ( ) ( )a x dx x a dx  n n

    an n

    a0

    1

     =

    +  − ++

    2

    111

    n

    na an n

    ( )

    Now,d I a

    daa

    ( ( ))= =0

    1

    2 gives

    22. (a) : I d = −∫  cos ( sin )/

    6 2

    0

    2

    1θ θ θπ

      = − ∫  J d cos sin/

    6

    0

    22θ θ θ

    π and cos sin

    /6

    0

    22θ θ θ

    π

    ∫  d   

    can be evaluated by putting cos7q = t .Contd. on Page No. 16 

  • 8/19/2019 Matematika danas

    9/89

    14 MATHEMATICS TODAY | JANUARY ’15

    1. I a1, a2, a3, …, a4001 are terms o an A.P. such

    that1 1 1

    101 2 2 3 4000 4001a a a a a a

    + + + =....

    and a2 + a4000 = 50, then |a1 – a4001| is equal to

    (a) 20 (b) 30 (c) 40 (d) 102. From a point P , perpendicular tangents PQ and PR are drawn to ellipse x 2 + 4 y 2 = 4. Locus ocircumcentre o triangle PQR is

    (a) x y x y  2 2 2 2 216

    54+ = +( )  

    (b) x y x y  2 2 2 2 25

    164+ = +( )

    (c) x y x y  2 2 2 2 2416

    5+ = +( )

    (d) x y x y  2 2 2 2 24 516+ = +

    ( )  

    3. Let F x x t dt t dt x x  x x 

    ( ) sin cos cos .= + + −∫ ∫ 0

    2 2

    0

    2  

    Ten area bounded by xF (x ) and ordinate x  = 0 andx  = 5 with x -axis is

    (a) 16 (b)25

    2  (c)

    35

    2  (d) 25

    4. Let a unction f (x ) be such that f ′′(x ) = f ′(x ) + ex  

    and f (0) = 0, f ′(0) = 1, then ln ( ( )) f  24

     

     

       is equal to

    (a)1

    2  (b) 1 (c) 2 (d) 4

    5. I the line  y = x   + 2 does not intersect anymember o amily o parabolas y 2 = ax , (a ∈ R+) attwo distinct points, then maximum value o latusrectum o parabola is(a) 4 (b) 8 (c) 16 (d) 32

    6. Equation o circle inscribed in |x  –a| + | y  –b| = 1 is(a) (x  + a)2 + ( y  + b)2 = 2(b) (x  – a)2 + ( y  – b)2 = 1/2(c) (x  – a)2 + ( y  – b)2 = 1 2/  (d) (x  – a)2 + ( y  – b)2 = 1

    7. Te number o terms in (a1 + a2 + a3 + a4)3  is(a) 64 (b) 81 (c) 30 (d) 20

    8. Te number o unctions  f   rom the set A = {0, 1, 2} into the set B = {0, 1, 2, 3, 4, 5, 6, 7} suchthat f (i) ≤  f ( j) or i 

  • 8/19/2019 Matematika danas

    10/89

    MATHEMATICS TODAY | JANUARY ’15 15

    13. A hyperbola passing through origin has3x  – 4 y – 1 = 0 and 4x – 3 y  – 6 = 0 as its asymptotes.Ten the equation of its transverse axis is(a) x – y  – 5 = 0 (b) x + y  + 1 = 0

    (c) x + y  – 5 = 0 (d) x – y  – 1 = 0

    14. Let  f x y 

     f x f y +

             = +21

    2 ( ( ) ( )) for real x   and

     y . If  f  ′(x ) exists and equals to –1 and f (0) = 1, then

    the value of f (2) is

    (a) 1 (b) –1 (c)1

    2  (d) 2

    15. lim( !)

    n

    nn

    n→∞

    1

    equals

    (a) e  (b) e–1  (c) e–2  (d) e2

    16. If |tan A| < 1 and | A| is acute, then

    1 2 1 2

    1 2 1 2

    + + −

    + − −

    sin sin

    sin sin

     A A

     A A is equal to

    (a) tan A  (b) –tan A  (c) cot A  (d) –cot A 

    17. In D ABC , orthocentre is (6,10), circumcentre

    is (2, 3) and equation of side BC 

      is 2x +  y   = 17.

    Ten the radius of the circumcircle of D ABC  is

    (a) 4 (b) 5 (c) 7 (d) 3

    18. Te inclination to the major axis of thediameter of an ellipse, the square of whose length

    is the harmonic mean between the squares of the

    major and minor axes is

    (a)π4

      (b)π3

      (c)2

    3

    π  (d)

    π2

     

    19. Te value of lim( ) /

    x x e

    x →

    + −0

    11 is

    (a)e

    2  (b) −

    e

    2  (c)

    3

    2

    e  (d) −

    2

    3

    20. If I x 

    x x 

    =− 

        

      ∫ 

    sin cos

    ,π3

     then I  equals

    (a) 23

    log sin sinx x C + −  

         

      +π

     

    (b) 23

    log sin secx x C −  

         

      +π

    (c) 23

    log sin sinx x C − −  

         

      +π

     

    (d) None of these

    21. Let A1, A2, A3, …, A40 are 40 sets each with 7elements and B1, B2, …, Bn are n sets each with 7

    elements. If  A B Sii

     j j

    n

    = == =

    1

    40

    1∪ ∪  and each element of

    S belongs to exactly ten of Ai's and exactly 9 of B j's,then n equals(a) 42 (b) 35 (c) 28 (d) 36

    22. If x ,  y , z   are distinct positive numbers, thenx ln y  – lnz  + y lnz  – lnx   + z lnx  – ln y  ∈(a) (0, ∞) (b) (1, ∞) (c) (3, ∞) (d) (1, 3)

    23.

    Let PQ be a chord of the ellipse

    a

     y 

    b

    2

    2

    2

    2 1+ = ,  which subtends an angle of p/2 radians at thecentre. If L is the foot of perpendicular from (0, 0)to PQ, then(a) locus of L is an ellipse(b) locus of L  is circle concentric with given

    ellipse(c) locus of L is a hyperbola concentric with given

    ellipse(d) a square concentric with given ellipse

    24. A natural number is selected from 1 to 100so that the probability, if it satisfies the number

    x x 

    2 60 800

    300

    − +−

      < is

    (a) 7/25 (b) 4/25 (c) 2/25 (d) 8/25

    25. Te digit at unit place in the number171995 + 111995 – 71995 is(a) 0 (b) 1 (c) 2 (d) 3

    26. Te range of values of the term independent

    of x   in the expansion of x x 

    sincos

    ,−  −

    +

    1 1 10α   α  

    a ∈ [–1, 1] is

    (a)−

    105

    10

    5

    105

    20

    202 2

    C C π π,

    (b)10

    52

    20

    105

    2

    202 2

    C C π π,−

     

    (c) [1, 2] (d) (1, 2)

  • 8/19/2019 Matematika danas

    11/89

    16 MATHEMATICS TODAY | JANUARY ’15

    27. Area of trapezium whose vertices lie on theparabola  y 2  = 4x   and its diagonals pass through(1, 0) and having length 25/4 units each , is

    (a)75

    4sq. units (b)

    625

    16sq. units

    (c) 254

    sq. units   (d) 258

    sq. units  

    28. If the sum of the slopes of the normal frompoint ‘P ’ to the hyperbola xy   = c2  is equal tol(l ∈ R+), then locus of point ‘P ’ is(a) x 2 = lc2  (b)  y 2 = lc2 (c) xy  = lc2  (d) none of these

    29. Te differential equation of all straightlines which are at a constant distance ‘ p’ from theorigin is

    (a)  y x dy 

    dx  p

    d y 

    dx − = +

    22

    21  

    (b)  y x dy 

    dx  p

    dy 

    dx − = +

       

         

    12

    (c)  y x dy 

    dx  p

    dy 

    dx − 

        

        = +  

        

      

    22

    2

    1  

    (d)  y x dy 

    dx  p

    dy 

    dx − 

        

        = +  

        

      

    2 2

    1  

    ANSWER KEYS

    1.  (b) 2.  (b) 3.  (b) 4.  (d) 5.  (b)

    6.  (b) 7.  (d) 8.  (c) 9.  (d) 10.  (a)

    11.  (b) 12.  (a) 13.  (c) 14.  (b) 15.  (b)

    16.  (c) 17.  (b) 18.  (a) 19.  (b) 20.  (b)

    21.  (d) 22.  (c) 23.  (b) 24.  (a) 25.  (b)

    26.  (b) 27.  (a) 28.  (a) 29.  (c)nn

    23. (b) : Let l ( AP ) = y , using cosine formula in boththe small triangles,

    l 22 = (l  – x )2 + y 2 + 2(l  – x ) y cosq and

      l 12 = x 2 +  y 2 – 2xy cosq

    Eliminating cosq from these two equations

      y l x 

    l l lx l  

    l x 2 1

    2 2 22

    12 22

    = − +  − + − 

     

     

      

    Doingdy 

    dx  amounts to

    dy 

    dx = cos .θ

    24. (a) : Put y = eu to convert the given differentialequation into a linear differential equation.

    25. (b) : ransform the integral

    ( ) log( )e ex x dx  − + −∫  1 10

    1

     to

     log ydy 

    e

    1∫   whichis inverse of  y  = ex 

    2.

    26. (b) : First put t = 2 y  and then z = sin y .

    27. (b) :

     

    I x x dx  = +∫ (sin (sin ) cos (cos ))/

    2 2

    0

     ...(i)

    I x x dx  = +∫ (sin (cos ) cos (sin ))/

    2 2

    0

     

    ...(ii)

    Adding (i) and (ii), we get

    2 1 1

    0

    2

    I dx = +∫ ( )/π

    . So, I  = p/2

    28. (d) : tan tan− −− =1 14

    b a  π

    Simplifying, ba

    a=  +−

    1

    1

    So, length of interval l = b – a =1

    1

    2+−a

    a

    Using,dl 

    daa= = −0 1 2gives suitably 

    29. (a) : Adding the two equations, give f ′′(x )  g (x ) + 2 f   ′(x )  g ′(x ) +  g ′′(x )  f   (x ) = 9 f (x ) g (x )Define h(x ) = f (x ) g (x ), then the above equation

    becomes ′′ =h x h x  ( ) ( )930. (a) : Notice that F (x + T ) – F (x )

      = = + −∫  f t dt h x T h x T 

    ( ) ( ) ( ),

    0

    where h x T 

     f t dt x T 

    ( ) ( )= 

     

     

       ∫ 

    1

    0

    So,  g (x ) = F (x ) – h(x ) = F (x  + T ) – h(x  + T )is periodic with period = T .

    nn

    Contd. from Page No. 13

    JEE MainJEE MainIntegral Calculus

  • 8/19/2019 Matematika danas

    12/89

    MATHEMATICS TODAY 

    | JANUARY ‘15   17

    DEFINITION

    A type of mathematical analysis involving the

    use of quantified representation, models and

    summaries for a given set of empirical data or real

    world observations. Statistical analysis involves the

    process of collecting and analyzing data and thensummarizing the data into a numerical form.

    MEASURES OF CENTRAL TENDENCY

    It is a measure that tells us where the middle of

    a bunch of data lies. Te three most common

    measures of central tendency are mean, median

    and mode.

    MEASURES OF DISPERSION

    It is possible to have two very different data sets

    with the same means and medians. For that reason,measures of the middle are useful but limited.

    So, dispersion or variability is a very important

    attribute of a data set. It measures the degree of

    scatteredness of the observations in a distribution

    around the central value.

    Te various measures of dispersion are

    (a) Range (b) Quartile Deviation

    (c) Mean Deviation (d) Standard Deviation

    RANGE

    It is the difference between two extreme values

    i.e., Range = Maximum value – Minimum value.

    MEAN DEVIATION

    Te mean deviation from a central value ‘a’ is given by,

    M.D. (a)

    =Sum of absolute values of deviations from

     Number of observati

    a

    oons

    1. Mean deviation for ungrouped data

      Let x 1, x 2, ....., x n be n observations, then

    About mean, x 1

    1n

    x x ii

    n

    | |−=∑

    About median, M  1

    1n

    x M ii

    n | |−=∑

    2. Mean deviation for grouped data

    (i) For discrete frequency distribution : Let x 1, x 2,...., x n be a set of n observations occurring withfrequencies f 1, f 2, ......, f n respectively, then

    About mean, x 1

    1N 

     f x x i ii

    n

    | |−=∑

    About Median, M 1

    1N 

     f x M i ii

    n| |−

    =∑

     where, N f i

    i

    n

    = ==∑ Sum of frequencies

    1

    .

    (ii) For continuous frequency distribution: Herex i are the mid-points of the classes.

    About mean, x 1

    1N 

     f x x i ii

    n

    | |−=∑

    About Median, M 1

    1N 

     f x M i ii

    n| |−

    =∑

    Shortcut method for calculating mean deviation

    About mean,•   x A

     f d 

    N h

    i ii

    n

    = +

     

     

     

      

    ×=∑

    1, where ‘ A’

    is the assumed mean and d   x A

    hii=

      −.

    STATISTICS

    Statistics & Probability

    Series-8

  • 8/19/2019 Matematika danas

    13/89

    18 MATHEMATICS TODAY | JANUARY ‘15

     \

     M.D.( )x 

    N  f x x i i

    i

    n

    = −=∑1

    1

    About median, M l 

    N C 

     f h= +

    −×2 •

      where median class is the class interval whose

    cumulative frequency is just greater than or

    equal to N 

    2, N   is sum of frequencies, l ,  f , h 

    and C   are respectively the lower limit, the

    frequency, the width of the median class and

    the cumulative frequency of the class just

    preceding the median class.

     M.D.( ) M 

    N  f x M 

    i ii

    n

    = −=∑

    1

    1

    VARIANCE

    Te mean of the squares of the deviations from

    mean is called the variance and is denoted by s2.

    For ungrouped data   σ2

    1

    21= −=∑

    nx x i

    i

    n

    ( )

    For grouped data σ2

    1

    21= −

    =

    ∑N 

     f x x i ii

    n

    ( )

    STANDARD DEVIATION

    Te proper measure of dispersion about the mean ofa set of observations is expressed as positive squareroot of the variance, called standard deviation and

    is denoted by s.

    For

    ungrouped

    data

    σ = −

    =

    ∑1

    1

    2

    nx x i

    i

    n

    ( )

    For a

    discrete

    frequency

    distribution

    σ = −=∑1

    1

    2

    N  f x x i i

    i

    n

    ( )

    For

    continuous

    frequency

    distribution

    σ = −  

     

     

      

    = =∑ ∑1 2

    1 1

    2

    N N f x f x  i i

    i

    n

    i ii

    n

    Shortcut Method for finding standard deviation

     

    σ = −  

     

     

      

    = =∑ ∑h

    N N f y f y  i i

    i

    n

    i ii

    n2

    1 1

    2

    ,

    where  y   x A

    hi

    i=  −

    ,  A = assumed mean, h = width

    of class intervals.

    COEFFICIENT OF VARIATION

    Te measure of variability which is independent•of units, is called coefficient of variation andusually denoted by C.V.

      C.V.= × ≠

    σx 

    x 100 0, , 

    where s = standard deviation, x = mean.

     Comparing the variability or dispersion of two•series, we calculate the coefficient of variancefor each series. Te series having greater C.V. issaid to be more variable than the other.

      Te series having lesser C.V. is said to be moreconsistent than the other.

     For two series with equal means, the series•with greater standard deviation (or variance)is called more variable or dispersed than theother. Also, the series with lesser value ofstandard deviation (or variance) is said to bemore consistent than the other.

     • Variance of two groups of observations takentogether

    Let us consider two groups of variatescontaining n1  and n2  items with respective

    means x x 1 2and . Let the standard deviationsfor the two groups be s1  and s2  respectively.Let s be the standard deviation of n1 + n2 items

    taken together and x be the mean of two groupstaken together, then

    x   n x n x  

    n n=

      ++

    1 1 2 2

    1 2

      ∴ = +  +σ σ σ

    2

    1 21 1

    22 2

    21

    n nn n

     

    ++

      −( ) 

    n n

    n nx x 1 2

    1 21 2

    2

    ( )

  • 8/19/2019 Matematika danas

    14/89

  • 8/19/2019 Matematika danas

    15/89

    20 MATHEMATICS TODAY | JANUARY ‘15

    VERY SHORT ANSWER TYPE ( 1 MARK)

    1. Find the range of the data, 35, 50, 48, 62, 27, 39,

    43, 72, 56, 68.

    2. If the S.D. of the items x 1, x 2, x 3, ....., x n  is s,

    what is the S.D. of the data x 1 + a, x 2 + a, x 3 + a, ....., x n + a?

    3. A fair die is rolled once. Find the probability

    that a number less than 7 shows up.

    4. A book contains 100 pages. A page is chosen at

    random. What is the probability that the sum of

    the digits on the page is equal to 9?

    5. Tree unbiased coins are tossed once. What is

    the probability of getting atleast 1 head?

    SHORT ANSWER TYPE ( 4 MARKS)

    6. wo cards are drawn at random from a pack of

    52 cards. What is the probability that both the

    cards are aces?

    7. Te mean and variance of the heights and

    weights of the students of a class are given

    below.

    Height Weight

    Mean 160 cm 50.4 kg

    Variance 116.64 cm2 17.64 kg2

      Show that the weights are more variable than

    heights.

    8. Find the mean deviation about mean for the

    following data.

    x i 3 5 7 9 11 13 f i 6 8 15 25 8 4

    9. A card is drawn at random from a well-shuffled

    deck of 52 cards. Find the probability that it

    being a spade or a king.

    10. Find the mean deviation about the median for

    the data given below.

      45, 36, 50, 60, 53, 46, 51, 48, 72, 42

    LONG ANSWER TYPE ( 6 MARKS)

    11. Find the mean, variance and standard deviation

    for the following data using short cut method.

    x i 60 61 62 63 64 65 66 67 68

     f i 2 1 12 29 25 12 10 4 5

    12. Te following is the record of goals scored by

    team A in football session.

    Number of goals scored 0 1 2 3 4

    Number of matches 1 9 7 5 3

      For the team B, mean number of goals scored

    per match was 2 with a standard deviation

    1.25 goals. Find which team may be considered

    more consistent.13. Four persons are to be chosen at random from a

    group of 3 men, 2 women and 4 children. Find

    the probability of selecting

    (i) 1 man, 1 woman and 2 children.

    (ii) exactly 2 children.

    (iii) exactly 2 women.

    14. Five marbles are drawn from a bag which

    contains 7 blue marbles and 4 black marbles.

    What is the probability that

    (i) all will be blue?

    (ii) 3 will be blue and 2 black?

    15. Calculate the mean and standard deviation for

    the following table given the age distribution of

    a group of people.

    Age 20-30 30-40 40-50 50-60 60-70 70-80 80-90

    No. of 

     persons

    3 51 122 141 130 51 2

    SOLUTIONS1.  Range = 72 – 27 = 45.

    2.  Remains unchanged.

    3.  Sample space S = {1, 2, 3, 4, 5, 6,}.

     Let E be the event that ‘the number less than 7

    shows up’, then E = {1, 2, 3, 4, 5, 6} = S

    \  P (E) =P (S) = 1

    4.  Sample space S = {1, 2, ....., 100}

    \  n(S) = 100

  • 8/19/2019 Matematika danas

    16/89

    MATHEMATICS TODAY 

    | JANUARY ‘15 21

    Let E be the event that “the sum of the digits on

    the page is equal to 9”.

     ⇒  E ={9, 18, 27, 36, 45, 54, 63, 72, 81, 90}

     \  n(E) = 10

     So, required probability = = =n E

    n S

    ( )

    ( )

    10

    100

    1

    10

    5.  Sample space S = {HTT , THT , TTH , TTT , HHT ,

    HTH , THH , HHH }

     \  n(S) = 8

    Let E = event of getting atleast 1 head. Ten,

    E = {HTT , THT , TTH , HHT , HTH , THH , HHH }.

    \  n(E) = 7.

    \  P (getting atleast 1 head) = =n E

    n S

    ( )

    ( )

    7

    8

    6.  Let S be the sample space. Ten,

     n(S) = number of ways of selecting 2 cards out of 52

     = =

      ××

      =52 252 51

    2 11326C 

    ( )

    ( ).

    Let E  = event that both the cards are aces.

    Ten,

    n(E) = number of ways of drawing 2 aces out of 4

     = =

      ××

      =4 24 3

    2 16C 

    ( )

    ( ).

    P (getting 2 aces) = P (E) = = =n E

    n S

    ( )

    ( )

    6

    1326

    1

    2217.  For height, we have

    Variance, s2 = 116.64 cm2

    ⇒  S.D., σ = =116 64 10 8. .cm cm Also, mean = 160 cm

    ∴ = ×     

      C VS.D.

    mean. .1 100   = ×

      

          =

    10 8

    160100 6 75

    ..

     

    For weight, we have Variance, s2 = 17.64 kg2

    ⇒  S.D., σ = =17 64 4 2. .kg kgAnd, mean = 50.4 kg

    ∴ = ×     

       = ×  

          =C.V.

    S.D.

    mean2100

    4 2

    50 4100 8 33

    .

    ..

    Clearly, (C.V. of weights) > (C.V. of heights).

    Hence, weights are more variable than heights.

    8.  We prepare the table given below 

    x i   f i   f ix i | |x x i −   f x x i i| |−

    3 6 18 5 30

    5 8 40 3 247 15 105 1 15

    9 25 225 1 25

    11 8 88 3 24

    13 4 52 5 20

    otal 66 528 - 138

    ∴ = = ==∑x  f x 

    i ii 1

    6

    528

    668

     ∴ =

    = ==∑

    M.D.( )

    | |

    .x 

     f x x 

    i ii 1

    6

    138

    662 09

    9.  Let S be the sample space. Ten, n(S) = 52

     Let E1 = event of getting a spade,

    and E2 = event of getting a king.

    Ten, E1∩ E2 = event of getting a king of spade.

    Clearly, n(E1) = 13, n(E2) = 4 and n(E1 ∩ E2) = 1

    ∴ = = =P E  n E

    n S( )

    ( )

    ( ),1

    1 13

    52

    1

    4

     P E

      n E

    n S( )

    ( )

    ( )22 4

    52

    1

    13= = =

    and P E E  n E E

    n S( )

    ( )

    ( )1 21 2 1

    52∩ =

      ∩=

    \  P (getting a spade or a king) = P (E1 or E2)

    = P (E1 ∪ E2) =P (E1) + P (E2) – P (E1∩ E2)

      = + −  

          = =

    1

    4

    1

    13

    1

    52

    16

    52

    4

    13

    10.  Arranging the given data in ascending order,

    we get  36, 42, 45, 46, 48, 50, 51, 53, 60, 72

    Here n = 10, which is even.

  • 8/19/2019 Matematika danas

    17/89

    22 MATHEMATICS TODAY | JANUARY ‘15

    ∴ =     

         

    + +     

      

    Median( ) observation

    observ 

    th

    th

     M 1

    2 2

    21

    n

    naation

     ⇒ = +

     M 

      1

    26(5 observation observation)

    th th

    ⇒ = + = = M 1

    248 50

    98

    249( )

    \  Te values of (x i – M ) are

    – 13, – 7, – 4, – 3, – 1, 1, 2, 4, 11, 23

    ∴ −=∑| |x M ii 1

    10

      = (13 + 7 + 4 + 3 + 1 + 1 + 2

    + 4 + 11 + 23) = 69

    ∴ = − = ==∑M.D.( ) | | . M  x M n

    ii 1

    10

    69

    106 9

    11.  Let the assumed mean be A = 64.

    Ten, we prepare the table given below.

    x i   f i   d i = (x i – 64)   d i2

     f id i   f id i2

    60 2 – 4 16 – 8 32

    61 1 –3 9 – 3 9

    62 12 – 2 4 –24 48

    63 29 – 1 1 – 29 2964 = A 25 0 0 0 0

    65 12 1 1 12 12

    66 10 2 4 20 40

    67 4 3 9 12 36

    68 5 4 16 20 80

    otal 100 0 286

    ∴ = = = =∑∑∑N f f d f d  i i i i i100 0 2862, and

    ∴ = + = +     

       =∑Mean   A f d 

    i i 640

    10064

    Variance, σ22 2

    = −  

       

     

     

     

       

    ∑ ∑ f d N 

     f d 

    i i i i

     = −   

           =

    286

    100

    0

    1002 86

    2

    .

    \ Standard deviation, σ = =2 86 1 69. .

    12.  In order to determine the consistency of teams,

    we will have to find the coefficients of variations

    of two teams.

     Computation of mean and standard deviation

    of goals scored by team A.

    x i   f i   f i x i   f i x i2

    0 1 0 0

    1 9 9 9

    2 7 14 28

    3 5 15 45

    4 3 12 48

    otal 25 50 130

     ∴ = = = =∑ ∑∑N f f x f x  i i i i i25 50 1302

    , and

    ∴ =   { } = =∑x N 

     f x  A i i1 50

    252

    and σ A i i i iN  f x 

    N  f x 2 2

    21 1

    = −{ } 

     

     

       ∑∑

     = −   

           = − =

    130

    25

    50

    255 2 4 1 2

    2

    . .

    ⇒ = =σ A 1 2 1 095. .

    It is given that x B B= =2 1 25and σ .Now,

     Coefficient of variation of goals scored by team A 

    = × = × =σ A

     Ax 100

    1 095

    2100 54 75

    ..

    Coefficient of variation of goals scored by team B

      = × = × =

    σBBx  100

    1 25

    2 100 62 50

    .

    .

     We observe that, the coefficient of variation

    of goals scored by team A is lesser than that of

    team B. Hence, team A is more consistent.

    13. Tere are 9 persons i.e., 3 men, 2 women and 4

    children. Out of these 9 persons, 4 persons can

    be selected in 9C 4 = 126 ways.

    \  otal number of elementary events = 126

  • 8/19/2019 Matematika danas

    18/89

    MATHEMATICS TODAY 

    | JANUARY ‘15 23

    (i) 1 man, 1 woman and 2 children can be

    selected in 3C 1 ×2C 1 ×

    4C 2 = 36 ways.

    \  Favourable number of elementary events = 36

      So, required probability = =36

    126

    2

    7

    (ii) Exactly 2 children means 2 children and

    2 persons from 3 men and 2 women. Tis

    can be done in 4C 2 ×5C 2 = 60 ways.

    \  Favourable number of elementary events = 60

      So, required probability  = =

    60

    126

    10

    21

    (iii) We have to select 4 persons of which 2 are

    women and the remaining 2 are chosen

    from 3 men and 4 children. Tis can bedone in 2C 2 ×

    7C 2 = 21 ways.

    \  Favourable number of elementary events = 21

      So, required probability = =21

    126

    1

    6

    14. Tere are 7 + 4 = 11 marbles in the bag out of

    which 5 marbles can be drawn in 11C 5 ways.

    \  otal number of elementary events = 11C 5

    (i) Tere are 7 blue marbles out of which 5blue marbles can be drawn in 7C 5 ways.

      \  Favourable number of elementary

    events = 7C 5

    Hence, required probability =7

    511

    5

    C  

    = × =7

    2 5

    5 6

    11

    1

    22

    !

    ! !

    ! !

    !

    (ii) 3 blue out of 7 blue marbles and 2 blackout of 4 black marbles can be drawn in7C 3  ×

    4C 2 ways.

    \  Favourable number of elementary events

    = 7C 3 × 4C 2 

    Hence, required probability 

     

    =  ×

    = × × =7

    34

    2

    115

    7

    3 4

    4

    2 2

    5 6

    11

    5

    11

    C C 

    !

    ! !

    !

    ! !

    ! !

    !

    15.  Here A = 55, h = 10.

    Age x i   f i   ux 

    ii=

      − 55

    10  f i ui   ui

    2  f i ui2

    20-30 25 3 –3 –9 9 27

    30-40 35 51 –2 –102 4 204

    40-50 45 122 –1 –122 1 122

    50-60 55 141 0 0 0 0

    60-70 65 130 1 130 1 130

    70-80 75 51 2 102 4 204

    80-90 85 2 3 6 9 18

    otal 500 5 705

     

    x A hN 

     f ui i= +   

        

       = +    

        

       =

    155 10

    5

    50055 1Σ .

     

    σ2 2 22

    1 1= −  

        

      

    hN 

     f uN 

     f ui i i iΣ Σ

     = −  

        

      

    100705

    500

    5

    500

    2

    =14099

    100

     

    ⇒ = = =σ14099

    10

    118 739

    1011 8739

    ..

      nn

      JEE (Main-Ofine) : 4th April

      JEE (Main-Online) : 10th - 11th April

      VITEEE : 8th - 19th April

      WB JEE : 18th - 19th April

      Kerala PET : 20th - 21st April

      COMED K : 10th May

      UPSEAT : 16th May

      BVP (E) : 17th May

      JEE Advanced : 24th May

    Important Exam Dates   2015

  • 8/19/2019 Matematika danas

    19/89

    24   MATHEMATICS TODAY | JANUARY ’15

    1. Prove that for no integer n, n6 + 3n5 – 5n4  –

    15n3 + 4n2 + 12n + 3 is a perfect square.

    2. Two dice are thrown once simultaneously.

    Let E be the event “Sum of numbers appearing on

    the dice.” What are the members of E? Can you

    load these dice (not necessarily in the same way)

    such that all members of E are equally likely? Give justification.

    3. Let sinx  + sin y  = a and cosx  + cos y  = b, show

    that tanx 

    2 and tan

     y 

    2are two roots of the equation:

    (a2 + b2 + 2b)t 2 – 4at  + (a2 + b2 – 2b) = 0

    4. In a triangle  ABC , angle  A  is twice the angle

    B. Show that a2 = b (b + c), where a, b and c are the

    sides opposite to angle A, B and C  respectively.

    5.  A, B, C, D are four points on a circle with radius

    R  such that AC  is perpendicular to BD  and meets

    BD at E. Prove that : EA2 + EB2 + EC 2 + ED2 = 4R2.

    6. Suppose A1  A2  A3 .......... An is an n-sided regular

    polygon such that

    1 1 1

    1 2 1 3 1 4 A A A A A A= + . Determine the number of

    sides of the polygon.

    7. Find all positive integers a, b  for which the

    number2

    3

    +

    +

    a

    b is a rational number.

    8. If a, b, c are positive real numbers, prove that :

    a b c a

    b c

    a b c

    c aa b c c

    a b   a b c

    + + +

    ++

    + +

    +

    ++ + +

    +≥

    +

    + +

    9 3 3

    2

    9. Find integers a and b such that x 2 – x  –1 divides

    ax 17 + bx 16 + 1 = 0.

    10. Consider the equation x 4 – 18x 3 + kx 2 + 174x  

    – 2015 = 0. If the product of two of the four roots of

    the equation is –31, find the value of k.

    SOLUTIONS

    1. Case 1 : When n is even number ⇒ n = 2k for

    some k ∈ I .Now, n6 + 3n5 – 15n3 + 4n2 + 12n + 3 becomes  64k6 + 96k5 – 80k4 – 120k3 + 16k2 + 24k + 3⇒  4(l) + 3, where l ∈ I .Now an odd perfect square is always of the form4l  + 1 (∵   (2m + 1)2 = 4(m2  + m) + 1), wherem ∈ I .The given expression can’t be perfect square for

    any even integer.Case 2 : When n  is odd number ⇒ n = 2k′ + 1for some k′ ∈ I .Now, n6  + 3n5  – 5n4  – 15n3  + 4n2  + 12n  + 3becomes (2k′ + 1)6 + 3(2k′ + 1)5 – 5(2k′ + 1)4 –15(2k′ + 1)3 + 4(2k′ + 1)2 + 12(2k′ + 1) + 3Now, (2k′ + 1)6 ≡ (12k′ + 1) (mod 4) ≡ 1(mod 4)3(2k′ + 1)5 ≡ (30k′ + 3) (mod 4) ≡ (2k′ + 3) (mod 4)5(2k′ + 1)4 ≡ (40k′ + 5) (mod 4) ≡ 1 (mod 4)

    Whizdom Educare, 50-C, Kalu Sarai, Sarvapriya Vihar, New Delhi-16

  • 8/19/2019 Matematika danas

    20/89

    MATHEMATICS TODAY | JANUARY ’15 25

    15(2k′ + 1)3 ≡ (90k′ + 15) (mod 4) ≡ (2k′ + 3) (mod 4)

    4 (2k′ + 1)2 ≡ 0 (mod 4)

    12 (2k′ + 1) ≡ 0 (mod 4)

    or, n6 +3n5 – 5n4 – 15n3 + 4n2 + 12n + 3 ≡ (1

    + 2k′ + 3 + 1 + 2k′ + 3 + 3) (mod 4)

    ≡ (4 (k′ + 2) + 3) (mod 4)We have n6+ 3n5 – 5n4 – 15n3 + 4n2 + 12n + 3

    = 4l′ + 3 (where l′ ∈ N )

    Again the expression is not a perfect square for

    all odd integers.

    Consequently, the expression is not a perfect

    square for any integer.

    2. Two normal dice are thrown, possible outcomes

    are

     

    {( , ),( , ),( , ),......,( , ),

    ( , ),( , ),( , ), ......,(

    1 1 1 2 1 3 1 6

    2 1 2 2 2 3 22 6

    3 1 3 2 3 3 3 6

    , ),

    ( , ),( , ),( , ), .......,( , ),

    .............................................

    ( , ),( , ),( , ), ......,( , )}6 1 6 2 6 3 6 6

    total 36 outcomes

    Now, E = sum of numbers on dice faces.

      = {2, 3, 4, ….., 12}

      n(E) = 11.

    Loading the dice means tampering with thenumber on the faces of dice so that one result

    is favoured or dismayed over other.

    For a normal throw 

    P n

    nn

    nnn E

    ( )

    ,

    ( ),∈

    =

    −≤ ≤

    − −< ≤

    1

    362 7

    12 1

    367 12

    If all members of E   are equally likely, then,

    P n  k

    n E( )

    ∀ ∈=

    36 for some k ∈ N .

    Also, outcomes of E are mutually exclusive and

    mutually exhaustive. So,

      P nn E( )

    ∀ ∈=∑ 1 ⇒ × =11

    361

    k  ⇒ 11 × k = 36

    Now, k can’t be a natural number

    ⇒  such loading is not possible.

    3. sinx  + sin y  = a

    ⇒  22 2

    sin cosx y x y  

    a+ 

        

      − 

        

       =   …(i)

    cosx  + cos y  = b

    ⇒  22 2

    cos cosx y x y  

    b+ 

     

       

      

    − 

     

       

       =   …(ii)

    to prove tan tanx    y 

    2 2and  are roots of the equation

    (a2 + b2 + 2b)t 2 – 4at  + (a2 + b2 – 2b) = 0

    Let the roots of the equation be a and b.

    Sum of roots α β+ =+ +

    4

    22 2a

    a b b  and product of

    roots αβ =  + −

    + +

    a b b

    a b b

    2 2

    2 2

    2

    2

    Now, a2 + b2 = sin2x  + sin2 y  + 2sinx  sin y  + cos2x 

    + cos2 y  + 2cosx  cos y .

      = 2 (1 + sinx  sin y  + cosx  cos y )

      = 2 (1 + cos (x  –  y )) = 4 cos2  x y −  

         2

    Clearly, a2 + b2 + 2b =

    42 2 2

    cos cos cosx y x y x y  − 

        

      − 

        

      +

      +  

         

    =   −                                    4

    22

    2 2cos cos cosx y    x    y 

     ….(iii)

    and a2 + b2 – 2b

    =  − 

        

      − 

        

      −

      +  

         

    4

    2 2 2cos cos cos

    x y x y x y  

    =  − 

        

         

        

         

        

      

    4

    22

    2 2cos sin sin

    x y    x    y   …(iv)

    Now, sum of roots =4

    2

    2 2

    a

    a b b+ +

      +  

         

      

         

    = +4 2

    2

    82 2

    2 2

    sin

    sin .sin

    tan tan

    x y 

    x    y 

     y    x 

    & product of roots =a b b

    a b b

    x    y 2 2

    2 2

    2

    2 2 2

    + −

    + += tan . tan

    Thus, roots are tan tan .x    y 

    2 2

      

         

        

         

    and

  • 8/19/2019 Matematika danas

    21/89

    26 MATHEMATICS TODAY | JANUARY ’15

    4. In D ABC , ∠ A is twice the ∠B.

    Let ∠ A = 2x , so ∠B = x .

    ⇒  ∠C  = p – 3x

    By sine law, we havea

    b

    c

    x sin sin sin( )2 3= = −π

    ⇒ = =a

    x x 

    b

    c

    x 2 3sin cos sin sin

    ⇒ = =−

    a

    x x 

    b

    c

    x x 2 3 4 2sin cos sin sin ( sin )

    ⇒ = =−

    a

    x b

      c

    x 2 4 12cos cos  ∵sin x x n≠ ≠0 as   π

    Now, we have cos cosx   a

    b

    x   a

    b

    = ⇒ =2 4

    22

    2

    and 4 11

    4

    2 2cos cosx   c

    bx 

    c

    b− = ⇒ =+ 

     

     

       

    On comparing, we get  a

    b

    b c

    b

    2

    24 4=

      +

    ⇒  a2 = b(b + c).

    5.  A, B, C   and D are concyclic points with O as

    centre of circle. AC 

     ^

     BD

     and AC 

     meetsBD

     atE

    .

    Construction : Extend BO to meet the circle at D′.In DDEC  and D AEBWe have ∠DEC  = ∠ AEB  = 90°

     ∠CDB

     =∠CAB

    We have DDEC  ~ D AEB   (by AA similarity)

    Also,  ED

    EC 

    EA

    EB=

     

    or  ED

    EC 

    EA

    EB

    ED EC  

    EC 

    EA EB

    EB

    2

    2

    2

    2

    2 2

    2

    2 2

    2= ⇒

      +=

      +

    (applying componendo)

    Now,   ED EC    EC 

    EBEA EB

    2 22

    22 2+ = +( )   …(i)

    L.H.S. : EA2 + EB2 + EC 2 + ED2

     = + + +EA EB

      EC 

    EBEA EB

    2 22

    22 2( )

     =

      + +( )( )EA EB EB EC  

    EB

    2 2 2 2

    2

     

    =  ⋅ AB BC 

    EB

    2 2

    2   …(ii)

    Now, in DEAB  and DCD′B, we have∠BD′C  = ∠BAC and ∠D′CB = ∠ AEB  = 90°so D AEB  ~ DD′CB  (by  AA similarity)

    or  BA

    BE

    BD

    BC =

      ′

    ⇒ = ′BA

    BEBC BD

    2

    22 2

      …(iii)

    Comparing (ii) & (iii), we get  EA2 + EB2 + EC 2 + ED2 = (Diameter)2

      = 4 × (radius)2

    6. We have, n-sided regular polygon whose

     vertices are A1, A2, A3, ….., An.

    Clearly, ∠ A1OA2 =2πn

     and let OA1 = r 1.

    InD A1OA2, we have cos

    ( )2 2

    2

    21 2

    2

    2

    πn

    r A A

    r =

      −

    ⇒ = −  

          ⇒ =    

        

      ( ) cos sin A A r 

    n A A r 

    n1 2

    2 21 22 1

    22π π

    Similarly, in D A1OA3 we have,  A A r  n1 32

    2=    

        

      sin

      π 

    and in D A1OA4, we have,  A A r n

    1 4 23

    =     

         

    sin  π

    We have,1 1 1

    1 2 1 3 1 4 A A A A A A= +

  • 8/19/2019 Matematika danas

    22/89

    MATHEMATICS TODAY | JANUARY ’15 27

    ⇒  

         

    =  

         

    +  

         

    1

    2

    1

    22

    1

    23

    r n

    r n

    r n

    sin sin sinπ π π

    ⇒ 

     

       

      

    − 

     

       

      

     

       

      

    1 1

    3

    1

    2sin sin sin

    π π π

    n n n

    ⇒        

      −   

        

       =

      

         

        

         

      

    sin sin

    sin .sin

    sin

    3

    3

    2

    π ππ π

    πn nn n

    n

         

    ⇒        

         

        

         

        

       =   

        

      22 2 3

    sin . cos . sin sin . sinπ π π π πn n n n n

       

         

    ∵ sin sin sinπ π πn n n

      

          ≠ ⇒

        

          =

        

         

    04 3

    ⇒ = − = +4 3 4

    23π π   π π π   π

    n n n nor .........

    ⇒ = =7

    π  π

    πn n

    or .........

    ⇒ = =n n71

    2or .........

    ∵   n is an integer.

    ⇒  Number of sides = 7.

    7. Let N   a

    b

     p

    q=   +

    +  =

    2

    3, where p, q are non zero

    integers.

    or assumingN   a

    b

    b

    bb=

      +

    +  ×

      −

    −  ≠

    2

    3

    3

    33( )

    or   N   b a ab

    b=

      − + −−

    6 2 3

    3

    Now  6 3 2+ − −a b ab is a non–zero integer.

    Case1 : 2b = 6 ⇒ b = 3 (not possible)Case 2 : ab = 6 and 3 2a b−   is an integer∵   a and b are positive integers.

    \  Possible pairs of (a, b) are (1, 6), (3, 2), (6, 1)

    (we can’t take b = 3)

    Now, for (a, b) as (1, 6), we get

      3 2 3a b− = −For (a, b) as (3, 2), we get

      3 2 1a b− =

    For (a, b) as (6, 1), we get

      3 2 2 2a b− =Possible solution is (3, 2)

    Case 3 :  6 2= +b ab  and a = 3 12k , for some

    k1 ∈ N .

    ⇒  6 = 2b + ab + 2b 2a  R.H.S. must be integer ⇒ a = 2k22  for some k2 ∈ I .We are contradicting our earlier specificationthat a = 3k1 

    2 & also a = 2k22

    Thus, no solution exists.Possible solution of (a, b) is (3, 2).

    8. a b c a

    b c   a b c a

    + + ++

      =+ + −( )

    1

    Multiplying numerator and denominator by 

    a b c a+ + −( )Similarly for other two ratios, consequently

    L.H.S. =+ + −

      ++ + −

    ++ + −

    1 1

    1

    a b c a a b c b

    a b c cFor three positive real numbers, we haveA.M. ≥ H.M.

    + + −  +

    + + −+

    + + −

     

     

     

     

        

    =

    ≥+ + − −

    1 1

    1

    3

    3

    3

    a b c a a b c b

    a b c c

    a b c a

    α( )let

    bb c−

      

       

    ⇒ ≥

    + + −  + +

    + +

     

     

     

     

     

    α9

    3a b c  a b c

    a b c

    Leta b c

    a b c

    + +

    + +  = β

    Also,   a b c a b c+ + ≥ + +3

    a a a

    n

    a a a a

    n

    m mnm

    nm

    1 2 1 2 3+ + + ≥  + + + + 

        

    .... ... ,

    ai > 0, i ∈ N 

    We have, β ≥ 3 or 3 3 3− ≤ −β

  • 8/19/2019 Matematika danas

    23/89

    28 MATHEMATICS TODAY | JANUARY ’15

    or1

    3

    1

    3 3−  ≥

    −β

    or9

    3

    9

    3 3a b c a b c+ + −  ≥

    − + +( ) ( )β

    Also,( )

    ( )α β≥ + + −   ≥   ++ +9

    33 3 3

    2a b c a b c

    ⇒+ + −

      ++ + −

    ++ + −

      ≥  +

    + +

    1 1

    1 9 3 3

    2

    a b c a a b c b

    a b c c a b c

    Hence proved.

    9. Leta be roots of x 2 – x  –1. Ten a2 –a –1 = 0.

    or a2 = a +1 …(i)

    Now, as (x 2 – x  – 1) divides ax 17 + bx 16 + 1 = 0

    ⇒  a  is a root of ax 17 + bx 16 + 1 = 0

    ⇒ + + =a bα α17 16 1 0   ⇒ +( ) + =α α16 1 0a b

    ⇒ + + =( ) ( )α α2 8 1 0a b

    ⇒ +( )   +( ) + = = +α α α α1 1 0 18 2a b [ ]putting

    ⇒ + + + + =( ) ( )α α α2 42 1 1 0a b

    ⇒ +( )   +( ) + = = +3 2 1 0 14 2α α α αa b [ ]putting

    ⇒ + + + + =( ) ( )9 12 4 1 02 2α α αa b

    ⇒ +( )   +( ) + = = +21 13 1 0 12 2α α α αa b [ ]putting

    ⇒ + + + + =( )( )441 546 169 1 02α α αa b

    ⇒ +( )   +( ) + = = +987 610 1 0 12α α α αa b [ ]putting

    ⇒ + +( ) + + =987 987 610 610 1 02a b a bα α

    ⇒ + +( ) + + =α 987 610 987 610 1 0b a a b

    ⇒  (a × k1)+ k2 = 0, where k1, k2 ∈ I 

    or (1597a + 987b)a + 987a + 610b + 1 = 0

    Also,  α =  ±1 5

    2

    or, 1597 9875

    22584 1597 1 0a b a b+( ) ×

      ± 

     

     

       + + + =

    or, 1597a + 987b = 0 …(i)

    and 2584a + 1597b+ 1 = 0 …(ii)

    We have a b= −987

    1597, putting in (ii), we get

     b 1597

    987 584

    15971 0−

      ×

     + =

    ⇒ = − ⇒ =b a1597 987

    10. x x kx x  4 3 218 174 2015 0− + + − =

    Let the roots be a, b, c and d ; and ab = –31We have a + b + c + d  = 18 …(i)

    ab ac ad bc bd cd k+ + + + + =   …(ii)abc abd acd cbd  + + + = −174   …(iii)abcd  = −2015   …(iv)From (iv), we have cd  = 65

    From (iii), we have ab(c + d ) + cd  (b + a) = –174

    ⇒  –31 (c + d ) + 65 (a + b) = –174

    Let (c + d ) =  p and a + b = q

    We have,  p + q = 18 and 65 q – 31 p = – 174⇒   p = 4 and q = 14

    ⇒ c + d  = 4 & a + b = 14

    From (ii),

      ab + a (c + d ) + (c + d ) + cd = k

    ⇒  –31 + (c + d ) (a + b) + 65 = k

    ⇒  34 + 56 = k ⇒ k = 90nn

  • 8/19/2019 Matematika danas

    24/89

    MATHEMATICS TODAY | JANUARY ’15 29

    SOLUTION SET-144

    1. (b) : 2n + 1 = (n + 1)2 – n2

    n n n n n32 21

    2

    1

    2=   +  

           −

      −  

         

    ( ) ( )

    \  m  contains all odd numbers and the even

    numbers 23, 43, 63, 83, 103, 123.

    \  m = 1007 + 6 = 1013 with digit sum 5.

    2. (c) :  AB b AD d       

    = =,  

     A   M B

    P N 

    DTe line AC  is

    r p b d  = +( )

    Te line MN is

    r mb q nd mb= + −( )

    P  is a common point ⇒  p = m (1 – q) = qn

    ∴ =+

     pmn

    m n

    3. (c) : z 18 = 1, w48 = 1

    (z w)n =1, z nwn = 1 = 1 × 1

    \  n is divisible by 18 and 48. L.C.M = 144 with

    digit sum 9.

    4. (a) :  AA NN RR DE

    2 2 13

    2

    3

    15

    2 2270+ + ⇒

       

            

         

      =!

    ! !

    2 1 1 13

    1

    4

    35

    2720+ + + ⇒

       

            

         

      =!

    !

    1 + 1 + 1 + 1 + 1⇒ 5! = 120

    \  n = 270 + 720 + 120 = 1110, digit sum 3

    5. (b) :

     

    xdx ydy  

    x y dx 

    +

    +

    =2 2

    ∴ + = + = +x y x c y c cx  2 2 2 2 2, , parabolas

    6. (a,b,d) : A4n + A4n + 1 = (4x )2

     A4n + 2 + A4n + 3 = – (4n + 2)2

    \  N   = –22  + 42  – 62  + 82  – ...... + 20122 

    – 20142

    = – 4[12 – 22 + 32 – 42 + ..... –10062 + 10072]

    = –4[ –503 · 1007 + 10072]

    = – 4 · 1007 · 504 = – 25 · 32 · 7 ·19 · 53

    7. (a) : Let BC subtend angle 2a at the centre. Tus AB subtend angle 2p – 10 at the centre.2r  sina = 81, 2r  sin 5a = 31

      sin sin sin sin531

    8116 204 2α α α= ⇒ −

    Solving, sinα =11

    6

     r  = =

    81

    2

    243

    11sinα8. (c) : BE = 2r  sin 3a

    = − − =2243

    113 4 1443( sin sin )α α

    9. (3):5

    5

    3 5

    3 2

    3 1 2

    3 2

    1a

    a

    n

    n

    n

    n

    n

    n

    +=

      ++

      =  + +

    +( )

    ∴ = + = ⇒ = 15 3 2 11an n aα α( ),∴ = + = +5 3 2 3 25

    an

    n n a n, log ( )a41 = 3

    10. (a) : P.   f x x x ( ) (cos sin )= + ×− −1

    21 1

    π 

    (cos–1x  – sin–1x )

    = −− −1

    21 1

    π(cos sin ),x x  decreasing function

    ∴ − = − − = + =b a f f  ( ) ( )1 13

    4

    1

    41

    Q.  f x x ( ) sin= −     

        +

    −2

    4 1621

    2 2

    π

    π π

     b a− = − =

    5

    4

    1

    8

    9

    8R.  f (x ) decreases b – a = f (–1) – f (1)

    = + =9

    8

    1

    8

    5

    4

    S.

     

     f x x ( ) sin= −     

        +

    −3

    2 4 482

    12 2

    π

    π π

     b a− = − =

    7

    8

    1

    32

    27

    32

    nn

    Solution Sender of Maths Musing

    SET-144

    1. N. Jayanthi : Hyderabad

    2. Khokon Kumar Nandi : W.B.

    3. Gouri Sankar Adhikari Mayta : W.B.

  • 8/19/2019 Matematika danas

    25/89

    30 MATHEMATICS TODAY | JANUARY ’15

    Q1. Prove that the equation sin6x  + cos6x   = a  is

    solvable if1

    1≤ ≤a . 

    - Sujatha, Trissur 

    Ans. We have, sin6x  + cos6x  = a⇒  (sin2x  + cos2x )3 – 3sin2x cos2x 

    (sin2x  + cos2x ) = a

    ⇒  1 – 3 sin2x  cos2x  = a  ⇒ − =13

    422sin   x a

    ⇒ −  −  

          =1

    3

    4

    1 4

    2

    cos   x a

     

    ⇒ − + =1 38

    38

    4cos   x a

    ⇒ + =

    5

    8

    3

    8 4cos   x a   ...(i)But –1 ≤ cos4x  ≤ 1 ⇒ − ≤ ≤

    3

    8

    3

    84

    3

    8cos   x 

    ⇒ − ≤ + ≤ +5

    8

    3

    8

    5

    8

    3

    84

    3

    8

    5

    8cos   x 

    ⇒ ≤ ≤1

    41a   (by (i))

    Q2. Find the equation of the plane passing throughthe point (–1, 2, 1) and perpendicular to theline joining the points (–3, 1, 2) and (2, 3, 4).

    Find also the perpendicular distance of theorigin from this plane. - Mahendra, Amritsar 

    Ans. Te required plane passes through the point

    (–1, 2, 1) having position vector

    a i j k= − + +^ ^ ^

    2  

    and is perpendicular to the line joining thepoints A(–3, 1, 2) and B(2, 3, 4).\  A vector normal to the plane is given by 

    n AB i j k i j k= = + + − − + +( ) ( )^ ^ ^ ^ ^ ^

    2 3 4 3 2  

    = + +5 2 2i j k^ ^ ^

    Vector equation of a plane passing through

    point having position vector

    a  and normal to vector

    n  is given by

    ( ) . .

    r a n r n a n− ⋅ = ⇒ =0\  Equation of the required plane is

    r i j k i j k i j k.( ) ( ) .( )^ ^ ^ ^ ^ ^ ^ ^ ^

    5 2 2 2 5 2 2+ + = − + + + +

    ⇒ + + − + +

    r i j k.( )^ ^ ^5 2 2 5 4 2=

    ⇒ + + =

    r i j k.( )^ ^ ^

    5 2 2 1

    We have | |

    n   = + + =5 2 2 332 2 2

    In normal form

     

    r i j k.^ ^ ^5

    33

    2

    33

    2

    33

    1

    33+ +

      

        =

    So, the perpendicular distance of the origin

    from the plane is1

    33.

    Q3. On each evening a boy either watchesDoordarshan channel or en sports. Te

    probability that he watches en sports is45

    . If

    he watches Doordarshan, there is a chance of34

     that he will fall asleep, while it is 14

     when

    he watches en sports. On one day, the boy isfound to be asleep. Find the probability that

    the boy watched Doordarshan.- Anjali Jha, Patna

    Ans. Let E1 and E2 be the events of the boy watchingDoordarshan and en sports, respectively. Itis given that

    P E P E( ) and ( )1 215

    45

    = =

    Let E be the event of the boy falls asleep. Againby hypothesis

    P   E

    E

      P   E

    E1 2

    3

    4

    1

    4

     

     

     

       =

       

     

     

       =and

    Now E = E ∩ (E1 ∪ E2) = (E1 ∩ E)∪ (E2 ∩ E)

    so that P E P E P    EE

      P E P   EE

    ( ) ( ) ( )=   

         +

        

       1 1

    22

    By Bayes’ theorem

    P E EP E P E E

    P E P E E P E P E E( / )

    ( ) ( / )

    ( ) ( / ) ( ) ( / )11 1

    1 1 2 2

    =+

     =

      ×× + ×

      =( / ) ( / )

    ( / ) ( / ) ( / ) ( / )

    1 5 3 4

    1 5 3 4 4 5 1 437

     nn

    Do you have a question that you just can’t getanswered?

    Use the vast expertise of our mtg team to get to thebottom of the question. From the serious to the silly,the controversial to the trivial, the team will tackle thequestions, easy and tough.

    The best questions and their solutions will be printed inthis column each month.

  • 8/19/2019 Matematika danas

    26/89

    MATHEMATICS TODAY | JANUARY ’15 31

    STANDARD RESULTS

    EQUATION OF A CIRCLE IN VARIOUS FORM

    Te equation of circle with centre (z h, k) andradius ‘r ’ is (x  – h)2 + ( y  – k)2 = r 2.

    Te general equation of a circle isz

    x 2 + y 2 + 2 gx  + 2 fy + c = 0

    with centre (– g , – f ) & radius =  g f c2 2+ − .

    Remember that every second degree equation

    in x  and y  in which coefficient of x 2 = coefficient

    of y 2 & there is no xy  term always represents

    a circle.

    If  g 2

     +  f 2

     – c > 0⇒

     real circle.   g 2 + f 2 – c = 0 ⇒ point circle.

       g 2 + f 2 – c < 0 ⇒  imaginary circle.

    Note that the general equation of a circle contains

    three arbitrary constants,  g ,  f   and c  which

    corresponds to the fact that a unique circle passes

    through three non-collinear points.

    Te equation of circle with (z x 1, y 1) and (x 2, y 2)as end points of its diameter is,

    (x  – x 1)(x  – x 2) + ( y  –  y 1)( y  – y 2) = 0.

    Note that this will be the circle of least radiuspassing through (x 1, y 1) and (x 2, y 2).

    INTERCEPTS MADE BY A CIRCLE ON THE

    AXES

    Te intercepts made by the circle

    x 2 + y 2 + 2 gx  + 2 fy + c = 0 with the coordinate

    axes are 2 22 2 g c f c− −and  respectively.

    Note :

    If  g 2 – c > 0 ⇒  circle cuts the x -axis at two

    distinct points.If  g 2 = c ⇒ circle touches the x -axis.

    If  g 2  < c ⇒  circle lies completely above or

    below the x -axis.

    POSITION OF A POINT W.R.T. A CIRCLE

    Te point (x 1, y 1) lies inside, on or outside the

    circle x 2 +  y 2 + 2 gx  + 2 fy + c = 0, according

    as x 12  +  y 1

    2  + 2 gx 1  + 2 fy 1  + c  < = or > 0

    respectively.

    Note : Te greatest and the least distance of a

    point A from a circle with centre C  and radius

    r  is  AC + r  and AC  – r  respectively.

     AC 

    P Q

    ( )x , y 1 1

     

    LINE AND CIRCLE

    Let L = 0 be a line and S = 0 be a circle. If r  

    is the radius of the circle and  p  is the length

    of the perpendicular from the centre on the

    line, then

     pz  > r  ⇔  the line does not meet the circle i.e.the line passes outside the circle.

     p = r z  ⇔ the line touches the circle.

     p < r z  ⇔ the line is a secant of the circle.

     pz  = 0 ⇒ the line is a diameter of the circle.

    * ALOK KUMAR, B.Tech, IIT Kanpur 

    This column is aimed at Class XI students so that they can prepare for competitive exams such as JEE Main/Advanced,

    etc. and be also in command of what is being covered in their school as part of NCERT syllabus. The problems here

    are a happy blend of the straight and the twisted, the simple and the difficult and the easy and the challenging.

    * Alok Kumar is a winner of INDIAN NATIONAL MATHEMATICS OLYMPIAD (INMO-91).

    He trains IIT and Olympiad aspirants.

  • 8/19/2019 Matematika danas

    27/89

    32 MATHEMATICS TODAY | JANUARY ’15

    PARAMETRIC EQUATIONS OF A CIRCLE

    Te parametric equations of a circle

    (x  – h)2 +( y  – k)2 = r 2 are,

    x   = h  + r cosq;  y   = k + r   sinq; –p  < q  ≤  p where (h, k) is the centre, r   is the radius and

    q is a parameter.Note that equation of a straight line joining two

    points a & b on the circle x 2 + y 2 = a2 is

    x y acos sin cosa b a b a b+

     

      +

      +

     

      =

      −

     

     2 2 2

    TANGENT & NORMAL

    he equation of the tangent to the circlezx 2 +  y 2 = a2 at its point (x 1, y 1) is,

    xx 1  +  yy 1 = a2. Hence equation of a tangent

    at (acosa,asina) is; x  cosa + y  sina = a. Tepoint of intersection of the tangents at the

    points P (a)and Q(b) is

     

    a acos

    cos

    ,

    sin

    cos

    a b

    a b

    a b

    a b

    +

      

      

    +

      

      

    2

    2

    2

    2

     

     

    he equation of the tangent to the circlezx 2 + y 2 + 2 gx  + 2 fy + c = 0 at its point (x 1, y 1)

    is xx 1 + yy 1 + g (x + x 1) + f ( y + y 1) + c = 0 y z   = mx + c  is always a tangent to the circlex 2 +  y 2 = a2  if c2 = a2 (1 + m2) and the point

    of contact is −

      

    a m

    c

    a

    c

    2 2

    , .

    If a line is normal / orthogonal to a circle, thenzit must pass through the centre of the circle.Using this fact normal to the circle

    x 2 +  y 2 + 2 gx  + 2 fy  + c = 0 at (x 1, y 1) is

      y y 

     y f 

    x g  x x − =  +

    +   −1 111( )

    FAMILY OF CIRCLES

    Equation of circle circumscribing a trianglezwhose sides are L1  = 0; L2  = 0 & L3  = 0 isgiven by; L1L2 + l L2L3 + mL3L1 = 0 providedcoefficient of xy   = 0 & coefficient of x 2  =coefficient of y 2.

    Equation of circle circumscribing a quadrilateralzwhose sides in order are represented by the

    lines L1 = 0, L2 = 0, L3 = 0 and L4 = 0 is L1L3 + l L2L4 = 0 provided coefficient of x 

    2 = coefficient

    of y 2 and coefficient of xy  = 0.

    Te equation of the family of circles passingzthrough the point of intersection of two circlesS

    1 = 0 & S

    2 = 0 is, S

    1 + KS

    2 = 0 (K  

    ≠ –1).

    Te equation of the family of circles passingzthrough the point of intersection of a circleS = 0 & a line L = 0 is given by S + KL = 0.

    he equation of a family of circles passingzthrough two given points (x 1,  y 1) and(x 2, y 2) is (x  – x 1) (x  – x 2) + ( y  –  y 1) ( y  –  y 2)

    + K x y 

    x y 

    x y 

    1

    1

    11 1

    2 2

     = 0, where K  is a parameter.

    Te equation of a family of circles touchingza fixed line  y   –  y 1  = m  (x   – x 1) at the fixedpoint (x 1, y 1) is

    (x  – x 1)2 + ( y  –  y 1)

    2 + K [ y  –  y 1 – m (x  – x 1)]

    = 0, where K  is a parameter.

    In case, if the line through (x 1,  y 1) is parallel

    to  y -axis then the equation of the family of

    circles touching it at (x 1, y 1) becomes

    (x  – x 1)2 +( y  – y 1)

    2 + K (x  – x 1) = 0.

    Also, if line is parallel to x -axis the equationof the family of circles touching it at (x 1,  y 1)

    becomes (x  – x 1)2 + ( y  –  y 1)

    2 + K ( y  – y 1) = 0.

    LENGTH OF A TANGENT AND POWER OF

    A POINT

    Te length of a tangent from an external point

    (x 1, y 1) to the circle

    S ≡ x 2 +  y 2 + 2 gx  + 2 fy  + c  = 0 is given by

    L x y g x fy c S= + + + + =12

    12

    1 1 12 2

    Square of length of the tangent from a pointP   is also called the power of point w.r.t. acircle. Power of a point remains constantw.r.t. a circle.Note that  power of a point P   is positive,negative or zero according as the point ‘P ’ isoutside, inside or on the circle respectively.

    DIRECTOR CIRCLE

    Te locus of the point of intersection of twoperpendicular tangents is called the directorcircle of the given circle. Te director circle of

  • 8/19/2019 Matematika danas

    28/89

    MATHEMATICS TODAY | JANUARY ’15 33

    a circle is the concentric circle having radius

    equal to 2 times the original circle.

    EQUATION OF THE CHORD WITH A GIVEN

    MIDDLE POINT

    he equation of the chord of the circlez

    S ≡ x 2 +  y 2 + 2 gx  + 2 fy + c  = 0 in terms of itsmid point M  (x 1, y 1) is y  – y 1 = –

    x g 

     y f 

    1

    1

    +

    +(x  – x 1).

    Tis on simplication can be put in the formxx 1 +  yy 1 +  g (x  + x 1) +  f ( y  +  y 1) + c = x 1

    2 + y 1

    2  + 2 gx 1  + 2 fy 1  + c  which is designated byT = S1.Note that the shortest chord of a circle passingthrough a point ‘ M ’ inside the circle, is onechord whose middle point is  M .

    CHORD OF CONTACTIf two tangents PT 1 & PT 2 are drawn from thepoint P (x 1,  y 1) to the circle S ≡ x 

    2 +  y 2 + 2 gx  + 2 fy  + c = 0, then the equation of the chordof contact of T 1T 2 isxx 1 + yy 1 + g  (x  + x 1) + f ( y  + y 1) + c = 0.

    REMEMBER

    Equation of the circle circumscribing thezDPT 1T 2 is (x  – x 1)(x  + g ) + ( y  –  y 1)( y  +  f ) = 0.Te joint equation of a pair of tangents drawnz

    from the point A(x 1,  y 1) to the circlex 2 + y 2 + 2 gx  + 2 fy + c = 0 is SS1 = T 

    2.

    where, S ≡ x 2 + y 2 + 2 gx  + 2 fy + c;S1 ≡ x 1

    2 + y 12 + 2 gx 1 + 2 fy 1 + c

    T  ≡ xx 1 + yy 1 +  g (x  + x 1) +  f ( y + y 1) + c.Area of the triangle formed by the pair of thez

    tangents & its chord of contact =R L

    R L

    3

    2 2+ 

    where R  is the radius of the circle & L  is the

    length of the tangent from (x 1,  y 1) on S = 0Chord of contact exists only if the point ‘z P ’is not inside.

    Length of chord of contactz T 1T 2 =2

    2 2

    L R

    R L+.Angle between the pair of tangents fromz

    (x 1,  y 1) = tan–1

    2

    2 2

    R L

    L R−

     

       where R = radius;

    L = length of tangent.

    POLE AND POLAR

    If through a pointz P  in the plane of the circle,two straight lines are drawn to meet the circleat points Q  and R, the locus of the point ofintersection of the tangents at Q and R is calledthe polar of the point P ; also P is called the

    pole of the polar.he equation of the polar of a pointz P (x 1,  y 1)w.r.t. the circle x 2  +  y 2  = a2  is given byxx 1  +  yy 1  = a

    2, and if the circle is general,then the equation of the polar becomesxx 1 + yy 1 + g  (x  + x 1) + f  ( y  + y 1) + c = 0.

    Note that if the point (x 1, y 1) be on the circle,

    then the chord of contact, tangent and polar

    will be represented by the same equation.

    Pole of a given linez  Ax + By + C  = 0 w.r.t. any

    circle x 2 +  y 2 = a2 is − −

      

     Aa

    Ba

    2 2

    , .

    If the polar of a pointz P  pass through a pointQ, then the polar of Q passes through P .

    wo linesz L1 and L2 are conjugate of each otherif pole of L1 lies on L2 and vice-versa. Similarlytwo points P   and Q  are said to be conjugateof each other if the polar of P  passes throughQ and vice-versa.

    COMMON TANGENTS TO TWO CIRCLESTe direct common tangents meet at a pointzwhich divides the line joining centre of circlesexternally in the ratio of their radii.

    ransverse common tangents meet at a pointzwhich divides the line joining centre of circlesinternally in the ratio of their radii.

    When they touch each other :z

    (a) Externally : here are three common

    tangents, two direct and one is the tangentat the point of contact .

    (b) Internally : Only one common tangent

    possible at their point of contact.

    When two circles neither intersect nor touchzeach other , there are four common tangents,two of them are transverse and the others aredirect common tangents.

    When they intersect there are two commonztangents, both of them being direct.

  • 8/19/2019 Matematika danas

    29/89

    34 MATHEMATICS TODAY | JANUARY ’15

    Length of an external common tangent andzinternal common tangent to the two circlesis given by:

    L d r r L d r r  ext = − − = − +2

    1 22 2

    1 22( ) & ( )int

    where d  = distance between the centres of the

    two circles, r 1 and r 2 are the radii of the twocircles.

    RADICAL AXIS & RADICAL CENTRE

    Te radical axis of two circles is the locus ofzpoints whose powers w.r.t. the two circles areequal. Te equation of radical axis of the twocircles S1 = 0 and S2 = 0 is S1 – S2 = 0

    i.e. 2( g 1 – g 2)x  + 2( f 1 – f 2) y  + (c1 – c2) = 0.

    REMARKS

    Radical axis bisects the common tangentzbetween the two circles.

    Te common point of intersection of the radicalzaxes of three circles taken two at a time is calledthe radical centre of three circles.

    A system of circles , every two of which havezthe same radical axis, is called a co-axialsystem.

    Pairs of circles which do not have radical axiszare concentric.

    If two circles intersect, then the radical axis iszthe common chord of the two circles.

    If two circles touch each other, then the radicalzaxis is the common tangent of the two circlesat the common point of contact.

    Radical axis is always perpendicular to the linez joining the centres of the two circles.

    Radical axis need not always pass through thezmid point of the line joining the centres of thetwo circles.

    ORTHOGONALITY OF TWO CIRCLES

    wo circlesz S1= 0 & S2 = 0 are said to beorthogonal or said to intersect orthogonallyif the tangents at their point of intersectioninclude a right angle. Te condition for twocircles to be orthogonal is 2 g 1 g 2 + 2 f 1 f 2 = c1 + c2.

    REMARKS

    If two circles are orthogonal, then the polar ofza point ‘P ’ on first circle w.r.t. the second circle

    passes through the point Q which is the otherend of the diameter through P . Hence locusof a point which moves such that its polarsw.r.t. the circles S1 = 0, S2 = 0 and S3 = 0 areconcurrent in a circle which is orthogonal toall the three circles.

    Locus of the centre of a variable circlezorthogonal to two fixed circles is the radicalaxis between the two fixed circles .

    PROBLEMS

    SECTION-I

    Single Correct Answer Type

    1. Te locus of the mid points of the chords of the

    circle x 2 +  y 2 – ax  – by  = 0 which subtend a right

    angle at a b2 2

    ,    is

    (a) ax + by  = 0 (b) ax + by = a2 + b2

    (c) x 2 + y 2 – ax  – by  +a b2 2

    8

    + = 0

    (d) x 2 +  y 2 – ax – by  –a b2 2

    8

    + = 0

    2. A rhombus is inscribed in the region common

    to the two circles x 2  +  y 2  – 4x   – 12 = 0 and

    x 2 + y 2 + 4x  – 12 = 0 with two of its vertices on the

    line joining the centres of the circles. Te area of the

    rhombus is

    (a) 8 3 sq.units   (b) 4 3 sq.units

    (c) 16 3 sq.units   (d) none of these

    3. In a right triangle  ABC , right angled at  A, on

    the leg  AC   as diameter, a semicircle is described.

    Te chord joining A with the point of intersection

    D  of the hypotenuse and the semicircle, then the

    length AC  equals to

    (a) AB AD

     AB AD

    +2 2  (b)

     AB AD

     AB AD

    ⋅+

     

    (c)  AB AD⋅   (d) AB AD

     AB AD

    −2 2 

    4. Te locus of the mid points of the chords of the

    circle x 2 + y 2 + 4x  – 6 y  – 12 = 0 which subtend an

    angle ofp

    3

     radians at its circumference is

  • 8/19/2019 Matematika danas

    30/89

    MATHEMATICS TODAY | JANUARY ’15 35

    (a) (x  – 2)2 + ( y  + 3)2 = 6.25(b) (x  + 2)2 + ( y  – 3)2 = 6.25(c) (x  + 2)2 + ( y  – 3)2 = 18.75(d) (x  + 2)2 + ( y  + 3)2 = 18.75

    5. Te angle at which the circles (x  – 1)2 + y 2 = 10

    and x 

    2

     + ( y  – 2)

    2

     = 5 intersect is(a)

    p6

      (b)p4

      (c)p3

      (d)p2

     

    6. Te value of 'c' for which the set,{(x ,  y )|x 2 +  y 2 + 2x  ≤ 1} ∩  {(x ,  y )| x  –  y  + c ≥ 0}contains only one point in common is(a) (–∞, – 1] ∪ [3, ∞) (b) {– 1, 3}(c) {– 3} (d) {– 1 }

    7. P  is a point (a, b) in the first quadrant. If thetwo circles which pass through P   and touch both

    the coordinate axes cut at right angles, then(a) a2 – 6ab + b2 = 0 (b) a2 + 2ab – b2 = 0(c) a2 – 4ab + b2 = 0 (d) a2 – 8ab + b2 = 0

    8. Tree concentric circles of which the biggestis x 2  +  y 2  = 1, have their radii in A.P. If the line

     y  = x  + 1 cuts all the circles in real and distinct points.Te interval in which the common difference of theA.P. will lie is

    (a) 01

    4

    ,

     

        (b) 0

    1

    2 2

    ,

     

       

    (c) 02 2

    4,

     

        (d) none of these

    9. B  and C   are fixed points having coordinates(3, 0) and (–3, 0) respectively . If the vertical angleBAC   is 90º, then the locus of the centroid of theD ABC  has the equation(a) x 2 + y 2 = 1 (b) x 2 + y 2 = 2(c) 9(x 2 +  y 2) = 1 (d) 9(x 2 + y 2) = 4

    10. If two chords, each bisected by the x -axis canbe drawn to the circle, 2(x 2  +  y 2) – 2ax   – by   = 0(a ≠ 0, b ≠ 0) from the point (a, b/2), then(a) a2 > 8b2  (b) b2 > 2a2 (c) a2 > 2b2  (d) a2 = 2b2

    11. angents are drawn to a unit circle with centreat the origin from a point on the line 2x + y   = 4.Ten the equation of the locus of the middle pointof the chord of contact is

    (a) 2(x 2 + y 2) = x + y (b) 2(x 2 + y 2) = x  + 2 y (c) 4(x 2 + y 2) = 2x + y   (d) none of these

    12. Te common chord of two intersecting circlesC 1  and C 2  can be seen from their centres at theangles of 30° and 60° respectively . If the distance

    between their centres is equal to 3 1+ , then theradii of C 1 and C 2 are(a) 3 3,   (b) 2 2 2,  (c) 2 2,   (d) 2 2 4,

    13. If the line x cosq  +  y sinq  = 2 is the equationof a transverse common tangent to the circles

    x 2 + y 2 = 4 and x 2 + y 2 – 6 3 x  – 6 y  + 20 = 0, thenthe value of q is(a) 5p/6 (b) 2p/3 (c) p/3 (d) p/6

    14. Te locus of the mid-points of the chords of

    the circle x 2

     + y 2

     �