68
Matrix Martingales in Randomized Numerical Linear Algebra Speaker Rasmus Kyng Harvard University Sep 27, 2018

Matrix Martingales in Randomized Numerical Linear Algebra

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Matrix Martingales in Randomized Numerical Linear Algebra

Matrix Martingales in Randomized Numerical Linear Algebra

Speaker Rasmus Kyng Harvard University

Sep 27, 2018

Page 2: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Scalar Random Variables

Random ! = ∑$ !$ , !$ ∈ ℝ1. !$ are independent2. (!$ = 0

Is ! ≈ 0 with high probability?

Page 3: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Scalar Random Variables

Bernstein’s InequalityRandom ! = ∑$ !$ , !$ ∈ ℝ1. !$ are independent2. (!$ = 03. !$ ≤ +4. ∑$ (!$, ≤ -,

gives

ℙ[ ! > 1] ≤ 2exp − 1,/2+1 + -, ≤ :

E.g. if 1 = 0.5, and +, -, = 0.1/log(1/:)

Page 4: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Scalar Martingales

Random ! = ∑$ !$ , !$ ∈ ℝ1. !$ are independent2. (!$ = 0 ( !$|!+, … , !$-+ = 0

Page 5: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Scalar Martingales

Random ! = ∑$ !$ , !$ ∈ ℝ1. !$ are independent2. (!$ = 0 ( !$| previous steps = 0

Page 6: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Scalar MartingalesFreedman’s InequalityBernstein’s InequalityRandom ! = ∑$ !$ , !$ ∈ ℝ1. !$ are independent2. (!$ = 03. !$ ≤ +4. ∑$ (!$, ≤ -,

gives

ℙ[ ! > 1] ≤ 2 exp − 1,/2+1 + -,

( !$| previous steps = 0

∑$ ( !$,| previous steps ≤ -,

+B

ℙ ∑$ ( !$,| previous steps > -, ≤ B

Page 7: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Scalar Martingales

Freedman’s InequalityRandom ! = ∑$ !$ , !$ ∈ ℝ1. !$ are independent2. ( !$| previous steps = 03. !$ ≤ 54. ℙ[∑$ ( !$8| previous steps > :8] ≤ <

gives

ℙ[ ! > =] ≤ 2exp − =8/25= + :8 + <

Page 8: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Matrix Random Variables

Matrix Bernstein’s Inequality (Tropp 11)Random ! = ∑$ !$ !$ ∈ ℝ'×', symmetric1. !$ are independent2. *!$ = +3. !$ ≤ /4. ∑$ *!$0 ≤ 10

gives

ℙ[ ! > 5] ≤ 7 2exp − =>/0@=AB>

Page 9: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Matrix Martingales

Matrix Freedman’s Inequality (Tropp 11)Random ! = ∑$ !$ !$ ∈ ℝ'×', symmetric1. !$ are independent2. *!$ = 0 * !$| previous steps = 03. !$ ≤ 94. ∑$ *!$: ≤ ;: ℙ[ ∑$ * !$:| prev. steps > ;:] ≤ @

gives

ℙ[ ! > A] ≤ B 2exp − FG/:IFJKG

+ @

E.g. if A = 0.5, and 9, ;: = 0.1/log(B/R)

≤ R + @

Page 10: Matrix Martingales in Randomized Numerical Linear Algebra

Concentration of Matrix Martingales

Matrix Freedman’s Inequality (Tropp 11)

ℙ[ ∑$ % &$'| prev. steps > 1'] ≤ 4

Predictable quadratic variation =6

$% &$'| prev. steps

Page 11: Matrix Martingales in Randomized Numerical Linear Algebra

Laplacian Matrices

! "Graph # = (&, ()Edge weights *:( → ℝ./ = &0 = |(|

2

/×/ matrix 4 = 56∈8

46

Page 12: Matrix Martingales in Randomized Numerical Linear Algebra

Laplacian Matrices

! "Graph # = (&, ()Edge weights *:( → ℝ./ = &0 = |(|

2

3 = 45∈7

35

L(a,b) = w(a,b)

. . . a . . . b . . .�

�������

�������

...a 1 �1...b �1 1...

/×/ matrix

w(a,b)

Page 13: Matrix Martingales in Randomized Numerical Linear Algebra

Laplacian Matrices

!: weighted adjacency matrix of the graph

#: diagonal matrix of weighted degrees

$ = # − !

!'( = )'(

#'' = ∑( )'(

Graph + = (-, /)Edge weights ):/ → ℝ34 = -5 = |/|

Page 14: Matrix Martingales in Randomized Numerical Linear Algebra

Laplacian Matrices

Symmetric matrix !

All off-diagonals are non-positive and

!"" =$%&"

!"%

Page 15: Matrix Martingales in Randomized Numerical Linear Algebra

Laplacian of a Graph

�1 �1 0

�1 1 00 0 0

�0 0 00 1 �10 �1 1

�2�

�2 0 �20 0 0

�2 0 2

11

�3 �1 �2

�1 2 �1�2 �1 3

Page 16: Matrix Martingales in Randomized Numerical Linear Algebra

Laplacian Matrices

[ST04]: solving Laplacian linear equations in !" # time

[KS16]: simple algorithm

Page 17: Matrix Martingales in Randomized Numerical Linear Algebra

Solving a Laplacian Linear Equation

!" = $

Gaussian EliminationFind %, upper triangular matrix, s.t.

%&% = !Then

" = %'(%'&$

Easy to apply %'( and %'&

Page 18: Matrix Martingales in Randomized Numerical Linear Algebra

Solving a Laplacian Linear Equation

!" = $

Approximate Gaussian EliminationFind %, upper triangular matrix, s.t.

%&% ≈ !

% is sparse.

( log ,- iterations to get.-approximate solution /".

Page 19: Matrix Martingales in Randomized Numerical Linear Algebra

Approximate Gaussian Elimination

Theorem [KS]When ! is an Laplacian matrix with " non-zeros,we can find in #(" log( )) time an upper triangular matrix + with #(" log( )) non-zeros,s.t. w.h.p.

+,+ ≈ !

Page 20: Matrix Martingales in Randomized Numerical Linear Algebra

Additive View of Gaussian Elimination

Find !, upper triangular matrix, s.t !"! = $

0

BB@

16 �4 �8 �4�4 5 0 �1�8 0 14 0�4 �1 0 7

1

CCA$ =

Page 21: Matrix Martingales in Randomized Numerical Linear Algebra

���

16 �4 �8 �4�4 1 2 1�8 2 4 2�4 1 2 1

���

���

16 �4 �8 �4�4 5 0 �1�8 0 14 0�4 �1 0 7

���

���

16 �4 �8 �4�4 1 2 1�8 2 4 2�4 1 2 1

��� =

���

4�1�2�1

���

���

4�1�2�1

���

Find the rank-1 matrix that agrees with !on the first row and column.

Additive View of Gaussian Elimination

Page 22: Matrix Martingales in Randomized Numerical Linear Algebra

���

16 �4 �8 �4�4 1 2 1�8 2 4 2�4 1 2 1

���

���

16 �4 �8 �4�4 5 0 �1�8 0 14 0�4 �1 0 7

��� �

���

0 0 0 00 4 �2 �20 �2 10 �20 �2 �2 6

���

Subtract the rank 1 matrix.We have eliminated the first variable.

=

Additive View of Gaussian Elimination

Page 23: Matrix Martingales in Randomized Numerical Linear Algebra

The remaining matrix is PSD.

���

0 0 0 00 4 �2 �20 �2 10 �20 �2 �2 6

���

Additive View of Gaussian Elimination

Page 24: Matrix Martingales in Randomized Numerical Linear Algebra

���

0 0 0 00 4 �2 �20 �2 10 �20 �2 �2 6

���

Find rank-1 matrix that agrees withour matrix on the next row and column.

���

0 0 0 00 4 �2 �20 �2 1 10 �2 1 1

��� =

���

02

�1�1

���

���

02

�1�1

���

Additive View of Gaussian Elimination

Page 25: Matrix Martingales in Randomized Numerical Linear Algebra

Subtract the rank 1 matrix.We have eliminated the second variable.

���

0 0 0 00 4 �2 �20 �2 10 �20 �2 �2 6

���

���

0 0 0 00 4 �2 �20 �2 1 10 �2 1 1

���

���

0 0 0 00 0 0 00 0 9 �30 0 �3 5

���=

Additive View of Gaussian Elimination

Page 26: Matrix Martingales in Randomized Numerical Linear Algebra

0

BB@

16 �4 �8 �4�4 5 0 �1�8 0 14 0�4 �1 0 7

1

CCA! =

Repeat until all parts written as rank 1 terms.

=

���

4�1�2�1

���

���

4�1�2�1

���

+

���

02

�1�1

���

���

02

�1�1

���

+

���

003

�1

���

���

003

�1

���

+

���

0002

���

���

0002

���

Additive View of Gaussian Elimination

Page 27: Matrix Martingales in Randomized Numerical Linear Algebra

0

BB@

16 �4 �8 �4�4 5 0 �1�8 0 14 0�4 �1 0 7

1

CCA

=

���

4 0 0 0�1 2 0 0�2 �1 3 0�1 �1 �1 2

���

���

4 �1 �2 �10 2 �1 �10 0 3 �10 0 0 2

���

Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.

! =

Page 28: Matrix Martingales in Randomized Numerical Linear Algebra

0

BB@

16 �4 �8 �4�4 5 0 �1�8 0 14 0�4 �1 0 7

1

CCA

=

���

4 �1 �2 �10 2 �1 �10 0 3 �10 0 0 2

���

� �

���

4 �1 �2 �10 2 �1 �10 0 3 �10 0 0 2

��� = "# "

Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.

$ =

Page 29: Matrix Martingales in Randomized Numerical Linear Algebra

Additive View of Gaussian Elimination

What is special about Gaussian Elimination on Laplacians?

The remaining matrix is always Laplacian.

L =

���

16 �8 �4 �4�8 8 0 0�4 0 4 0�4 0 0 4

���! =

Page 30: Matrix Martingales in Randomized Numerical Linear Algebra

Additive View of Gaussian Elimination

What is special about Gaussian Elimination on Laplacians?

The remaining matrix is always Laplacian.

L =

���

16 �8 �4 �4�8 4 2 2�4 2 1 1�4 2 1 1

��� +

���

0 0 0 00 4 �2 �20 �2 3 �10 �2 �1 3

���! =

Page 31: Matrix Martingales in Randomized Numerical Linear Algebra

Additive View of Gaussian Elimination

What is special about Gaussian Elimination on Laplacians?

The remaining matrix is always Laplacian.

+

���

0 0 0 00 4 �2 �20 �2 3 �10 �2 �1 3

���

A new Laplacian!

4 �2 �2�2 3 �1�2 �1 3

L =

���

4�2�1�1

���

���

4�2�1�1

���

! =

Page 32: Matrix Martingales in Randomized Numerical Linear Algebra

Why is Gaussian Elimination Slow?

Solving !" = $ by Gaussian Elimination can take Ω &' time.

The main issue is fill

(! =

Page 33: Matrix Martingales in Randomized Numerical Linear Algebra

Why is Gaussian Elimination Slow?

Solving !" = $ by Gaussian Elimination can take Ω &' time.

The main issue is fill

(! =

Page 34: Matrix Martingales in Randomized Numerical Linear Algebra

Solving !" = $ by Gaussian Elimination can take Ω &' time.

The main issue is fill

Why is Gaussian Elimination Slow?

New Laplacian(

Elimination creates a cliqueon the neighbors of (

! =

Page 35: Matrix Martingales in Randomized Numerical Linear Algebra

Solving !" = $ by Gaussian Elimination can take Ω &' time.

The main issue is fill

Why is Gaussian Elimination Slow?

(

Laplacian cliques can be sparsified!

New Laplacian

! =

Page 36: Matrix Martingales in Randomized Numerical Linear Algebra

Gaussian Elimination

1. Pick a vertex ! to eliminate2. Add the clique created by eliminating !3. Repeat until done

Page 37: Matrix Martingales in Randomized Numerical Linear Algebra

Approximate Gaussian Elimination

1. Pick a vertex ! to eliminate2. Add the clique created by eliminating !3. Repeat until done

Page 38: Matrix Martingales in Randomized Numerical Linear Algebra

Approximate Gaussian Elimination

1. Pick a random vertex ! to eliminate2. Add the clique created by eliminating !3. Repeat until done

Page 39: Matrix Martingales in Randomized Numerical Linear Algebra

Approximate Gaussian Elimination

1. Pick a random vertex ! to eliminate2. Sample the clique created by eliminating !3. Repeat until done

Resembles randomized Incomplete Cholesky

Page 40: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices by Sampling

Goal !"! ≈ $

Approach1. % !"! = $2. Show !"! concentrated around expectation

Gives !"! ≈ $ w. high probability

Page 41: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Consider eliminating the first variable

Original Laplacian

Rank 1term

Remaining graph + clique

! "($) = '( '()

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎

Page 42: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Consider eliminating the first variable

Rank 1term

Remaining graph + sparsified clique

! "($) = '$ '$(

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎

Page 43: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Consider eliminating the first variable

Rank 1term

Remaining graph + sparsified clique

! "($) = '$ '$(

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎

Page 44: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Consider eliminating the first variable

! "($) = '$ '$(

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎Rank 1term

Remaining graph + sparsified clique

Page 45: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Consider eliminating the first variable

! "($) = '$ '$(

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎Rank 1term

Remaining graph + sparsified clique

! +($) = '$ '$(

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎Suppose

Page 46: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Consider eliminating the first variable

! "($) = '$ '$(

+ ! ∎ ∎∎ ∎

∎∎

∎ ∎ ∎Rank 1term

Remaining graph + sparsified clique

= "(+)Then

Page 47: Matrix Martingales in Randomized Numerical Linear Algebra

Approximating Matrices in Expectation

Let !(#) be our approximation after % eliminations

If we ensure at each step

Then& !(#) = !(#())

& ∎ ∎∎ ∎

∎∎

∎ ∎ ∎= ∎ ∎

∎ ∎∎∎

∎ ∎ ∎Sparsified clique Clique

& ! # −! #() | previous steps = 6

Page 48: Matrix Martingales in Randomized Numerical Linear Algebra

Approximation?

Approximate Gaussian EliminationFind !, upper triangular matrix, s.t.

!"! ≈ $

!"! − $ ≤ 0.5

$*+/-!"!$*+/- − . ≤ 0.5

Page 49: Matrix Martingales in Randomized Numerical Linear Algebra

Essential Tools

Isotropic position !" ≝ $%&/( " $%&/(

Goal is now)*) − , ≈ .

PSD Order/ ≼ 1

iff for all 22*/2 ≤ 2*12

Page 50: Matrix Martingales in Randomized Numerical Linear Algebra

Matrix Concentration: Edge Variables

Zero-mean variables !" = $" − &"

Isotropic position variables '!"

w. probability ("

o.w. $" =

1("&*

1("+

Page 51: Matrix Martingales in Randomized Numerical Linear Algebra

Predictable Quadratic Variation

Predictable quadratic variation = ∑# $ %#&| prev. steps

Want to show ℙ ∑# $ %#&| prev. steps > 1& ≤ 3

Promise: $4%5& ≼ 7895

Page 52: Matrix Martingales in Randomized Numerical Linear Algebra

Sample Variance

!" #$∈ "

&'$ ≼ !"#$∋"

&'$

* *

elim. clique of

Page 53: Matrix Martingales in Randomized Numerical Linear Algebra

Sample Variance

!" #$∈ "

&'$ ≼ !"#$∋"

&'$

* *

elim. clique of

≼ 4&'# vertices

= 4-# vertices

= 2current lap.# vertices

WARNING: only true w.h.p.

Page 54: Matrix Martingales in Randomized Numerical Linear Algebra

= " 4$

Sample Variance

Recall %&'() ≼ "+,(

Putting it together%- .(∈ -

+,( ≼ %-.(∋-

+,(elim. clique of

= 4$# vertices

%- .(∈ -

%&'() ≼elim. clique of # vertices

variance in one round of elimination

Page 55: Matrix Martingales in Randomized Numerical Linear Algebra

Sample Variance

! ≼rounds ofelimination

variance

≼ 4 $ log ( ⋅ *

! $ ⋅ 4*# ver2ces

rounds ofelimination

Page 56: Matrix Martingales in Randomized Numerical Linear Algebra

Summary

Matrix martingales: a natural fit for algorithmic analysis

Understanding the Predictable Quadratic Variation is key

Some results using matrix martingales

Cohen, Musco, Pachocki ’16 – online row sampling

Kyng, Sachdeva ’17 – approximate Gaussian elimination

Kyng, Peng, Pachocki, Sachdeva ’17 – semi-streaming graph sparsification

Cohen, Kelner, Kyng, Peebles, Peng, Rao, Sidford ’18 – solving Directed Laplacian eqs.

Kyng, Song ’18 – Matrix Chernoff bound for negatively dependent random variables

Page 57: Matrix Martingales in Randomized Numerical Linear Algebra

Thanks!

Page 58: Matrix Martingales in Randomized Numerical Linear Algebra

How to Sample a Clique

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

1

23

4

5 54

32

Page 59: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

How to Sample a Clique

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

Page 60: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

How to Sample a Clique

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

Page 61: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

How to Sample a Clique

Page 62: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

How to Sample a Clique

Page 63: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

How to Sample a Clique

Page 64: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

How to Sample a Clique

Page 65: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

How to Sample a Clique

Page 66: Matrix Martingales in Randomized Numerical Linear Algebra

1

23

4

5 54

32

For each edge (1, $)pick an edge 1, & with probability ~ ()insert edge $, & with weight *+*,*+-*,

How to Sample a Clique

Page 67: Matrix Martingales in Randomized Numerical Linear Algebra

Practice

Julia Package: Laplacians.jl

tiny.cc/spielman-solver-code

Theory

Nearly-linear time Directed Laplacian solversusing approximate Gaussian elimination[CKKPPSR17]

Page 68: Matrix Martingales in Randomized Numerical Linear Algebra

This is really the end